EQUIVALENCE OF EMBEDDINGS OF k-COMPLEXES IN E™
FOR n < 2k + 1

T. M. Price

In 1953 V. K. A, M. Gugenheim showed that if a k-complex K is piecewise
linearly embedded in E™ (n > 2k + 2) and h: K — E® is a piecewise linear homeo-
morphism, then there exists a piecewise linear isotopy H;: E™ — E" such that Hj
is the identity and H; | K = h [3, Theorem 5]. Later, R. H. Bing and J. M. Kister
[1] proved a slightly sharper result for the same dimensions: If h, as above, is an
£¢-homeomorphism, then Hy: E® — E™ can be chosen to be an £-isotopy and to move
things only on a compact subset of E,

This paper concerns the cases where n < 2k + 2, First it should be remarked
that there is no hope of proving as general a theorem as is stated above. It is always
possible to find two nonequivalent embeddings in E® (n < 2k + 1) of the complex
consisting of disjoint copies of a k-sphere and an (n - k - 1)-sphere; namely, they
can link in one instance and not link in the other instance. Theorem 1 gives a suffi-
cient condition on k-complexes for any two embeddings in E2Ktl to be equivalent.

It is easy to construct examples of very nice k-complexes in E® (n < 2k + 1) where
it seems that though the homeomorphism h moves things very slightly, the isotopy
might have to move things quite far.

Before proceeding with the proofs, we give a few basic definitions. If K is an
abstract complex, we use the letter K for its geometric realization and also for the
point set in E® associated with some embedding. If K and L are complexes and
f: K — L is a homeomorphism, then f is called piecewise linear if K and L have
triangulations T and T', respectively, such that f takes simplexes of T linearly
onto simplexes of T'. If K is a complex and I denotes the unit interval, then a
piecewise linear isotopy of K onto itself is a piecewise linear homeomorphism of
K X I onto K X I, triangulated in the natural way, that takes K x {t} onto K x {t}
(0<t<1). ¥ H is such a homeomorphism, then we let Hi(x) = H(x, t) for each
xe€Kand 0<t< 1.

Let K and L be complexes. Let A be a simplex of K. Suppose A = B * v, that
is, A is the join of a face B of A and a vertex v of A. Then K collapses to L in a
simple collapse if K=LUA and LNA=v* B (we use C to denote the boundary
of a cell C). The complex K is collapsible if in a finite number of simple collapses
it collapses to a point. If K is a subcomplex of E, a regular neighbovhood of K is
a combinatorial n-manifold with boundary, as defined in [5], that collapses to K in a
finite number of simple collapses. It is known [5] that any two regular neighborhoods
of a particular embedding of a complex are piecewise linearly homeomorphic.

Finally, the term linking is used in the sense of homotopy linking. That is, if R
is an i-sphere and T is a k-sphere, each embedded in an n-sphere S, and if
RNT-= ﬂ, then R links T if R bounds no singular (i + 1)-cell in S - T. Otherwise,
R does not link T.

The following Lemma, used later in the paper, is easily established, and we omit
its proof.
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LEMMA 1. Let D be a combinatorial (k + 1)-cell in E® (k <n). Suppose that
E and E' ave combinatorial k-cells such that

D=EUE' awd ENE'=E =E',

Suppose fuvther that K is a k-complex in E®, DNK=E,and EN (K - E) = E.
Then there exists a piecewise linear isotopy H of E™ onto itself such that

1) Hq is the identity,
2) Hi| (K - E) is the identity for 0<t <1,
3) Hi(E) = E', and

4) theve exists a compact set Z C E™ such that H, | (E™ - Z) is the identity for
0<t< 1.

THEOREM 1. Let K be a finite k-complex (k> 2) in E® (n= 2k + 1). Suppose
that K' is also a k-complex in E™ and that f: K — K' is a piecewise linear homeo-
movphism. Then if either

1) HY(K, Z) = 0 or
2) H(K, Z) =0 and Ty_((K, Z)=0,

theve exists a piecewise linear isotopy Hy: E? — E™ (0 <t < 1) such that Hy is the
identity and Hy | K =1, Furthermore, theve exists a compact set X C E™ such that
H,| (E® - X) is the identity for 0 <t < 1.

