PERTURBATIONS OF A NONLINEAR VOLTERRA EQUATION

J. d. Levin and J. A. Nohel

1. INTRODUCTION

In this paper we investigate the behavior as t — o of the solutions of the equation

(L) x® = - at- Deerhar + e, 1) (=3, 0<t<=),
0

where a(t), g(x), {(t, x) are given real functions. The special case ¢(t, x) =0 was
considered in Levin [3]. Here, as in [3], the kernel a(t) is nonnegative and decreas-
ing, and g(x) satisfies the condition xg(x) > 0 (x # 0). The perturbing term ¢(t, x)
is considered under a variety of hypotheses that are motivated by several applica-
tions (see Corduneanu [1] and Levin and Nohel [5]).

On integrating (1.1), one obtains the equation

t t
(1.2) x(t) = - 5 Alt - 7)ax(7))dT +S e(r, x(1))dr + x(0),
0 0

t
where A(t) = S a(7)d7r. The special case of (1.2),
0

t
(1.3) x® = - | Al - Te((r)dr + £,
0

where A(t), g(x), and £(t) are given functions, has been investigated under a variety
of conditions different from the present ones. For example, if A(t) is nonpositive
(instead of nonnegative), g(x) = x, and £(t) > 0, then (1.3) is an equation of renewal
type. Several authors (see for example Friedman [2] and Levin [4]) have considered
the case where A(t) is nonnegative and decreasing (instead of increasing).

By means of an interesting and entirely different technique, Corduneanu in [1]
investigates (1.3) under hypotheses partially overlapping the present ones. Roughly
speaking, the assumptions on a(t) = A'(t) in [1] concern its integrability, while here
they concern its monotonicity. Thus, for example, here it is possible that
a(t) ¢ L1(0, =) (indeed, in Theorem 1, it may happen that a(t) — a(x) > 0 as t — ),
while in order to apply the results of [1] one would also have to assume that
ta(t) € L(0, ). Concerning the perturbation term, the present hypotheses are
much less restrictive. Note, for example, the b(t)-term in Theorem 1 and the x-
dependence of ¢(t, x) in Theorems 2 and 3. A more precise comparison is rather
involved, and we defer it to Section 7.
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Theorem 1 concerns the equation

t
(1.4) x'(t) = - S at - 7)g(x(7))dr - b(t) + £(t),

(¥}
where, in the notation of (1.1), &(t, x) = -b(t) + £(t) is independent of x. The hypoth-
eses on a(t) and g(x), with the exception of (1.8) and the condition g € C' of (1.14),
are precisely those under which the unperturbed equation was investigated in [3].
The condition (1.8) is needed here to obtain a global rather than a local result. All
that is required of f(t) is that it be in L;(0, ) and satisfy some smoothness as-
sumptions. The conditions on b(t) are to some extent determined by the method of
proof. Fortunately, however, they enable one to handle perturbations that are not
integrable and that occur in some of the applications.

Throughout the paper, the letter K denotes, in the usual way, a finite a prior?
bound that may vary from line to line.

THEOREM 1. (i) Suppose
1.5) a(t)e [0, =), (-Dfa¥@®)>0 (O<t<=;k=0,1,2),

(1.6) g(x) € C(-=, =), xg(x)>0,
(1.7)  G(x) = Sx g(e)dt — o (|x]| — ),
0

(1.8) |e@®)| < K;(1+G(x) ([x| <) for some K; <,
(1.9) b(t) € C[0, ©) N C'(0, =),
(1.10) theve exists c(t) e C[0, ©) N C'(0, ©) such that
pA) < alt)e(t), (B'()* < a'®)e't)  (0<t< =),

(1.11) £(t) € C[0, ), S: |£(t) | dt < eo.

If x(t) is a solution of (1.4) on 0 <t < e, then
(1.12) |x(t)] < K (0<t< =),

(ii) In addition, suppose
(1.13) -a™(t) > 0 (0<t< =),
(1.14) xg(x)>0 (x+0), g(x)e Cl-oo, ),
(1.15) Db"(t), c"(t) exist on 0 <t < e,
(1.16) either (b™(t))* < an(t)e™t) (0 <t < ),

or |b'®)], [tb"®)], |e"()] <K K <o (v <t<w) for some K, v >0,
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(1.17) £(t) € C'(0, =), || <K (v <t <),
Then |x"(t)] <K (v <t < «), and if also a(t) # a(0), then

1.18) 1im xXP@®=0 (G=0,1).

t—

In (1.5) and (1.13), it is assumed that a"(t) and a™(t) exist and are finite at every
point of 0 <t < e,

In Theorem 1, the existence of a solution of (1.4) is part of the hypothesis. How-
ever, it may be seen from the proof of Theorem 1 that the K in (1.12) is an a priori
constant. This is the key fact needed to establish existence of solutions of (1.4) on
0 <t < . Specifically, the bound (1.12), combined with rather obvious modifications
of Lemmas 1.1 and 1.2 of Nohel [6], yields the following existence result concerning
solutions of (1.4) (we state it without proof; similar existence theorems hold for the
other cases of (1.1) considered below).

