UNIVERSAL  HOMOGENEOUS BOOLEAN ALGEBRAS
H. Jerome Keisler

A Boolean algebra 8 of power a is said to be universal if every Boolean alge-
bra of power at most a is isomorphically embeddable in 8. 9 is said to be
homogeneous if for every subalgebra 9% of 9B of power less than a, every iso-
morphism of % into B can be extended to an automorphism of $. These notions
are special cases of the general notions, due to Jonsson [4] and [5], of a K universal
(relational) system and a K homogeneous system, where K is a class of systems.
It follows from the general results of Jonsson and from known properties of Boolean
algebras that if 2% = o (the first cardinal greater than @), then there is, up to iso-
morphism, a unique universal homogeneous Boolean algebra of power ot. However,
J6nsson’s results do not tell us which Boolean algebra the universal homogeneous
one is. In this note we shall prove two theorems that identify the universal homog-
eneous Boolean algebra of power wj as a very familiar Boolean algebra.

We let S(w) denote the Boolean algebra of all subsets of the set w of natural
numbers, S,(w) the ideal of all finite subsets of w, and S(w)/S,(w) the quotient
algebra.

THEOREM 1. Assume the continuum hypothesis 2% = wy. Then S(w)/S,(w) is
a universal homogeneous Boolean algebra of power w 1-

Instead of proving Theorem 1 as it stands, we shall prove a more general result.
For this we need some more notation. Let % = \ A, +, -, —) be an arbitrary
Boolean algebra. The direct power %A% whose set of elements is the set A® of all
functions on w into A, is also a Boolean algebra. We denote by %* the quotient
algebra of 4% modulo the ideal of all functions f € A® such that f(n) = 0 for all but
finitely many n. For each g € AY, we let g* be the element of A* that g repre-
sents. The algebra %* is precisely the reduced power of % modulo the filter of all
cofinite subsets of w (see [2]). It is obvious that if % is the two-element Boolean
algebra, then %“ is isomorphic to S(w), and %A* is isomorphic to S(w)/Sy(w).

THEOREM 2. Assume the continuum hypothesis. Let U be any Boolean algebra
of powey at most wy . Then U* is a universal homogeneous Boolean algebra of
power wy . Moreover, if B is any other Boolean algebra of power at most wj , then
A* and B* are isomorphic.

The general uniqueness theorem of J6nsson [5] shows that any two universal ho-
mogeneous Boolean algebras of the same power are isomorphic, so that the 9* and
B* above are isomorphic. The only step in the proof of Theorem 2 for which we
shall need the continuum hypothesis is the proof that 9* has power w;. Except for
this point, the theorem is a consequence of the following lemma, which does not de-
pend on the continuum hypothesis. For a Boolean algebra 8 = <B, +,, - >, and a
subset C C B, let 8 | C denote the subalgebra of B generated by C.

LEMMA 3. Let % and B be Boolean algebras, let C be a subset of B of power
at most w, and let b be an element of B. Then any isomovphism f of B I C into
A* can be extended to an isomovphism ' of B|C U {b} into wu*.
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By means of transfinite induction, it is easy to prove Theorem 2 from the lemma.
Alternatively, Theorem 2 follows at once from the lemma and Theorem 2.5 in Morley
and Vaught [6]. We now turn to the proof of the lemma.

We may assume that the set C is closed under the Boolean operations and is non-
empty, so that C is the set of all elements of 8 | C. We may also assume that
b ¢ C. For each ¢ € C, choose g(c) € A® such that f(c) = g(c)*. List the elements
of C,say C = {cy: n <w}, in such a way that each ¢ € C occurs infinitely many
times in the list. We shall construct an infinite strictly increasing sequence of
natural numbers

m(0) < m(1) < ---

and an element g(b) of A® such that the following four conditions are satisfied for
all n.

(1) If ¢y < b, then g(cn)p < g(b), whenever m(2n) < p.

(2) If not cp < b, then not g(cy)p < g(b)p, where p = m(2n).

(3) If b <cp, then g(b)p < glcn)p whenever m(2n + 1) <p.

(4) If not b < cp, then not g(b)p < glcn)p, where p = m(2n + 1).

Once we have constructed the sequence m and the element g(b), we define
f'(b) = g(b)*. Remembering that each ¢ € C occurs infinitely many times in the list
¢, (n <w), we see from (1) to (4) that for each c € C, f(c) < f'(b) if and only if
c g b, and also f'(b) < f(c) if and only if b < c. Each element of B l cu {b} is of
the form b.c + (-b)-d, where ¢, d € C. We conclude that f can be extended (in a
unique way) to an 1somorph1sm ' of B | C U {b} into u* with £'(b) = g(b)*.

