EQUATIONS IN FREE METABELIAN GROUPS

Gilbert Baumslag and Kurt Mahler

Introduction. Equations in free groups have recently attracted considerable attention (see, for example, R. C. Lyndon and M. P. Schützenberger [3], G. Baumslag [1]). Free metabelian groups share many properties with free groups, and we now prove an analogue of a theorem about equations in free groups.

THEOREM. If a and b are elements of a free metabelian group that are linearly independent modulo the derived group, and if n is any integer greater than 1, then a^nb^n is not an n-th power.

This theorem leaves unanswered a host of related questions. For example, if ℓ , m, and n are integers greater than 1, can $a^{\ell}b^m$ be an n-th power? This certainly seems unlikely. Of course, a and b must be linearly independent modulo the derived group; for if u and v are elements of a metabelian group and v lies in the derived group, then

$$(u^{-1})^2(uv^2)^2 = (u^{-1}vu \cdot v)^2$$
.

We effect the proof of our theorem by first reducing it in a standard way to a problem in the group ring over the integers of a free abelian group (see G. Baumslag, Bernhard H. Neumann, Hanna Neumann, and Peter M. Neumann [2]) and then solving this problem with the help of elementary algebraic number theory.

The reduction to the group ring. Suppose that a and b are elements of a free metabelian group M and that they are linearly independent modulo M', the derived group of M. By a theorem of Nielsen [4] it follows that we can find an automorphism θ of M and a free set of generators x, y, z, \cdots such that

$$a\theta \equiv x^{\alpha} (M'), b\theta \equiv y^{\beta} (M') (\alpha > 0, \beta > 0).$$

We may therefore assume

(1)
$$a \equiv x^{\alpha} (M'), b \equiv y^{\beta} (M') (\alpha > 0, \beta > 0).$$

The homomorphism η of M into M defined by

$$x\eta = x$$
, $y\eta = y$, $z\eta = 1$, ...

maps M into a free metabelian group of rank 2 in which a η and b η are themselves linearly independent modulo the derived group. Thus it suffices to settle the theorem for a free metabelian group M of rank 2 on x and y with a and b given by (1).

As usual, we put

Received March 23, 1965.

This paper was written at the Institute for Advanced Studies in Canberra. The first author gratefully acknowledges a grant from the National Science Foundation and the hospitality of the Australian National University.

$$(u^{n_1})^{v_1}(u^{n_2})^{v_2}\cdots(u^{n_m})^{v_m}=u^{n_1v_1+n_2v_2+\cdots+n_mv_m},$$

where u, v_1 , ..., v_m are elements of M and n_1 , ..., n_m are integers.

Now let $k = x^{-1} y^{-1} xy$. It is well-known that then every element of M' can be uniquely represented in the form $k^{F(x,y)}$, where F(x,y) is an element of the group ring R of the free abelian group M/M'. Thus F(x,y) is a finite Laurent series of the form $\sum_{\gamma_{i,j}} x^i y^j$, where $\gamma_{i,j}$, i, and j are integers. It follows that every element of M can be written uniquely in the form $x^{\lambda} y^{\mu} k^F$, where λ and μ are integers and F is in R.

Assume now that $a^n b^n = c^n$, where a and b are given by (1); we may clearly assume n is a prime. Thus $c \equiv x^{\alpha} y^{\beta}$ (M'). Therefore we have the relations

$$a = x^{\alpha} k^{A}$$
, $b = y^{\beta} k^{B}$, $c = x^{\alpha} y^{\beta} k^{C}$ (A, B, C \in R).

If we abbreviate $z^{t-1} + z^{t-2} + \cdots + 1$ to $\frac{z^t - 1}{z - 1}$, then it is easy to show that

$$a^{n} = x^{\alpha n} k^{A \left(\frac{x^{\alpha n}-1}{x^{\alpha}-1}\right)}$$
;

similarly for b^n and c^n . Thus $a^n b^n = c^n$ takes the form

(2)
$$x^{\alpha n} v^{\beta n} k^{A} \left(\frac{x^{\alpha n} - 1}{x^{\alpha} - 1} \right) v^{\beta n} + B \frac{y^{\beta n} - 1}{y^{\beta} - 1} = (x^{\alpha} v^{\beta})^{n} k^{C} \frac{(x^{\alpha} y^{\beta})^{n} - 1}{x^{\alpha} y^{\beta} - 1}$$