COROLLARY 1. Let the hypothesis of Theorem 1(i) be satisfied. Then for
each x theve exists a solution x(t) of (1.4) on 0 <t < = such that x(0) =xy. Ifin
addition g(x) satisfies a Lipschitz condition, the solution x(t) is unique.

From the proof of Theorem 1, one readily obtains the following result.

COROLLARY 2. (i) If £(t) = 0 in (1.4), then the hypotheses (1.8), (1.11), (1.17),
and g € C' of (1.14) may be omitted in Theorem 1, and lim x"(t) = 0 added to the

N t—> o0
conclusions.

(ii) If b(t) =0 in (1.4), then (1.9) and with c(t) =0) (1.10), (1.15), (1.16) are
trivially satisfied.

(iii) If £(t) = b(t) =0, then Theorem 1 (of course, with hypotheses (1.8), (1.9),
(1.10), (1.11), (1.15), (1.16), (1.17), and g € C' of (1.14) omitted) reduces to Theo-
rem 1 of [3].

(iv) If £(t) = 0, b(t) =b = constant, and a(«)> 0 in (1.4), then by taking
c(t) = b? /a(») > 0, one trivially satisfies conditions (1.9), (1.10), (1.15), (1.16). (This
genevalizes Theovem 2(ii) of [3].)

Another illustration of Theorem 1 in which b(t) need not be in L; (0, «) is the
following. In (1.4), let

(8}
alt) = (1+t)°Y, b)) =r A+t ° ©

b

where «, €, and A; are positive constants. It is easy to show that if one chooses
c(t) =a,(1+t)"¢, where

2 2 2
z (5+2) (§+e) (5+e+1)
A, > A; max |\ 1, ,

os ’ ae (e +1)(e + 1)

then the hypotheses of Theorem 1 concerning af{t), b(t), c(t) are satisfied. One may
note, for example, that if @ = ¢ = 1/2, then a(t) ¢ L;(0, «) and b(t) ¢ L;(0, <) while,
in contrast to Corollary 2 (iv), a(«) = 0.

If a(t) € L;(0, ), a modified version of the proof of Theorem 1 establishes the
following result for
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t
(1.19) x(t) = -pt, x(t)) - S alt - 7)g(x(r))dr - b(t) + £(t) .
0

COROLLARY 3. (i) Let the hypothesis of Theovem 1(i) be satisfied, and let
xp(t, x) > 0, where p(t, x) € C (0 <t < o, |x| < ), If x(t) is a solution of (1.19)
on 0 <t< o, then [x(t)] <K (0 <t < ),

(ii) In addition, let the hypothesis of Theovem 1(ii) be satisfied; let p(t, x) € C';
for each xy > 0, let theve exist K(xy) such that

lp(t, )|, [pyt, B, [p & ®| < Kx) (O<Lt<, |x] <x));

and let a(t) € L(0, ©), Ther (1.18) is satisfied.

The next theorem concerns the equation

t
(1.20) X'(t) = -p(t, x(t)) - 5 alt - 7)gx(7))dr + £(t, x(t)).
0

Here p(t, x), a(t), and g(x) satisfy essentially the same conditions as before. The
new element is that the perturbation term £(t, x) now depends on x. This causes us
to give a result that is local with respect to initial conditions, rather than global, as
the one above. Roughly speaking, the hypothesis on f(t, x) is that it vanish suffi-
ciently rapidly with respect to x, while being integrable with respect to t. After
stating the result, we shall give an example showing that the hypothesis is not very
restrictive and is, in fact, quite natural in view of analogous results for ordinary
differential equations.

