DOUBLY STOCHASTIC MEASURES AND MARKOV OPERATORS

James R. Brown

1. INTRODUCTION

Let (X, &, m) be a totally o -finite measure space, and let (XZ, F z) denote the
direct product of (X, &) with itself. A measure X on (X%, & 2) is said to be doubly
stochastic if

(1) MAXX) = M(XxA) = m(A)

for all A € &#. For the case where X is the real line and m is Lebesgue measure,
J. E. L. Peck has shown [6] that every doubly stochastic measure is a limit of convex
combinations of permutation measures in a certain topology defined on the set M of
all such measures. A permutation measure can be characterized as a measure on
(X2 y F 2) that is concentrated on the graph of an invertible measure-preserving
transformation ¢ of (X, &), in other words, as a measure A satisfying a condition
of the form

(2) MAXB)=m(AN ¢ 1B).

In the case of a finite, homogeneous measure space (X, #, m), the present
author has shown that every doubly stochastic measure is the limit of permutation
measures, [1, Theorem 1], and that the relation

(3) MAXB) = (Xa TXxg (A Be F)

establishes a one-to-one correspondence between the set M- of doubly stochastic
measures A and the set of Markov operators T. Here we denote as usual the char-
acteristic function of the set A by x5, and we use the symbol (f, g) for

§ temomian),
X

the inner product in the real Hilbert space L,(X). A Mavrkov operator T is a posi-
tive linear operator on Ly(X) such that T1 = T*1 = 1. The topology on M is the
weak operator topology for operators on L,(X), and M is compact in this topology

(see [1]).

In the case of an infinite measure space, not every Markov operator (as defined
below) is related to a doubly stochastic measure by (3), and we are led to the con-
sideration of doubly substochastic measures. Moreover, M is not compact in the
weak operator topology. Nevertheless, we shall show (Theorems 4 and 6) that every
doubly stochastic measure is a limit of permutation measures, thus improving on
the above-mentioned result of Peck. We shall also investigate the relationship be-
tween Markov operators and doubly stochastic measures.
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2. DEFINITIONS

We shall restrict our attention to the real half-line X = [0, «©) and to Lebesgue
measure m on the class % of Borel subsets of X. The extension of our results to
any infinite, o -finite, homogeneous, nonatomic measure space will be evident, be-
cause any such space is isomorphic to a countable union of products of the unit in-
terval with the product Lebesgue measure (see [5]). Thus it may be assumed that X
is o -compact, that & is the class of Borel sets in X, and that m is a regular Borel
measure. Moreover, any two subsets of X with the same measure are related by an
invertible measure-preserving transformation. In particular, our results are valid
for n-dimensional Euclidean space with n-dimensional Lebesgue measure. Non-
horfuc])geneous spaces are excluded from our consideration for the same reasons as
in |1},

Definition 1. Let A denote the set of positive measures A on (X%, #2) such
that

(4) A(A X B) < min {m(A), m(B)}

for all A, B € &. Let M denote the set of all A € A such that (1) holds for all
A € #. Elements of M are called doubly stochastic, and elements of A, doubly
substochastic.

We shall show (Theorem 3) that A can be identified with a set of operators on
L,(X). The topologies of interest on A will be the weak operator (WO) and strong
operator (SO) topologies.

Definition 2. Let A; denote the set of positive linear operators T on L_/(X)
such that

(5) ITtle < I,  lTel, < lely

for all f € L_(X) and all g € L(X) N L(X). Let M; denote the set of all T € A;
such that

(6) Tl =1, S Tgdm = 5 gdm
X X

for all g € L;(X) N L_(X). The elements of M; are called Markov opevators (with
invariant measure m), and the elements of A, sub-Markov operators (with subin-
variant measure m).

The topology of interest on A; is the weakest topology for which all of the linear
functionals (f, Tg) and (g, Tf) are continuous in T for fixed f € L (X) and
g € Li(X) N L_(X). We shall call this topology the Peck (P) topology.

