A RADICAL FOR NEAR-RING MODULES

James C. Beidleman

The theory of various radicals for near-rings has been discussed by Betsch [1],
Deskins [3], and Laxton [7]. It is our purpose here to study a radical for near-ring
modules which, when restricted to near-rings with identity, coincides with the
radicals defined by Betsch and Laxton.

In the second section we show that if J(M) is the radical of a module M over a
near-ring R, then J(M/J(M)) = 0. Also, if A is a submodule of M and J(M/A) = 0,
then J(M) Cc A. These results were first obtained by Betsch and Laxton in the spe-
cial case of a near-ring with identity.

In the third section we introduce the concepts of small and strictly small sub-
modules. If the radical J(M) of a near-ring module M is small (or strictly small),
then J(M) is the intersection of all maximal submodules (or maximal R-subgroups).
Furthermore, J(M) is the sum of all small submodules of M if and only if every
submodule of M generated by a finite subset of J(M) is small.

In the fourth section we restrict our attention to near-ring modules M that
satisfy the descending chain condition on submodules. I the radical is the zero sub-
module, then M is a finite direct sum of minimal submodules. Let M be a finitely
generated R-module. The radical J(M) of M is small if and only if every maximal
submodule of M is maximal as an R-subgroup.

1. FUNDAMENTAL DEFINITIONS

Definition 1. A near-ring R is a system with two binary compositions, addition
and multiplication, such that

(i) the elements of R form a group R’ under addition,
(ii) the elements form a semigroup under multiplication,
(iii) x(y + z) = xy + xz, for all x, y, z € R,
(iv) 0-x = 0, where O is the additive identity of R* and x is an element of R.

In particular, if R contains a multiplicative semigroup S whose elements generate
R and satisfy the condition

(v) x+y)s=xs+ys forall x,ye R and s € S,
then R is called a distributively genevated (d.g.) near-ring.

The most natural example of near-rings is given by the set of identity-preserving
mappings of an additive group G (not necessarily abelian) into itself. If the mappings
are added by adding images, and multiplication is iteration, then the system (R, +, -)
is a near-ring. The near-ring R is called the near-ring associated with G.
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Definition 2. A near-ving module M is a system consisting of an additive group
M, a near-ring R, and a mapping f: (m, r) - mr of M X R into M such that

(i) m{(r+s)=mr +ms, forall me M andall r, s € R,
(ii) m(rs) = (mr)s, for all m € M andall r, s € R.

In addition, if R is a d.g. near-ring whose additive group R' is generated by a
multiplicative semigroup S, then we shall assume

(iii) (m; + my)s =m; s +m,s, for all m; , m, € M and s € S.

Where no confusion can arise, we shall refer to a near-ring module M simply
as an R-module.

Let R be the near-ring of mappings associated with an additive group G. Then
G can be considered as an R-module.

An R-homomorphism is a mapping f of an R-module M into an R-module M'
such that (m + h)f = mf + hf and (mf)r = (mr)f, where m, h €¢ M and r € R. The
submodules of an R-module M are defined to be kernels of R-homomorphisms of
M. In particular, a submodule of the R-module Rt is called a »ight ideal of the
near-ring R.

The kernel K of an R-homomorphism f of an R-module M is an additive
normal subgroup of M. Also,

[((m+K)r - mr}jf = (mf +kf)r - (mf)r = 0 € M,

forall me M, k€ K, and r € R.

Suppose now B is any additive normal subgroup of an R-module M such that
(m+b)r -mr e B,forall me M, b e B,and r € R. If f is the natural group
homomorphism of M onto M/B, then a simple calculation shows that the definition
(m + B)r = mr + B makes M/B into an R-module and that f can be considered as
an R-homomorphism.

A subgroup H of an R-module M is said to be an R-subgroup if HR C H. A
submodule B of an R-module M is called sévictly maximal if B is maximal as an
R-subgroup. A minimal R-module M is a nonzero R-module containing no proper
nonzero R-subgroups. An irveducible R-module M is a nonzero R-module con-
taining no nonzero submodules. Every minimal R-module is irreducible. However,
there exist irreducible R-modules that are not minimal.