Proof. First we assume that the homeomorphism f is simplicial. Let T and T!'
be triangulations of K and K', respectively, that are isomorphic under f. If 0 € T,
let o' ={(o) € T'. It will be convenient to consider T and T' as triangulations of
the abstract complexes K and K'. The simplexes of T and T' will not be linearly
embedded in E™ at all times. The i-skeleton of K (of K') will always refer to the
i-skeleton with respect to T (to T').

Since 2(k - 1) + 2 < n, it follows from the theorem of Bing and Kister (mentioned
at the beginning of this paper) that there exists a piecewise linear isotopy G of E
onto EP such that G, is the identity and G; | Kk-! = f | Kk-1 where Kk-1 denotes
the (k - 1)-skeleton of K with respect to T. Let ¢ be a k-simplex of T. Then
Gi(o) is a combinatorial k-cell in E®. Because we can move the vertices of the
interior of G;(0) so that they are in general position with respect to the vertices of
K', we may assume that Gj(c) N K'=G;(6) = ¢'. Since this can be done for each
k-simplex of T, and since it can be accomplished by a suitable isotopy, we may as-
sume that G is a piecewise linear isotopy of E™ onto itself with the following
properties:

1) Gg is the identity,
2) G; | KXl =f]|KK"L,
3) Gi1(K) N K' = G1(KX"1) is the (k - 1):skeleton of K', and

4) there exists a compact set Y € E™ such that G¢ [ (E™ - Y) is the identity for
0<t< 1.

For simplicity of notation, we assume that K and K' had these properties in the
first place. That is, we assume that K and K' have the same (k - 1)-skeleton with
respect to T and T'. Furthermore, we assume that K N K' is exactly this common
(k - 1)-skeleton.
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The proof will be complete when we have moved the k-cells of T onto the cor-
responding cells of T'.

Let 0 be a k-cell in T, and let ¢' be its corresponding cell in T'. Our first
objective is to find a (k + 1)-annulus A such that S =0 U o' is one boundary com-
ponent of A and such that A N (K U 0') =S, To get such an annulus, note that S
bounds a combinatorial (k + 1)-cell F in E™ (this was proved by E. C. Zeeman in
[6]). Now, by adjusting the vertices of the interior of F to be in general position
with respect to the vertices of K U o', we find that

dim(FN{EKuUo")-(cuoc)) =(k+1)+k-2k+1)=0.

Thus we can pick an annular neighborhood in F of T that intersects K U o only
in S.

Let S' be the other boundary component of A. Then S' is a k-sphere in E® - K,
Furthermore, 7;(E™ - K) = 0 for i <k. For i <k - 1, this follows from general
position arguments. To show that m (E® - K) = 0, note that 7 (E™ - K) = Hi (E™ - K)
by the Hurewicz Theorem [2, Chapter 15, Theorem 1.12]. By Alexander Duality {2,
Chapter 12, Theorem 8.2] it follows that H; (E™ - K) = H(K). Thus if condition 1) of
the statement of the theorem is satisfied, m (E™ - K) = 0. If condition 2) is satisfied,
it follows from the Universal Coefficient Theorem [2, Chapter 10, Theorem 5.10]
that condition 1) is also satisfied. We may now apply the Engulfing Theorem of J.
Stallings [4] to obtain a combinatorial n-cell C such that C is contained in E® - K
and S' is contained in the interior of C. Again using Zeeman’s unknotting theorems
[6], we find that S' is unknoited in the interior of C and hence bounds a combinatorial
(k + 1)-cell D in the interior of C.

Now we adjust the vertices of the interior of D so that they are in general posi-
tion with respect to the vertices of A, maintaining, of course, the property that D
does not intersect K. When this is done,

dim(D N(A -8 < (k+1)+ (k+1) - (2k+1) = 1.

Since k+ 1 > 3, the set D N (A - S') does not separate S from S' in A.
Let @ be an arc in A such that
1) a has one endpoint in the interior of o and the other endpoint on S',
2) int ¢ C int A, and
3) a ND=a NS =one endpoint.