Note that condition (5) and the Riesz convexity theorem imply that for each p
(1 <p <), T can be extended in a unique way to a bounded linear operator on
Lp(X), with | Tf|p, < [£]lp for all £ e LyX).

The consideration of doubly substochastic measures is suggested by D. G. Ken-
dall’s paper [4] on doubly stochastic matrices. The topology used by Kendall and
that used by B. A. Rattray and J. E. L. Peck [7] are closely related to the P-topo-
logy. The topology introduced by Peck in [6] is weaker than the P-topology and
stronger than the WO-topology. However, the possibility that all three coincide on
M is not ruled out.
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3. STATEMENT OF RESULTS

The fundamental lemma of [1] for finite measure spaces takes the following form,
in the present case.

LEMMA. Let & (25 denote the ring of finite unions of rectangles A X B, wherve A
and B are bounded Bovel subsets of X. Let A be a finitely additive, nonnegative set
Sunction on & % satisfying (4) for all bounded Borel sets A and B. Then )\ is count-

ably additive and regular, hence has a unique extension to a doubly substochastic
measure on F2.

Proof. The proof of regularity and hence of countable additivity proceeds exactly
as in [1] The existence and uniqueness of the extension follow from the Hahn ex-
tension theorem {3, p. 54]. The substochastic nature of A when A or B is unbounded
follows by the regularity of A(A X B) in A or B individually with the other held
fixed.

Note that the proof of regularity of A breaks down if rectangles A X B are con-
sidered where A or B is allowed to have infinite measure. Thus a finitely additive,
nonnegative set function A, defined on all measurable rectangles A X B (A, B € &)
and satisfying (1) for all A € &, determines, according to the above lemma, a doubly
substochastic measure A on &2 that coincides with Ay on & 3 . In general, how-
ever, A need not be doubly stochastic.

On the other hand, if ¢ is a measure-preserving transformation of (X, #, m),
and if A4 is the corresponding set function defined on measurable rectangles by (2),
then A4 is doubly stochastic. For if {B_} is a sequence of bounded Borel sets with
B, T X, then

Ap(A X B,) = m(An ¢~ 1 B) — m(A)

for each A € #. Thus A¢(A X X) = m(A). Similarly, 24X X A) = m(A).

Let us denote by ® the set of invertible measure-preserving transformations ¢
of (X, #, m) onto itself. As usual, we identify transformations that coincide almost
everywhere. If ¢; # ¢,, then there must exist a set B of finite measure such that

m(¢i1 BA qbél B) > 0, where A denotes the symmetric difference. We may assume,
without loss of generality, that m(q.f)il B) > m(qbil B N qbzl B). Let A= ¢I1 B. Then

Ay (A B) = m(¢7' B) > m(¢]' BN ¢;' B) = 1y (AxB),

so that A¢ 1 #* A‘f’z‘ Thus & may be identified with the set of all A¢ (¢ € ®). From

the preceding paragraph it follows that ® € M C A. We can now state the main re-
sults as a sequence of six theorems.

THEOREM 1. Each T € A, determines a unique X € A such that

A(AX B) = (XA’ TXB)

Jor all bounded Borel sets A and B. The covrespondence is many-to-one.
THEOREM 2. Each A € A -determines a unique T € ANy such that

MAXB) = (X 5, TXp)
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for all Borel sets A and B such that at least one of them is bounded. The corre-
spondence is one-to-one. If A € M, then T € M;.

Note that, according to Theorem 2, the correspondence of Theorem 1 exhausts A.

THEOREM 3. The corvespondence of Theorem 1 between X € A and T € A,
induces a one-to-one covvespondence belween N and the vestriction of T to an oper-
ator on L,(X). A is compact in the WO-topology.

THEOREM 4. & is dense in A in the WO-topology. A is the closed convex hull
of & in the SO-fopology. M is not closed in either topology.

According to Theorem 2, we may consider A C A; and M C M;. Recall that the
P-topology is defined on A; and that M; C A;.

