A GAP-THEOREM FOR ENTIRE FUNCTIONS OF INFINITE ORDER

Thomas Kövari

1. INTRODUCTION AND NOTATION

Let $f(z) = \sum a_n z^{\lambda_n}$ be an entire function, and write

$$M(r, f) = \max_{|z|=r} |f(z)|, \quad m(r, f) = \min_{|z|=r} |f(z)|.$$

In a recent paper, W. H. J. Fuchs [2] proved that if f(z) is of finite order and the sequence $\{\lambda_n\}$ satisfies the "Fabry" gap condition

$$\frac{\lambda_n}{n} \to \infty,$$

then, for each $\varepsilon > 0$, the inequality

(2)
$$\log m(r, f) > (1 - \varepsilon) \log M(r, f)$$

holds outside a set of logarithmic density 0.

For functions of infinite order, (1) certainly does not imply (2). In fact, for every sequence $\{\lambda_n\}$ satisfying the condition

$$\sum_{1}^{\infty} \frac{1}{\lambda_{n}} = \infty,$$

A. J. Macintyre [5] has constructed an entire function bounded on the positive real axis. In this paper I shall prove that if the gap condition (1) is replaced by the more stringent condition

$$\lambda_{n} > n (\log n)^{2+\eta}$$

(for some $\eta > 0$), then (2) holds also for functions of infinite order. It would be desirable to replace condition (3) by the "exact" condition

$$\sum_{1}^{\infty} \frac{1}{\lambda_{n}} < \infty;$$

but this is beyond the scope of our method. The most that could possibly be squeezed out of our method is the replacement of (3) by the condition

$$\lambda_n > n (\log n) (\log \log n)^{2+\eta}$$
.

Received October 15, 1964.

THEOREM. If the exponents of f(z) satisfy the gap-condition (3), then (2) holds outside a set of finite logarithmic measure.

The proof is similar to that of [2].

We shall use the notation

$$m*(r, f) = \frac{1}{2\pi} \int_0^{2\pi} \log^+ |f(re^{i\phi})| d\phi$$

n(r, 0), n(r, ∞) = number of zeros (respectively, poles) in $|z| \le r$,

$$N(r, 0) = \int_0^r \frac{n(t, 0)}{t} dt$$

$$T(r, f) = m(r, f) + N(r, \infty),$$

$$M(\mathbf{r}, \mathbf{f}, \theta, \delta) = \max_{|\phi - \theta| < \delta/2} |\mathbf{f}(\mathbf{r}e^{i\phi})|.$$

We shall assume throughout that f(0) = 1.

2. AUXILIARY PROPOSITIONS

LEMMA 1 [7, p. 30]. If $\{\lambda_n\}$ is a strictly increasing sequence of nonnegative integers, then for all θ and δ (0 \leq θ < 2 π , 0 < δ \leq 2 π),

$$\max_{0 \leq \phi < 2\pi} \left| \sum_{n=1}^{M} A_n e^{i\lambda_n \phi} \right| \leq \left(\frac{40}{\delta} \right)^{M} \max_{\left| \phi - \theta \right| \leq \delta/2} \left| \sum_{n=1}^{M} A_n e^{i\lambda_n \phi} \right|.$$

The following lemma is a special case of [1, Lemma 10.1].

LEMMA 2. Let S(x) be an increasing, continuous, positive function of x (for $0 < x < \infty$), and let $\mu(y)$ be an increasing, continuous, positive function of y (for $0 < y < \infty$), such that

$$\int_{1}^{\infty} \frac{\mathrm{dy}}{\mu(y)} < \infty;$$

then the set

$$E = \left\{ x \mid S\left(x + \frac{1}{\mu(S(x))}\right) > S(x) + h \right\}$$

is of finite measure, for every h > 0.

Proof. For a fixed positive value of h, let x_0 denote the least value of x satisfying the inequality

(5)
$$S\left(x+\frac{1}{\mu(S(x))}\right) \geq S(x)+h,$$

and write $\xi_0 = \mathbf{x}_0 + 1/\mu(\mathbf{S}(\mathbf{x}_0))$. After \mathbf{x}_0 , \cdots , \mathbf{x}_{n-1} and ξ_0 , \cdots , ξ_{n-1} have been defined, let \mathbf{x}_n be the least value \mathbf{x} in $[\xi_{n-1}, \infty)$ that satisfies (5), and let $\xi_n = \mathbf{x}_n + 1/\mu(\mathbf{S}(\mathbf{x}_n))$. Then clearly

$$0 \leq x_{0} < \xi_{0} \leq x_{1} < \xi_{1} \leq \cdots,$$

$$S(x_{n}) \geq S(\xi_{n-1}) > S(x_{n-1}) + h \geq \cdots \geq S(x_{0}) + nh \geq nh,$$

$$\xi_{n} - x_{n} = \frac{1}{\mu(S(x_{n}))} \leq \frac{1}{\mu(nh)},$$

(7)
$$\sum_{n=2}^{\infty} (\xi_n - x_n) \leq \sum_{n=2}^{\infty} \frac{1}{\mu(nh)} < \frac{1}{h} \int_h^{\infty} \frac{dy}{\mu(y)} < \infty.$$

In view of (6), clearly $x_n \to \infty$, and therefore E is covered by the intervals (x_n, ξ_n) . The result now follows from (7).