Let A be a nonempty subset of an R-module M. By the submodule (R-subgroup)
genevated by A we mean the intersection of all submodules (all R-subgroups) con-
taining A. An R-module M is said to be finitely genevated (finitely genevated as
an R-subgroup of itself) if it contains a finite subset A such that M is the sub-
module (the R-subgroup) generated by A.

The additive subgroup of an R-module M generated by a collection of submodules
is a submodule. However, this is not true in general for R-subgroups (see [2]). I
H is an R-subgroup and B is a submodule of an R-module M, then

H+B=1{h+b|heH be B}

is an R-subgroup.

An R-module M is said to be a divect sum of submodules if it is a direct sum
of the corresponding additive normal subgroups.
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2. DEFINITION AND PROPERTIES OF THE RADICAL

Definition 3. Let M be an R-module, and let I denote the set of all strictly

maximal submodules of M. We define the submodule J(M) = n Be 1 B to be the
vadical of M. It is understood that if I is empty, then M is its own radical, in
which case we say M is a radical module.

THEOREM 1. Let M be an R-module that is a divect sum of minimal sub-
modules. Then M is not a rvadical module, and J(M) = 0.

Proof. Let M= @), o M,, where M, is a minimal submodule and @ an index
set. I for each Aj € @ we define

AEQ, AEN

then the relation ﬂ re By = 0 is trivial. From the analogue of the second iso-
morphism theorem for operator groups [5, p. 136] it follows that M/B,_ is R-iso-
morphic to M, . Hence, B) is a strictly maximal submodule. This shows that M is

not a radical module. Since J(M) C ﬂx eq B, it follows that J(M) = 0.
THEOREM 2. If M is an R-module, then J(M/J(M)) = 0.

Proof. ¥ M is a radical module, the proof is trivial. Assume that J(M) is a
proper submodule of M, and let £ denote the natural R-homomorphism of M onto

M/J(M). Then J(M/J(M)) = ﬂBEI Bf. If x € J(M/J(M)) and B is a strictly maxi-
mal submodule of M, then x € Bf. Let x be a representative of X. Then x € B,
and so x € J(M). Therefore, x = 0 and J(M/J(M)) = 0.

THEOREM 3. If A is a proper submodule of the R-module M and J(M/A) = 0,
then J(M) C A.

Proof. Let f denote the natural R-homomorphism of M onto M/A. Since

0o=ama) = [ B,
BDA, Bel

we have the relation A D J(M) = ﬂBeI B.

3. SMALL SUBMODULES
Definition 4. A submodule A of an R-module M is called small (strictly small)
if M = B for each other submoduie (R-subgroup) B such that M = A + B.

Since every submodule of M is an R-subgroup, we have the following proposi-
tions.

LEMMA 1. If A is strictly small, then A is small.

LEMMA 2. If A arnd A' are small (strictly small) submodules, then A+ A' is
small (strictly small).

Let L (L') denote the collection of maximal submodules (maximal R-subgroups)
of the R-module M.
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THEOREM 4. If the vadical J(M) is small (strictly small), then

s = (1 Bogan = N ).

BeL Be Lt

Proof. Assume J(M) is small, and let A = ﬂBeL B. ¥ J(M) ¢ A, then there
exists a maximal submodule B such that J(M) ¢ B. From this it follows that
M = J(M) + B, and therefore M = B, a contradiction.

Similarly, if J(M) is strictly small, then J(M) = ﬂ BeLt B.

From Lemma 1 and Theorem 4 we have the following proposition.

COROLLARY 1. If J(M) is strictly small, then J(M) = nBeL B= nBeL' B.

THEOREM 5. Let M be a finitely generated R-module. The radical J(M) is
small if and only if J(M) = ﬂBeL B.

Proof. Let A= nBEL B. K J(M) is small, then J(M)= A by Theorem 4.

Assume that J(M) = A. K J(M) is not small, then there exists a proper sub-
module C such that M =J(M) + C. By Zorn’s lemma, since M is a finitely gener-
ated R-module, there exists a maximal submodule B such that C c B. From this it
follows that M = J(M) + B, and therefore M = B, a contradiction. Hence, J(M) is a
small submodule.

By a similar argument, we can prove the following.

THEOREM 6. Let M be an R-module that is finitely genevated as an R-sub-
group of itself. The vadical J(M) is strictly small if and only if J(M) = nBGL.B.