THEOREM 5. A; and M; are compact in the P-topology. M is not closed in
this topology.

THEOREM 6. & is dense in M in the P-topology.

4, PROOFS OF THEOREMS 1 TO 6

Proof of Theorem 1. Since the right side of (3) is additive for disjoint rectangles,
A can be uniquely extended by additivity to a nonnegative, finitely additive set function

on g’é . Since |Txgl; < m(B) and ”TXB“oo < 1, we have the relations

AMAXB) < x ol [Tx gl < m(a)
and
MAXB) < |xpll, ITxgl, < m(®)

for all bounded Borel sets A and B. According to the lemma, A has a unique ex-
tension to an element of A.

For each f € L_(X), let

Ti(x) = LIM £(y),

y —

where LIM denotes a Banach limit [2, p. 73]. Then T is a positive linear operator
on L _(X) with T1 =1 and Tf=0 for all { € L;(X). Thus T € A;. The corres-
ponding measure A, determined by (3) for bounded Borel sets, is identically 0. Thus
the correspondence is many-to-one, as asserted.

Proof of Theorem 2. Suppose that X € A and g € L_(X). For each simple func-
tion f on (X,.%, m) with compact support, set

7) G(f) = j £(x) g(y) AMdx, dy).
XZ
Since AA X X) < m(A) for A € #, it follows that
®  la® <lel., § llrax an < el § 150 m@o = Jel, Il -
2

X =X
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Thus (7) defines a bounded linear functional G on a dense subset of L;(X). It follows
that there exists a function Tg € Loo(X) such that

(9) (£, Tg) = S £(x) g(y) Mdx, dy)
XZ

for all f € L (X). If g > 0, then G is a positive functional, so that Tg > 0. It fol-
lows that T is a positive linear operator on L _(X). From the inequality (8) it
follows that || Tg| = |G| < |lg] ., . Similarly, if g is a simple function with com-
pact support and f € L(X) N Loo(}oﬁ, then equation (9) gives the relations

(10) & ol < e, § s nax a < Bl lelys
X

since AM(X X A) <m(A) forall Ae . It follows that (10) holds for all
f, g€ Ly(X)NL_(X).
In particular,

S | Te(x)| m(@ax) < |gl,

A
for all bounded Borel sets A. Hence ||Tg||1 < “g" 1, and T is a sub-Markov
operator.

From (9), we see that
(X o> Txg) = MA X B)

whenever A, B € & and A is bounded. If B is bounded, then Tx g € L;(X), so that
each side of the above equation is countably additive in A. Hence equality holds for
all A € . The biuniqueness of the correspondence now follows from Theorem 1 and
equation (9), since T is uniquely determined by the values of (f, Tg) for f € L;(X)
and g € LOO(X).

If in particular A € M, then
(Xp» T1) = MA X X) = m(A)

for all bounded Borel sets A. It follows that (f, T1) = (f, 1) for all f € L;(X), and so
T1 = 1. Likewise,

5 Tfdm = (1, Tf) = (1, f) = § fdm
X X

for all f € L,(X) N LOO(X). Thus T € M;.

Proof of Theovem 3. Suppose that T;, T, € A; have the same restriction to
L,(X) N L (X). Since characteristic functions of bounded Borel sets belong to
L,(X), it follows that T; and T, determine the same measure A under the corre-
spondence of Theorem 1. Conversely, if T; and T, determine the same measure,
then they have the same restriction, since T, considered as an operator on L(X),
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is determined by the values (X ,, Tx ), where A and B range over all bounded
Borel sets.

Thus A is identified with a subset of the unit sphere in the space of all bounded
linear operators on L,(X), namely, the set of positive operators T such that

(X o> Txp) < min {m(4), m(B)}

for all bounded Borel sets A and B. It follows that A is closed and hence compact
in the WO-topology [2, p. 512].