Define
g(x) = max g() (0<x), gx = min g(¢) (x<0),
0<§<x x<£<0

(1.21) M(x) = max(g(x), -g(-x)) (x> 0),

m; (x) = min (G(x), G(-x)), m,(x) = max(G(x), G(-x)),

>4

where G(x) = S g(£)dé. (Note that if g(x) is odd and nondecreasing, then (1.21) re-
0

duces simply to g(x) = g(x), M(x) = g(x), m;(x) = m,(x) = G(x).) In the following,

Do (t) denotes the right-hand derivative of o(t) (whenever it exists).

THEOREM 2. (i) Suppose 0<x;< %, p(t, x) € C, xp(t, x) >0 (0 <Lt < e,

| x| < x;), alt) satisfies (1.5), g(x) € C, xg(x) >0 (|x| < x1), and g(x) is not iden-

tically zevo in any neighbovhood of the ovigin. Let f(t, x) € C (0 <t < oo, |x| < x1),

and for each € > 0 let theve exist a 6 = 6(e) > 0, wheve 6(¢) > 0 as ¢ — 0, and a

B(t) = Blt, £) > 0, where S B(t)at < &, such that |i(t, x)| < B(t) whenever 0 <t <
0

and |x‘ < 6. Moreover, let
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my (6 (g))

(1.22) m > e

Sor sufficiently small positive €.

Then for any 0 < x, < x1 there exists an xg = Xo(x3) > 0 such that every solution
x(t) of (1.20) on 0 <t < = with |x(0)| < x satisfies the condition |x(t)| < x,
(0 <t < ).

(ii) In addition, let p(t, x) € C' and
Ipt, ®)|, |p(t, ), |p(t, ¥)| <K  (0<t< o, |x]| < x).

Let a(t) satisfy (1.13) and a(t) € Lj(0, =), a(t) #0. Let xg(x)> 0 (x #0), g(x) € C'
(|x| <x;). Let £(t, x) € C' and

[£.t, ©)], |£ 0| <K (0<t<, |x| < x).

Finaily, let B(t), DB(t) <K(e) <= (0<t<w, 0<e <1). Then lim x()=0

t ~—» o0
(G=0,1).

It is easily seen from the hypothesis that p(t, 0) = £f(t, 0) = 0. Thus Theorem 2(i)'
asserts that the solution x(t) =0 of (1.20) is stable in the sense of Ljapunov, and
Theorem 2(ii) asserts that it is asymptotically stable.

To illustrate the condition (1.22), consider the following example. Let
g(x) = x22*1 for some integer n > 0. (For simplicity, we have taken g(x) odd and
monotonic; more complicated functions could be treated in much the same manner.)
Let there exist a function p(t) > 0 and a real number m > 1 such that

l1t, )] < |x]™pt) (0<t<w, |x| < x),

where
0 < imp(t)at < w;  p(t), Dpt) <K (0<t< ).
Then
m, (x) = G(x) = ’Z‘Tzrj;;- M(x) = x*7*1,
Define

0 l/m (%)
6 =06() = (8/ .O(t)dt) , B(t) = B(t, &) = 8p(t)/5 p(t)dt.
0 0

Then, clearly,

§ steyat=c, |, 0| < 6™p® = 8t &) (x| <o).
) ,

Finally,
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::nltl((i)) w g 1HL/mgn o)1 (‘S(‘)

©0

-1/m
p(t) dt) — e (g —0),

so that condition (1.22) is satisfied.

The perturbation term f(t, x) in (1.20), rather than being small with respect to
X, in the sense of Theorem 2, may be small because of the presénce of a small
parameter. Therefore, consider the equation

t
(1.23) x'(t) = -p(t, x(t)) - S a(t - 7)g(x(7))dr + pi, x(t)),
0

where p is a real parameter. The following theorem plays essentially the same
role with respect to Theorem 2 as small-parameter-perturbation theorems play with
respect to stability theorems in ordinary differential equations.

THEOREM 3. (i) Suppose 0 < x3 <, p(t, x) € C, xp(t, x) >0 (0 <t < oo,
lxl < x;), a(t) satisfies (1.5), and g(x) € C, xg(x) >0 (|x| <xp). Letf(t,x) e C
(0<t< e, |x| <x1), and let theve exist B(t) € L1(0, ©) such that |£(t, x)| < B(t)
O<t< o, x| <xp)

Then for any 0 < x2 < X1 there exist xg = xo(%x2) > 0 and pg = po(xz) > 0 suckh
that every solution x(t) = x(t, ) of (1.23) on 0 < t <~ with Ix(O)I < xqo and
|| < po satisfies the condition |x(t)| <xp (0 <t < ).