LEMMA 3. If A is a small submodule of the R-module M, then A C J(M).

Proof. Assume A is a small submodule. ¥ A & J(M), then there exists a
strictly maximal submodule B such that A & B, whence M = A + B. Since A is
small, it follows that M = B, a contradiction.

From Lemma 3 we have the following.

COROLLARY 2. The radical J(M) of an R-module M contains the sum of all
small submodules of M.

COROLLARY 3. If the vadical J(M) of an R-module M is small, then J(M) is
the sum of all small submodules of M.

Proof. Assume that J(M) is small. I A is the sum of all small submodules,
then by Corollary 2, A € J(M) C A, and therefore J(M) = A.

COROLLARY 4. If the rvadical J(M) is a strictly small submodule of M, then
J(M) is the sum of all strictly small submodules.

Proof. Assume that J(M) is strictly small. Let A denote the sum of all small
submodules, and A' the sum of all strictly small submodules. By Lemma 1 and
Corollary 3, J(M) C A'C A C J(M), and therefore J(M) = A'.

THEOREM 7. The vadical J(M) of an R-module M is the sum of all small sub-
modules if and only if every submodule B of M genevated by a finite subset of J(M)
is small.
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Proof. Let A denote the sum of all small submodules of M. If every submodule
B generated by a finite subset of J(M) is small, then J(M) C A. By Corollary 2, we
conclude that J(M) = A.

Conversely, let J(M) = A, let x;, -, Xy be a finite subset of J(M), and let B be
the submodule of M that is generated by the given set. Since J(M) = A, there exist

small submodules B, -, B, such that BC 271 ;< o B;. K B is not small, then
there exists a proper submodule C such that M = B+ C. From this it is evident

that M = (2 1<i<n Bi) + C. By Lemma 2, M = C, a contradiction.
By an analogous proof we obtain the following result.

THEOREM 8. The radical J(M) of an R-module M is the sum of all strictly
small submodules if and only if every submodule B genevated by a finite subset of
J(M) is strictly small,

4. R-MODULES THAT SATISFY THE DESCENDING CHAIN CONDITION
ON SUBMODULES

Throughout this section, M will denote an R-module that satisfies the descend-
ing chain condition on submodules.

THEOREM 9. If the vadical J(M) = 0, then M is expressible as a finite divect
sum of minimal submodules.

The proof is straightforward, and we omit it.

THEOREM 10. If J(M) = 0 and A is a submodule of M, then theve exists a sub-
module B such that M = A @ B.

Proof. Assume J(M) = 0. By Theorem 9, M=M; @ - @D M,, where M; is a
minimal submodule of M. Let A be a submodule of M, and let & be the collection
of all submodules C such that AN C = 0. By Zorn’s lemma, & contains a maximal
element B. Since Mj; is minimal, it follows that either

Min(A@B)=Mi or Min(A®B)=0.

However, if M; N (A @ B) = 0, then B+ M; is a submodule of M that contains B,
and A N (B+ M;) = 0. This is a contradiction. Hence, M; C A @ B, and therefore
M=A® B.

THEOREM 11. If J(M) = 0, then every irreducible submodule of M is minimal.

Proof. Assume that J(M) = 0, and let A be an irreducible submodule. By Theo-
rem 9, M=M; @ - & M,, where M; is a minimal submodule. Let a be a nonzero
element of A. If a =m; + +--+ m_, where m; € M;, then there exists at least one
index j such that m; # 0. K f; is the mapping that carries elements of M onto their
components in M;, then f; is an R-homomorphism of M onto M;. Since A is ir-
reducible and M; is minimal, f; induces an R-isomorphism f of A onto Mj. From
this it follows that A is a minimal submodule.

THEOREM 12. If J(M) = 0, then every maximal submodule of M is strictly
maximal,

Proof. This follows immediately from Theorems 10 and 11.
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THEOREM 13. If.B is a maximal submodule of M that contains the vadical
J(M), then B is strictly maximal.

Proof. Let B be a maximal submodule of M that contains the radical J(M). If
f is the natural R-homomorphism of M onto M/J(M), then Bf is a maximal sub-
module of the R-module M/J(M). By Theorems 2 and 12, Bf is strictly maximal.
K now follows that B is a strictly maximal submodule of M.