Proof of Theorem 4. A basis for the weak operator topology is given by all sets
of the form

(11) {T: |, Tgy) - €, Tog)| <&, k=1, «, n},

where f; and g, run through a dense subset of L,(X), T is the operator corre-
sponding to some Ag € A, and € > 0. In particular, we may assume that f; and g
are continuous with compact support. In this case they are bounded, and by the
arbitrariness of € in (11) we may assume that they are bounded by 1. We shall show
that there always exists a measure-preserving transformation ¢ such that the oper-
ator corresponding to Ay belongs to the set (11). According to (9), this means that
we must show that

<e (k=1 -,n),

(12) | § meag- § neang
x2 x2
where hy(x, y) = f,(x)g (y) k=1, ---, n).

Let K be a compact interval such that each of the f, and each of the g; vanishes
outside K. Then the h) vanish outside K X K and, by uniform continuity, there exist

S
disjoint intervals X,, -+, X  such that K = U 1=1 X; and the oscillation of each hj
is less than £/4m(K) on each rectangle X; X X; (i, j = 1, -+, 8).

Now for i =1, ---, s we have the relations

27 2(X; X X;) = 2o(X; X K) < m(X;).
i=1

Thus there exist disjoint intervals X;; (=1, *=, s+ 1) such that

s+1
X, = U1 X;;  and  m(Xg;) = AKX X)) (=1, -, 8).
J:

Let X o4 be an interval disjoint from K, with m(Xg43) = m(K) - 2o(K X K), and
choose disjoint subintervals Xg;; ; such that

S
Xstl = _Ul Xgt1,; and mXgy ) = m(Xjy) - 2o(KXX;) (=1, -, s).
3:
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Likewise, for j =1, ---, s there exist disjoint intervals Yij such that

s+l

X; = U1 Y;; and  m(Y;) = (X XX;) @G=1, -, s),
i=

and there exist disjoint intervals Yi, s+1 Such that
S
X 4y = U1 Y, o4 and  m(Y, ) = m(X) - A(X;XK) (i=1,-,s).
i=

Clearly, m(X;;) = m(Yij) for i, j=1, ---, s. Moreover, for i=1, -, s,

S

m(Xi,s+l) = m(X;) - 27 m(XlJ) = m(Xl) - Ao(XiXK) = m(Yi,s+1)'
j=1

Likewise, m(Xg4},;) = m(Yg4y j) (=1, ==, ). Let ¢ be an invertible measure-
preserving transformation of (X, #, m) that maps Xjj onto Yjj5 (i, j=1, -, s+ 1;
i+ j < 2s + 2) and maps the complement of K U X ;; onto itself. We shall show

that the measure Ag defined by (2) assigns the same measure to each rectangle
X, X Xj as does A,.

Indeed, ¢ maps X; = Uj Xij onto Uj Yij, and Yij C Xj, so that
- -1 = =
x¢(xi><xj) = m(X; N ¢ Xj) = m(Xij) = ho(XiXXj).
It follows that

x2 x2 ‘

< 2

i,j=1

S

XiXX 3

hy dx - SX e, o
EAN

< 2(e/4m(K))2o(K X K) < &.

We have proved that & is dense in A.

Since A is clearly convex and since convex sets have the same closure in the
WO- and the SO-topologies [2, p. 477], it follows that A is the closed convex hull of
® in the SO-topology. Finally, since & C M C A, it follows that M is not closed in
either topology.

Proof of Theorem 5. The defining conditions for A; may be written
|, Te)| < |t lell, ana [Gg T <[], [,
for all f e LX) N LOO(X), g€ LOO(X). The defining conditions for M; are
(f, T1) = (£, 1) and (1, Tf) = (1, 1)
for all f € L;(X) N Ly(X). Since each of these properties as well as the bilinearity
and positivity of the expression (f, Tg) in £ and g are obviously preserved under a