Moreover, if u and v are elements of a metabelian group, then

$$(uv)^{n} = u^{n}v^{n}[v, u]^{i=1} v^{i}u^{i-1}\frac{v^{n-i}}{v-1}.$$

Now

$$[y^{\beta}, x^{\alpha}] = [x^{\alpha}, y^{\beta}]^{-1} = k^{-\frac{x^{\alpha}-1}{x-1}} \frac{y^{\beta}-1}{y-1}.$$

Therefore it follows that

$$(x^{\alpha}y^{\beta})^{n} = x^{\alpha n}y^{\beta n}k^{D},$$

where

(3)
$$D = -\left(\frac{x^{\alpha}-1}{x-1}\right) \left(\frac{y^{\beta}-1}{y-1}\right) \sum_{i=1}^{n-1} y^{\beta i} x^{\alpha(i-1)} \frac{y^{\beta(n-i)}-1}{y^{\beta}-1}.$$

We see then from (2) that in the group ring R we have the relation

(4)
$$A(1 + x^{\alpha} + \dots + x^{\alpha(n-1)})y^{\beta n} + B(1 + y^{\beta} + \dots + y^{\beta(n-1)})$$
$$= D + C(1 + x^{\alpha}y^{\beta} + \dots + (x^{\alpha}y^{\beta})^{n-1}).$$

The analysis of (4). Let $A_1(x^\alpha, y^\beta)$ be the sum of all terms $\alpha_{i,j} x^i y^j$ in A in which i and j are multiples of α and β , respectively, and define B_1 , C_1 , D_1 similarly. If we now put $X = x^\alpha$, $Y = y^\beta$, then it follows from (3) and (4) that

(5)
$$A_{1}(X, Y)(1 + X + \dots + X^{n-1})Y^{n} + B_{1}(X, Y)(1 + Y + \dots + Y^{n-1})$$
$$= D_{1}(X, Y) + C_{1}(X, Y)(1 + XY + \dots + (XY)^{n-1}).$$

Now, by (3),

(6)
$$D_{1}(X, Y) = -\sum_{i=1}^{n-1} Y^{i} X^{i-1} \left(\frac{Y^{n-i} - 1}{Y - 1} \right).$$

Put $X = z^{-1}$, Y = z in (5), where z is a primitive n-th root of unity. Then (5) reduces to

$$0 = D_1(z^{-1}, z) + nC_1(z^{-1}, z).$$

Clearly, $d = D_1(z^{-1}, z)$ and $e = C_1(z^{-1}, z)$ are algebraic integers. However, by (6), we find that

$$d = -\sum_{i=1}^{n-1} z \left(\frac{z^{n-i} - 1}{z - 1} \right) = \frac{z \left[(z^{n-1} - 1) + \dots + (z - 1) + (1 - 1) \right]}{z - 1}$$
$$= -\frac{z \left[(z^{n-1} + \dots + z + 1) - n \right]}{z - 1} = \frac{nz}{z - 1}.$$

This means that $-e = \frac{z}{z-1} = 1 + \frac{1}{z-1}$. Hence

$$\frac{1}{z-1} = -e - 1$$

is an algebraic integer. But z, and therefore also w = z - 1, is an algebraic integer of degree n - 1. However, $(w + 1)^n - 1 = 0$. Since n > 1, $w^n + nw^{n-1} + \cdots + nw = 0$, and so also

$$w^{n-1} + nw^{n-2} + \cdots + n = 0$$
.

This polynomial in w is therefore irreducible. Thus we find that w^{-1} is a root of an irreducible polynomial of the form

$$f = n\xi^{n-1} + \cdots + n\xi + 1.$$

Therefore w^{-1} is *not* an integer. This contradiction completes the proof of the theorem.

Added in proof. R. C. Lyndon has recently shown that for any three relatively prime integers ℓ , m, and n ($\ell > 1$, m > 1, n > 1) and every free metabelian group M of rank at least 2, there exist elements a, b, c, with a and b independent modulo M', such that

$$a^{\ell}b^{m} = c^{n}$$
.

REFERENCES

- 1. G. Baumslag, Residual nilpotence and relations in free groups, J. Algebra (to appear).
- 2. G. Baumslag, Bernhard H. Neumann, Hanna Neumann, and Peter M. Neumann, On varieties generated by a finitely generated group, Math. Z. 86 (1964), 93-122.
- 3. R. C. Lyndon and M. P. Schützenberger, The equation $a^M = b^N c^P$ in a free group, Michigan Math. J. 9 (1962), 289-298.
- 4. J. Nielsen, Om regning med ikke-kommutative faktorer og dens anvendelse i gruppeteorien, Mat. Tidsskr. B, (1921), 77-94.

The Graduate Center, City University of New York

Research School of Physical Sciences, The Australian National University