Now A U D can be divided into two combinatorial (k + 1)-cells, so that o can be
moved to ¢' in two cellular moves across A U D, One cell, D;, is to consist of D
plus a small tubular neighborhood in A of . The other cell, D;, is to consist of A
minus that tubular neighborhood of @¢. Let E=D; N S. Let E'=D; - E. We as-
sume that D; was chosen so that E and E' are combinatorial k-cells with E con-
tained in the interior of o. First we move E across D; to E'. Next we move
(0 - E) UE' across Dz to o'. Then two applications of Lemma 1 give rise to an
isotopy H' of E™ onto itself that takes ¢ onto ¢' and is the identity on K - o.
Thus far, though, the final stage of the isotopy might not agree with f I o. Notice
that f o (H})-1 | o' is a piecewise linear homeomorphism of ¢' onto itself that is
the identity on the boundary of o'. Hence, by a theorem of Gugenheim [3], there
exists a piecewise linear isotopy H" of o' onto itself such that H{j is the identity
and H] =f o (H})-! | o'. Since o' is a simplex in E®, H" can easily be extended
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to an isotopy of E™ onto itself that moves no part of H](K) except the set
Hj(int 0) = int o'.

We let H" denote the extended isotopy also.

The isotopy of the conclusion of the theorem, restricted to o, can be written as
the composition H = H" © H' © G, By applying the above techniques to another k-
simplex of T and using H(K) in place of K, we can easily see how to continue to
move K onto K' in the prescribed manner.

It has been announced at various times that the regular neighborhood of a con-
tractible 2-complex piecewise linearly embedded in E5 is a 5-cell, but the status of
the proofs is in doubt. The following partial result in this direction is an immediate
consequence of Theorem 1.

COROLLARY. If K and K' are two piecewise lineay embeddings of a contract-
ible 2-complex in ES and if N and N' ave vegulayv neighbovhoods of K and K',
respectively, then N and N' are piecewise linearly homeomorphic.

THEOREM 2. Let k be an integer (k > 2). For each integer n (k < n < 2Kk)
theve exist a collapsible k-complex K(k, n) and two piecewise linear embeddings K'
and K" of K(k, n) in E™ such that no homeomorphism of E® onto itself takes K'
onto K" .

Proof. Let Z be the boundary of an n-simplex in E®, Let S bea (k - 1)-
sphere, and let T be an (n - k - 1)-sphere disjoint from S. We consider S U T as
an abstract complex, not as a subset of E. Let K(k, n) be the cone over S U T,
Let S' and T' be piecewise linear embeddings of S and T in 2 such that S' and
T' link each other in Z. Let S" and T" be piecewise linear embeddings of S and
T in Z such that S" does not link T" in 2. Let v be a point in the interior of =,
We define K' and K" as follows: K' is the embedding that takes K(k, n) onto
v * (S' U T') in the natural way, and K" is the embedding that takes K(k, n) onto
v % (S" U T") in the natural way. We let K' and K" denote the complexes as well
as the embeddings. Clearly, K' and K" are not piecewise linearly equivalently em-
bedded in E, because

Ik(v, K') = S' U T and Ik(v, K*") = S* U T".

S' UT' and S" U T" are not equivalently embedded in lk(v, E?) = Z,

To show that no space homeomorphism, piecewise linear or not, takes K' onto
K" is slightly more difficult, and we present only a sketch of the proof. First we
parametrize v * S' in the natural way, so that S; is a (k - 1)-sphere (0 <t < 1)
with S' =8} and S} =v. We define T{, S!', and T! in a similar fashion. Each S}
bounds a singular k-cell D; that intersects K" only in S{'. Suppose f is a homeo-
morphism of E onto itself that takes K" onto K'. Then f(v) = v, and we can as-
sume that £f(S") = §'. There exists a t (0 <t < 1) such that f(D,) is contained in
the interior of Z. By projecting f(Dt) from v, we can construct a singular k-cell
lying in 2 - T' and having S' as its boundary. This leads to the contradiction that
S' can be shrunk to a point in £ - T', that is, S' does not link T' in Z.

Question. Present information suggests that the obstruction to obtaining space
isotopies in E2k+l that take one embedding of a k-complex onto another embedding
is a difficulty with linking rather than knotting. Hence one might ask whether such
an isotopy always exists if the complex has at most one nontrivial cycle.
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