passage to the limit in the P-topology, it follows by the Tychonoff product theorem
that both A; and M; are compact.
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The WO-topology on A is determined by all functionals of the form (f, Tg) for
f, g € L,(X). The topology determined by those functionals for which f and g are
characteristic functions of bounded Borel sets is weaker; but it is nevertheless a
Hausdorff topology, since each A € A is uniquely determined by its values on & % .
Since A is compact in the WO-topology, the weaker topology must coincide with the
WO-topology on A. In particular, the two topologies coincide on M. Since charac-
teristic functions of bounded Borel sets belong to L(X) N L_(X), it follows that the
WO-topology is weaker than the P-topology on M. (The possibility that they coincide
is not excluded.) Now, if M were closed in the P-topology as a subset of M, then
it would be compact in this topology and hence also in the weaker WO-topology. But
M is not WO-closed in A. Hence M is not P-closed.

Proof of Theorem 6. This proof is similar to the proof of Theorem 4, except
that we cannot restrict our attention to functions vanishing outside of some fixed
compact set.

In place of the set (11) we consider a general P-basic set of the form
13) {T: |5, Tg) - €, Tog)| <e, (g, TH) - (g, Tof)| <&, k=1, -+, £},

where f; , -+, fy are continuous, bounded by 1, and vanish outside of the compact in-
terval K, and where g;, ***, g¢ are measurable functions bounded by 1. According
to Lusin’s theorem [3, p. 242], there exist compact sets K1, K, **- such that

K,C [n -1, n], each gy is continuous (hence uniformly continuous) on K,,, and
m([n - 1, n] - K,) <e/22+2, 1t follows that each interval [n - 1, n] is the union of
disjoint subintervals J,, such that the oscillation of each gy is less than

v (e/4m(K)) on each set Jnp NKn.

Let N be the union of the sets [n -1, n] - K, (n=1, 2, ---). Then

(13) m(N) < 27 e/2°%% = ¢/4,

n=1
and X is the union of a countable sequence {X;} of disjoint intervals such that

(14) |l (®) - g, (v)| < V(e/4m(K))

forall x,ye X;-N (=1, -+, ¢; i=1, 2, ---). By the uniform continuity of the fy,
we may assume, in addition, that

(15) |£.2) - £.(v)| < V(e/4m(K))

forall x,ye X; (k=1, «=+, £; i=1, 2, *=). Now let

hi(x, y) = fi(x)gely) and  hi(x, ¥) = g f(y).

Then, from (14), (15), and the fact that each of fli and g is bounded by 1, it follows
that the oscillation of h), and the oscillation of hy are both bounded by &/4m(K) on
the sets X; X (Xj - N) and (X; - N) X X, respectively (i, j =1, 2, ---). Moreover,
each h, vanishes outside of K X X, and each hf vanishes outside of X X K.

Now suppose that T, € M, and let A, be the corresponding doubly stochastic
measure. Then there exist disjoint intervals Xj; and disjoint intervals Y;; such
that
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©0 oo
-Ux;, x,=Uy

j=1 i=1
and

m(X; ) = m(Y; O(XiXXj)

13)
forall i,j=1, 2, ---. Let ¢ be an invertible measure-preserving transformation of
X onto itself such that ¢(X; ) for all i and j. We shall show that the operator
T corresponding to the measure 7\¢ belongs to the set (13).

Indeed, it follows as in the proof of Theorem 4 that A (X X X ) A(X; X Xj) for
each i and j. Recalling that h; is bounded by 1, we see that

S hy dAg - SX o < 2(e/4m(K)) 2o((X; N K) X (X; - N))

XXX
+ 22o((X; N K) X (X; N N)).
Thus

IS hedng - | hyddg| < (e/2m00) 2g(K X X) + 204(K X N)
(16) <2 %2

< (e/2m(K))m(K) + 2m(N) < g/2+¢/2 =
Similarly,

(17) U hl";dh¢—5 hidry| < e.
X2 x2

The inequalities (16) and (17) for k=1, ---, ¢ are clearly equivalent to the statement
that Ty belongs to the set (13). This completes the proof of Theorem 6.
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