(ii) In addition, let p(t, x) € C' and
ot ©)], [pelt, D], [t W] <K (0<t <, |x| <xy).

Let a(t) satisfy (1.13) and aft) € L;(0, ), a(t) #0. Let xg(x)> 0 (x #0), g(x) € C'
(|x| < =xy). Let f(t, x) € C' and

£, ©)], [£.¢ 0] <K (0<t <o, |x] < xy).

Finally let B(t), DB(t) <K (0 <t < ). Then lim xU(t)=0 (=0, 1),

t— oo

(Note that B(t) of Theorem 3, unlike B(t, £) of Theorem 2, does not depend on €.)

2. PRELIMINARIES

In the proofs we shall need the following lemmas.

LEMMA 1. (i) Let a(t) satisfy (1.5). Then ta'(t) — 0 (t — O+) and a'(t),
ta"(t) € L;(0, ).

(ii) If also (1.13) is satisfied, then t2a"t) —» 0 (t — O+) and t%a™(t) € L (0, «).
The proof of Lemma 1 may be found in [3, Lemma 3].

LEMMA 2. Let q(t) € C', and let Dq'(t) exist on T <t < for some
0< T <Ko, If

a(t) > 0, q'(t) <0, Dq't) > -K> -» (T<t< ),
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then q'(t) — 0 (t — «). (This extends Lemma 1 of [3], where it is assumed that q"(t)
exists and q"(t) > -K > - .)

Proof of Lemma 2. I q'(t) # 0 as t — <, then, since q'(t) < 0, there exist a
A > 0 and a sequence {t,}, where t, — © as n — «, such that q'(t,) < -1 < 0.
For n > N (N sufficiently large), consider the intervals

I, = [tn-%,tn], where tn—%>T

et} 2

and where K is the same as in the hypothesis. Since Dq'(t) > -K, it follows from a
known property of the right-hand derivate (see [7, p. 355]) that

q'(ty) -a't) > -K{, -t) whentel,,

and therefore
A A
QM) < q't)+5 < -3 (eI, n>N).
Applying the mean-value theorem and using this estimate, we see that
Aty - ) -alt) >3 e =2 2N
2K n’ Z. 2 2K 4K .

which contradicts q(t) | q(«) > 0 as t — «; this completes the proof.

We observe that hypotheses (1.5) and (1.13) do not preclude the possibility that
a'(0), an(0), am(0) are infinite. For this reason, some care is required in handling
certain integrals that arise in the proofs of the theorems. For example, if
x(t) € C[0, «), then

t t 2
% ‘So a't - 7) (57 g(x(s)) ds) ar

t t t t 2
= 2g(x(t)) S a'(t - 7) (S g(x(s))ds)d'r +S ar(t - 7) (S g(x(s))ds) dar.
0 T 0 T

In this and similar situations, Lemma 1 above and Lemma 4 of [3] justify the calcu-
lations.

3. PROOF OF THEOREM 1

(i) For 0 <t < =, define

1 t 2 t
(3.1) E(t) = G(x(t)) + 3 at) ( 5 g(x(s))ds) + b(t) S o(x(s)) ds
0 0

t t 2
1 1
+zct) -5 't - )( (())d) dr,
5 C 25;)21 T STgxs s T
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t
(3.2) ) = | |€n)]ar,
0
(3.3) V) = (1+ E(t) exp (- K; F().

From (1.5), (1.6), (1.10) it is evident that E(t), V(t) > 0. Differentiation of (3.3)
yields, after some calculation involving an integration by parts (note the remark in
Section 2 concerning the validity of these calculations),

t 2 t
vi(E) = -K, 10| Vo) + g(x(t))f(t)+%a-<t)(5 g(x(s»ds) +b10) { glx(s))as
0 0
(3.4)
1 1t t 2
tae® -2 | an - 7)(S g(x(s))ds) a7 ¢ exp(-K; F(b).
0 T

Hence from (1.5), (1.10), (3.4) we see that
v'(t) < {-K, - K; G(x(t)) + |gx(t))|} [£(t)] exp (- K F(t)),
which together with (1.8) implies V'(t) < 0. Therefore
G(x(®) exp {-K1 Ft)} < V(D) < V(0) = 1+ G(x(0)) + 3 c(0),

and so

G(x(t)) < {1 + G(x(0)) + % c(O)} exp (Kl S EG) dt),

0
which together with (1.7) and (1.11) yields (1.12).
(ii) Differentiating (1.4), one obtains
t
(3.5) x"(t) = -a(0)g(x(t)) -5 a'(t - 7)gx(7))dr -b'(t) +£(t).