THEOREM 14. Let M be a finitely genevated R-module. The radical J(M) is
small if and only if every maximal submodule of M is strictly maximal.

Proof. Assume J(M) is small, and let B be a maximal submodule. By Theorem
4, J(M) c B, and therefore B is strictly maximal because of Theorem 13.

The converse follows from Theorem 5, since M is finitely generated.

THEOREM 15. Let R be a d.g. near-ving, and let M be a finitely genevated
R-module whose additive group M is solvable. Then the vadical J(M) of M is a
small submodule.

Proof. Let B be a maximal submodule of M. Suppose that the additive group
(M/B)t of M/B is not abelian. Since (M/B)! is solvable, there exists an additive
normal subgroup C of Mt suchthat Bc Cc M, B#C # M, and C/B is the com-
mutator subgroup of (M/B)t. Now let S be the multiplicative semigroup generating
R*. Since the commutator subgroup is fully invariant, C/B-S c C/B, hence
C.S c C. From this it follows that C is a submodule of M. But this contradicts
the maximality of B. Therefore the additive group (M/B)* of M/B is abelian, and
since M/B is an irreducible R-module, it is minimal. Hence B is strictly maximal.
By Theorem 14, J(M) is small. (The proof of Theorem 15 is essentially due to the
referee.)

THEOREM 16. Let R be a d.g. near-ving, and let M be an R-module whose
additive gvoup MT is finite and nilpotent. Then the vadical J(M) is strictly small.

Proof. Let B be a maximal R-subgroup of M. & is well known [6, p. 215] that
B is a term of a normal series for the additive group M. From this it follows that
there exists a proper additive normal subgroup C of M+ such that Bc C. Let C'
denote the additive normal subgroup of M+ generated by B. Now C' is a proper
additive subgroup, and the elements c' of C' are finite sums of the form

27; (m; + b; - m;), where m; € M, b; € B, for all i. If S denotes the multiplica-
tive semigroup that generates R+, then for all s € S we have the relation

22;(m; +b; -my))s =2J;(m;s +b;s - m;s). Since the right-hand member is
contained in C', it follows that C' is a submodule of the R-module M, and therefore
B = C'. Since M is a finite group, by Theorem 6 J(M) is strictly small.

5. REMARKS AND EXAMPLES

Definition 5. A nonempty subset B of a near-ring R is said to be nilpotent if
there exists a positive integer n such that bj --- b, = 0 for all sequences
[by, ==, b,] of elements from B [4, p. 88].

Let R be a finite d.g. near-ring with identity. R. R. Laxton [7, Theorem 3.5,
p. 48] proved that the radical J(R) of R is nilpotent if and only if every maximal
right ideal of R is strictly maximal. By Theorem 14, J(R) is nilpotent if and only if
it is small. By Theorem 15, we obtain the following example of Laxton [7, p. 49].
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EXAMPLE 1. If R is a finite d.g. near-ving with idenlily whose additive group
RV is solvable, then the vadical J(R) is nilpotent and small,

Let G be a finite, nonabelian, simple group, and R the d.g. near-ring gener-
ated by the inner automorphisms of G. For each x € R, let f, be the mapping of
RT defined by yfx = xy for all y € R. By the left distributive law, f, is an endo-
morphism of Rt. We now give an example due to Laxton [8, p. 16].

EXAMPLE 2. Let T denole the neav-ving genevated by {fxl x € Rt}. Then
the vadical J(T) of the distributively genervated near-ving T is nonnilpotent. Hence,
J(T) is not small.

Because of Theorem 14, the near-ring T contains a maximal right ideal B that
is not strictly maximal. Therefore, we have the following.

EXAMPLE 3. The T-module T/B is irreducible but not minimal.

Let G be a finite, nonabelian p-group, and R the d.g. near-ring generated by
the multiplicative semigroup of endomorphisms of G. Then the additive order of the
identity endomorphism is a power of p, and therefore RT is a finite, nonabelian p-
group. It is well known [6, p. 216] that the group R} is nilpotent. By Theorem 16,
we obtain the next example.

EXAMPLE 4. The vadical of R is strictly small.
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