The sequence m and the element g(b) are built up by induction. Let r < w, and
suppose that we have m(0) < +=- < m(2r - 1) and an element g(b, r) of A® such that
(1) to (4) hold for all n <r with g(b, r) in place of g(b). For r =0, we let g(b, 0)
be an arbitrary element of AY, We shall find m(2r), m(2r + 1), and g(b, r + 1) such
that m(0) < +-- < m(2r + 1), such that (1) to (4) hold for all n <r with g(b, r +1) in
place of g(b), and such that

(5) g(b, r + 1) = glb, r)p  whenever p < m(2r).

There are three cases:
I. c, <b andnot b< ¢,
II. Not c. <b and b<c,.
III, Not ¢, <b andnot b< c..

The case b = ¢, cannot arise, because b ¢ C. Let x € A¥ be the sum in the algebra ‘
AY of all g(c,) such that n <r and ¢, < b, with the convention that the empty sum
is the zero of A®, Let y € A¥ be the product in A® of all g(c,) such that n <r
and b < c,,, where the empty product is the unit of A¥. Note that Xp < yp whenever
m(2r - 1) < p.

Case I. In this case f(c;) < y* and not y* < f(c,.). Choose m(2r) such that
m(2r - 1) < m(2r) and g(cr) < yp whenever m(2r) < p. Now choose
m(2r + 1) > m(2r) such that not yp <L glcr)p, where p = m(2r + 1). Define
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glb, r)p if p <m(2r),
glb, r+1)p =
Yp if p> m(2r).

Case II. We have not f(c;) < x*, but x* < f(c,). Choose m(2r) > m(2r - 1) such
that not g(cy)p < xp, where p = m(2r). Choose m(2r + 1) > m(2r) so that
xp < g(cr)p Whenever m(2r + 1) < p. Now define

gb,r)p if p< m(2r),
glb, r+1)p =
Xp if p> m(2r).

Case III. This time, not f(c,) < x* and not y* < f(c,). Take
m(2r + 1) > m(2r) > m(2r - 1)

such that not g(cr)p < xp where p = m(2r), and not yq < glcr)q where q = m(2r + 1).
Let

m(2r),

Xp if p

glb,r+1)p= {yp if p = m(2r+1),

g(b, r)p  otherwise.

It is easy to verify that in each case m(2r), m(2r + 1), and g(b, r + 1) have all
the required properties. By (5), g(b, r)p = g(b, s)p whenever p <'m(2r) and
p < m(2s). We define g(b)p = g(b, r)p, where r is such that p < m(2r). It follows
that (1) to (4) hold for g(b), and our proof is complete.

Let a be an uncountable cardinal. It is curious that neither of the Boolean
algebras S(a)/Sy,(a) and S{@)/I is homogeneous; S(@) is the algebra of all subsets
of a, Sw(oz) is the ideal of all finite subsets of &, and I is the ideal of all subsets of
a of power less than a. S(a)/S,(a) fails to be homogeneous (if we assume
2w < 29) because the subalgebra {0, w, @ - w, alt/ Sp(a@) has an obvious auto-
morphism that cannot be extended to the whole algebra. If « is not cofinal with w,
then S(a)/I fails to be homogeneous, because it has a properly increasing countable
sequence bg < by < - of elements whose supremum is the unit element, and
another whose supremum is not the unit element. On the other hand, if a is cofinal
with w, then S(a)/I fails to be homogeneous, because it has a properly increasing
sequence of type w; of elements whose supremum is the unit element, and another
whose supremum is not.

We conclude with some historical remarks. Our results in this note are closely
related to some early results of Hausdorff. If X, Y are subsets of a Boolean alge-
pra, then X <Y means that x <y for all x € X, y € Y. Hausdorff [3] proved (with-
out the continuum hypothesis) that if X and Y are finite or countable simply ordered
subsets of the algebra S(w)/S,(w) and X <Y, then there is an element z of the
algebra such that X < {z} < Y. Lemma 3 is an improvement on Hausdorff’s result,
in the sense that Hausdorff’s result is an easy consequence of Lemma 3. On the
other hand, Hausdorff’s result makes it very natural to guess that S(w)/Sy(w) is
universal and homogeneous. The author began thinking about the algebra S(w)/S(w)
after a conversation with Tarski on the above result of Hausdorff.
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The existence and uniqueness of universal homogeneous Boolean algebras of each
power at, where a™ =22 has been known ever since Jénsson introduced the no-
tions. In the papers [4] and [5], J6nsson gave a very general sufficient condition for
a class K of relational systems to contain a unique universal homogeneous system of
power at, where ot = 2%, He gave several examples of classes K for which his
sufficient condition holds, but he did not mention Boolean algebras. However, Eva
Kallin observed in 1957 that the class of all Boolean algebras satisfies Jénsson’s
condition, and she wrote Jénsson a letter containing a simple proof. (The author is
indebted to J6nsson for looking up the letter and providing this information.) Several
people appear to have noticed independently that the class of all Boolean algebras
satisfies J6nsson’s condition. A proof can be found in [1].
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