0

From (1.16) it follows that |b'(t)] <K < = (v <t < =), for in the second alter-
native it is assumed, and in the first alternative we can proceed as follows. Since
a"(t) > 0, we see that c"(t) > 0 and therefore -c'(t) is nonincreasing, which together
with the last condition in (1.10) proves the assertion.

From (1.12), (1.17), (3.5), and the hypothesis (note that a'(t) € L;(0, «)), we see
that |x“(t)| <K<« (r <t< =), This, together with (1.12) and the mean-value
theorem, yields |x'(t)] <K < e (v <t < ). While we don’t use it, the last inequal-
ity together with (1.4), (1.9), (1.11) implies |x'(t)| <K (0 <t < ).

Taking the right-hand derivative of V'(t), one obtains after some calculation
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t 2
DV'(t) = @, (t) + %a"(t)( § g(x(s))ds)
0
(3.6)

t
+ont)  a(x(e)ds + 5 ¢ {exp (K, F®),
0

where

Q1(t) = -K; |[£#(t)| V'(t) - K V({t)D|£(t)] + { g'(x(t)) x"(t) £(t) + g(x(t)) [- K £(t) [£(t)]

" 2
+ 2£'(t) - x"(t) - a(0) g(x(t))] - K, lf(t)l(-;- a'(t)(S g(X(S))dS)
0
+b'(t) St (x(s))ds + L e'(t) - L St a(t - 7) (jt g(x(s))ds)zd'r)
X 2 2 J) i

1 ¢t t 2
-2 (Tame - 7)(5 g(x(s))ds) dr & exp(-K; F(t)).
0 T

There exists a K such that £;(t) > -K> -« (v <t <), This follows from the
conditions V(t) > 0 and V'(t) < 0, the boundedness of x(t), x'(t), and x"(t) on

v <t < e, the relation |Dﬁf(§“ = |#'(t)|, and the hypothesis. Hence, (1.16) and
(3.6) imply that DV'(t) > -K > - (r <t < ). By Lemma 2, V!(t) — 0 as t — o,

Returning to (3.4), we find as a consequence of V'(t) — 0, (1.5), (1.8), (1.10), and
(1.11), that

t t 2
(3.7) Iim ar(t - 'r)( g(x(s))ds) dr = 0.
e (S

t—c0 0

The argument of [3] enables us to conclude from (3.7) that x(t) — 0 (t — «). (This
argument uses (1.5), (1.13), (1.14), the condition a(t) # a(0), and the boundedness of
x(t) and x'(t) on v <t < »,) From the property that x(t) — 0 as t — <, the bound-
edness of x"(t), and the mean-value theorem, we deduce that x'(t) —» 0 as t — o,
which completes the proof.

4. PROO¥ OF COROLLARY 3

Since this proof is quite similar to that in Section 3, we only indicate the differ-
ences in the two.

(i) Define E(t), F(t), V(t) by formulas (3.1), (3.2), (3.3). Instead of (3.4), we now
obtain
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VI(t) = -K; |[£#(t)] V(t) + < - g(x(t))p(t, x{t)) + g(x(t)) £(t)

t 2 t
(4.1) + %a'(t)(S g(x(s))ds) +0'®) | g(x(s)) ds + 3 c'(t)
0 0

t t 2
- %S an(t - 7)(5 g(x(s))ds) d7 ; exp(-K; F(t)).
0 T

From (1.6) and xp(t, x) > 0, one now concludes, as in Section 3, that V'(t) < 0, which
in turn yields [x(t)| <K (0 <t < «).

(ii) Since a(t) € L;(0, «) and |x(t)| <K (0 <t < ), it now follows from (1.19)
and the hypothesis that |x'(t)] <K (0 <t < «). The inapplicability (note the term
x'(t) in (4.2) below) of the indirect argument of Section 3 to show that |x'(t)| <K
(0 <t < =) is the reason for the hypothesis a(t) € L1(0, «).

Differentiating (1.19), one obtains

x"(t) = -plt, x(t)) - p_(t, x(t))x'(t) - a(0) g(x(t))
(4.2) t
- S al(t - 7)g(x(7))dT - b'(t) + £'(t),
0

which, with the hypothesis and the boundedness of x(t) and x'(t) on 0 <t < «, im-
plies |x"(t)| <K (v <t < ).

Taking the right-hand derivative of V'(t), one obtains the formula
DV'(t) = 9,(t)

: t 2 t
1 1
3 aﬂ(t)( { g(x(s»ds) +b"(1) | e(x(e)ds + 3 e"(1) ¢ exp (K F),
0 o
where
Q,(t) = ) + {-g'&®)x"®)p(t, x(t) + &) K, |£t)] p(t, x(t))
- 2p, (t, x(t) - 2p_(t, x()) x"(t)]} exp (-K | F(t)),
and where Q(t) is given by the same expression as in Section 3. Again, we can
show that DV't) > -K (v <t < =), and the proof is completed as in Section 3.
5. PROOF OF THEOREM 2
(i) Let 0 < x, < x;. Choose € = £(x2) > 0 so that 0 < 6(¢) < x, and so that
(1.22) is satisfied; £, and therefore also 6 and B(t) = B(t, £), are fixed for the re-

mainder of the proof. Now choose x; = xy(x,) > 0 so that

(5.1) (eM(5) + m,(xp)e < m;(5),
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which by the definitions of m; and m, implies that x4 <3.

Let x(t) be a solution of (1.20) on 0 <t < «, with |x(0)| < xy. Then, by con-
tinuity, Ix(t)l < & for sufficiently small t. Define

t 2 t t 2
(5.2) E(t) = G(x(t))+%a(t)(5 g(x(s))ds) -3 {art- T)( § g(x(s))ds) dr,
0 0 T

t
(5.3) V(t) = (eM+ E(t)) exp ( AN de) :
0

where M = M(6).
Differentiating (5.3), we obtain

Lt 2
vit) = - % BE)V(E) + < g(x(t) [-p(t, x(t)) + £(t, x(t))] +% a'(t) (SO g(X(S))dS>

t t 2 .
_%.SC" a,u(t—’f)(ST g(X(S))dS) aT exP(":""S;B(T)dT).

Thus, by hypothesis, for as long as |x(t)| < 6 (note, |x(0)| < x, < 6), one has the
relation

(5.4)

t
Vi) < {-MB(t) + |ex(t)] |1(t, x(0)]} exp (%S B('r)d'r) <o
0

and hence also
t

(5.5) G(x(t)) < [eM + G(x(0))] exp (%S ﬁ('f)d'f) < (eM+ m,(xg))e < m,(5).
0

Suppose there exists a positive T such that lx(T)l = 6. Then from (5.1), (5.5) it

follows that m;(6) < G(x(t)) < m;(8), which is impossible. Hence, no such T exists,
and |x(t)] <6 <x, (0<t < =),

(ii) Since a(t) € L;(0, «), it follows from (i), (1.20), and the hypothesis that
|x'(t)| <K (0 <t < «); This, together with (i), the hypothesis, and

x1(t) = - p,(t, %) - p_(t, xO)x'(t) - a(0) g(x(t)
- (Tarte - Dernar + 1, xO)+ 1,6, 12,
0

implies |x"(t)] <K (0 <t < ),
Taking the right-hand derivative of (5.4), one obtains the formula



442 Jd. J. LEVIN and J. A. NOHEL

t 2 t
DV'(H) = 3 a"(t) (S g(x(s))ds) exp(- = B('r)d'r) -2 BV (D - 2 V(D) DB(E)
0 0

+ % g'(x(t)) x' () [£(t, x(t)) - p(t, x(t))]

+ g6x®) | Lo o, x(0) - 16t, x1)] - 20,6, x0) - 2p_(t, %)%t

+ 2,6, %(6)) + 30t XO)X() - x"(E) - a(0)s(x) |

1 1 t 2 1 ot t 2

- < B(t) (— a'(t) ( g(x(s)) dS) -5\ a"t - 7)( g(x(s)) dS) d'r)
£ 2 i 2 So ST

1 St am(t - 'r)(SIc g(x(s))ds)2 dr exp(- 1 St B(’r)d'r)
2 . € A

0

Reasoning as in the proof of Theorem 1, we deduce that DV'!(t) > -K > -
(0 <t< ) and V'(t) — 0 (t — «). Hence it follows from (5.4) and the hypothesis
that (3.7) again holds. The proof is concluded as in Section 3.

6. PROOF OF THEOREM 3

(i) This proof is similar to the one given in Section 5. Define my, m,, M by
(1.21). Choose x; = x,(x,) > 0 so that my(x,) < m;(x;). Thus x; <x,. Now
choose 0 <A <1 so that A + m,(xy) <m,(x;). Finally, choose p, > 0 so that

(6.1) (n + m,(x0)) exp (% o fﬁ(ﬂdf) < my(x,),

where M = M(x,; ).

Let x(t) = x(t, 1) be a solution of (1.23) on 0 <t < =, with lx(O)I <xg,
lp| < po. By continuity, |x(t)| < x, for sufficiently small t. Define

t
V() = (A+E(t))exp(-l\—df—° § B('r)d'r),
0

where E(t) is defined by (5.2). Then
2

t
S P LA g B(x(8)) [~ p(t, x(8)) + u£(t, x(O)] + % a'() (5 g(x(s))ds)
0

2 M,
_% St an(t - T)(St g(x(s))ds) d’r} exp (— ;’“o St B(T)dT) .
T 0

0
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Hence, as |p| < pg, for as long as |x(t)| < x, one has V'(t) < 0 and thus also

Mug ¢
(6.2) G(x(t) < (A + mz(xo))exp(T S B('r)d'r) < m;(x,).
0

Suppose there exists 0 < T < « such that |x(T)| = x2. Then, by (6.1) and (6.2),
m;(x,) < G(x(T)) < m;(x,), which is impossible. Therefore |x(t)] <x, (0 <t < ).

(ii) As in the proof of Theorem 2(ii), we can now complete the proof by showing
that |x'(t)|, |x"(t)|, -DV'(t) <K (0 <t < ),

7. REMARKS ON SOME RESULTS OF CORDUNEANU

In the comparison of the preceding results with those of Corduneanu [1], the case,
of (1.1) that must be considered is (as we shall see from the sequel)

t
(1.1) x() = -0g®) - | aft - Telx(r)ar + 1),
0

where 0 is a constant and g(x), a(t), £(t) are prescribed functions. This may be re-
garded either as a special case of (1.19) with b(t) =0 and p(t, x) = p(x) = 6g(x), or of
(1.20) with £(t, x) = £(t) and p(t, x) = p(x) = 6g(x). Clearly, (7.1) is equivalent to

t
(7.2) x(t) = x(0) + F(t) - S) [Att - 7) + 0]a(x())dT,
where
t t
(7.3) A(t) = (t)dr, F(t) = f(r)dr.
SO a\7T T ‘S(‘) T T

Corduneanu considers the equation

t
(7.4) x(t) = z(t)+5 k(t - 7)glx(r))dT,
0

which is of the same form as (7.2). He shows that if
(7.5) z'(t), z"(t) € L(0, ©) N L, (0, <),
(7.6) k(t) = h(t) - p, wheve p> 0 and h(t), h'(t) € L;(0, ©) N L,(0, =),

(7.7) g(x) € C(-w, =), xg(x)>0 (x=0),
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there exists a constant q > 0 such that

.8) Qw) = R {(1 +iwq)I(iw)} < 0 (w # 0), where
7.8

H(iw) = Soo h(t)exp (- iwt)dt, JI(iw) = H(iw) - %,
0

then every solution x(t) of (1.4) tends to 0 as t— oo,

Thus one sees, as we noted in Section 1, that less is assumed here than in [1]
about the terms p(t, x) and f(t, x). However, the most interesting relations between
the two results are found in the comparison of the hypotheses on the respective ker-
nels. Turning to the latter, we begin with a lemma that enables us to relate (7.2) to
(7.4) and, in particular, (7.6) to a(t) and 6.

LEMMA 7.1. Let 6 be a constant, and let a(t) € C[0, ). Then theve exist a
Junction h(t) and a constant p such that

(1.9) ht), b)) € Ly(0, =) NLy(0, =); p> 0,
t

(7.10) ht) - p = -S a(r)dr - 0,
0

if and only if

(111)  a®), | a(dar € 1,0, ©) 1,00, <) { a@r)ar+o >0,
t 0
(7.12) h(t) = ooa( )dar, p= ooat( )dr + 6.
‘S; T T ‘S(.) T T

Proof. (i) If (7.11) and (7.12) are satisfied, then obviously (7.9) and (7.10) hold.

(ii) Let there exist h(t) and p satisfying (7.9) and (7.10). From (7.10) one sees
that a(t) = -h'(t), which together with (7.9) implies a(t) € L; N L,. However,
h(t), h'(t) = -a(t) € L implies lim h(t) = h(«) = 0. Thus, by (7.9) and (7.10),

t—

[~ o]
p = S a(t)dr + 6 > 0.
)

00
Substituting this formula for p into (7.10), one obtains h(t) = 5 a(7)dr. This and
t

[+ 0]
(7.9) imply S a(7)dr € Lj N L,, which completes the proof.
t

[ee]
If a(t) > 0, then the condition 5 a(7)d7 € L(0, =) of (7.11) can be stated

t
somewhat differently:
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LEMMA 7.2. If a(t) € C[0, «), a(t) >0, a(t) € L,(0, «), and

Soo a(7)d7 € L (0, «),
t

then ta(t) € L;(0, «).

The next lemma shows that in problems that can be treated by both methods,
6 > 0 (that is, 6g(x) satisfies the same sign hypothesis as a term of type p(t, x)).

LEMMA 7.3. Suppose aft) € C[0, =), a(t) > 0, and a(t) is decreasing. Further,
let theve exist h(t) and p such that (7.8), (7.9), (7.10) ave satisfied. Then 6 > 0.

[> o]
Proof. By Lemma 7.1, h(t) = S a(7)dr. Substituting this relation into the
t
formula for Q(w) in (7.8), we obtain, after an integration by parts and an application
of (7.12), the formula

0] o
(7.13) Q) = ZIJ S a(t)sin wt dt - q S a(t)cos wt dt - q6.
0 0

If a(t) =0, then p= 6 by (7.12), and hence 6 > 0 by (7.9).

If a(t) #0, then q > 0. For otherwise, q = 0 by (7.8), and since a(t) is nonnega-
tive and decreasing, it follows from (7.13) that Q(w) > 0, which contradicts (7.8).
Thus q > 0. By (7.13) and the Riemann-Lebesgue lemma,

QW) = o(1) - qlo(1) + 8) (|| — ).

Hence, since q > 0, it follows from (77.8) that 6 > 0.

The next lemma shows that if a(t) satisfies the monotonicity conditions (1.5) and
(1.13), and also the additional integrability conditions (7.11), then conditions (7.6) and
(7.8) hold.

LEMMA 7.4. Let 0 > 0, and let a(t) satisfy (1.5), (1.13), and (7.11). Define h(t)
and p by (1.12). Then (1.6) and (7.8) hold. (If a'(0) > - o, then (1.13)is not re-
quired.)

Proof. If a(t) =0, the result is obvious from (7.13). Thus we suppose a(0) > 0.
By Lemma 7.1, the hypothesis implies (7.6).

As in the proof of Lemma 7.3, we obtain the formula (7.13). Integration by parts
then yields

0

o0
(7.14) Q) = -1—5 a(t) sin wt dt +1S a'(t)sin wt dt - q0.
w o w 0

To establish (7.8), it suffices since both functions in (7.14) are even, to consider the

interval 0 <w < o, It is easy to see from (7.14) that if sup Zw)=Q < =,
0<w <o

where
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[>e) [~e] —1
Zw) = ( a(t) sin wt dt) (- a'(t) sin wt dt) ,
) )

then (7.8) is satisfied for all q > Q. We shall show that Q < «,

From (1.5) we see that Z(w) is positive and continuous for 0 < w < «, We shall
show that limg, _, o4+ Z(w) and lim, _, o Z(w) are finite. This then implies Q < .
One notes that ta(t) € Li(0, ©) by Lemma 7.2. Also, ta'(t) € L;(0, «), by (1.5) and
because a(t) € L;(0, »). Hence, by the dominated-convergence theorem,

1 o0 ©0
lim = S a(t)sin wt dt = S ta(t)dt,
w— 0+ 0 0

lim —%S a'(t)sin wt dt = -S ta'(t)dt = S a(t)at.
w—0+ 0 0 0

Thus, lim Z(w) < e,
W — 0+

We now let w — « and investigate the case where a'(0) = ~~. For n=1, 2, -,

define
@ = a0 (1) (e-2) () (ozesd),

B

By (1.5) and (1.13),

[~o] [~ o]
- S a'(t)sin wt at > 5 ag,(t)sinwtdt (0 <w < =),
0 0

which together with the definition of Z{w) implies
[+e] o0
Z(w) < (a((}) + S a'(t) cos wt dt)/(an(()) + S a; (t)cos wt dt }.
0 0
Thus, by the Riemann-Lebesgue lemma,

lim sup Z(w) < a(0)/a,(0).

wW — oo

Letting n — «, we conclude that lim, _, o Z(w) = 0. (If a'(0) > -, the argument is
simpler; one can show directly from (1.5), without using (1.13), that

lim Z(w) = a(0)/(-a%0)) < «.)

W — 0

This completes the proof.
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