LEMMA 3. If Q(r) is an increasing positive function for r>1, then for every $\epsilon>0$ and q>1,

$$Q\left(r + \frac{r}{\log^{1+\epsilon}Q(r)}\right) < qQ(r)$$

outside an exceptional set of finite logarithmic measure.

Proof. Writing

$$S(x) = \log Q(e^x), \quad \mu(y) = y^{1+\varepsilon}, \quad h = \log q,$$

and using the inequality $1+u \le e^u$, we obtain this lemma immediately from Lemma 2.

LEMMA 4. Let $f(z) = \sum a_n z^n$ be an entire function, let r = |z| and $\omega > 0$, and let ν and R(z) be defined by the equations

(8)
$$\nu = [3 \log M(r) \cdot (\log \log M(r))^{1+\omega}],$$

$$R(z) = \sum_{n=\nu+1}^{\infty} a_n z^n.$$

Then, outside an exceptional set of finite logarithmic measure, $|R(z)| \leq 1$.

Proof. With $r < \rho$, we have the inequalities

$$\begin{aligned} \left| a_{n} \right| &\leq \frac{M(\rho)}{\rho^{n}}, \\ \left| R(z) \right| &\leq M(\rho) \sum_{n=\nu+1}^{\infty} \left(\frac{r}{\rho} \right)^{r} = M(\rho) \left(\frac{r}{\rho} \right)^{\nu+1} \frac{\rho}{\rho - r}, \end{aligned}$$

(9)
$$|\operatorname{R}(z)| \leq \log M(\rho) + (\nu + 1)\log\left(1 - \frac{\rho - r}{\rho}\right) + \log\frac{\rho}{\rho - r}$$

$$\leq \log M(\rho) - (\nu + 1)\frac{\rho - r}{\rho} + \log\frac{\rho}{\rho - r}.$$

Putting $\rho = r \left\{ 1 + \frac{1}{(\log \log M(r))^{1+\omega}} \right\}$, we obtain from (8) and (9) the inequality

$$\log \left| R(z) \right| \, \leq \, \log \, M(\rho) \, \text{-} \, 3 \log \, M(r) \cdot \frac{r}{\rho} + (1+\omega) \log \, \log \, \log \, M(r) + \log \frac{\rho}{r} \, .$$

Applying Lemma 3 to the function $Q(r) = \log M(r)$, with q = e, we get the bound

$$\log M(\rho) = \log M\left(r + \frac{r}{(\log \log M(r))^{1+\omega}}\right) < e \cdot \log M(r)$$

outside a set E of finite logarithmic measure. Hence, for r $\not\in$ E and r > r $_0$,

$$\log \left| R(z) \right| \, \leq \, - \, \frac{1}{10} \log \, M(r) + (1+\omega) \log \, \log \, \log \, M(r) + 1 \, < \, 0 \, .$$

The following Lemma is an adaptation of [4, Lemma VIII].

LEMMA 5. Let $f(z) = \sum a_n z^{\lambda_n}$ be an entire function satisfying the gap-condition (3). Let θ_r and δ_r be functions of r, subject only to the condition that

$$\delta_{\mathbf{r}} \geq (\log M(\mathbf{r}))^{-\gamma}$$

for some $\gamma > 0$. Then, for every $\varepsilon > 0$,

(11)
$$\log M(r, \theta_r, \delta_r) > (1 - \epsilon) \log M(r)$$

outside an exceptional set of finite logarithmic measure.

Proof. Clearly, (3) implies that

$$n < 2\lambda_n (\log \lambda_n)^{-2-\eta}$$

Put $\omega = \eta/2$, and define ν by (8). If $\lambda_{\ell} \leq \nu < \lambda_{\ell+1}$, then

$$\ell \leq 2\lambda_{\ell} (\log \lambda_{\ell})^{-2-\eta} < 2\nu (\log \nu)^{-2-\eta}$$

$$<6\log\,M(\mathbf{r})\cdot(\log\,\log\,M(\mathbf{r}))^{1+\frac{1}{2}\eta}\cdot\left\{\log\,3+\log\,\log\,M(\mathbf{r})+\left(1+\frac{1}{2}\eta\right)\log\,\log\,\log\,M(\mathbf{r})\right\}^{-2-\eta}$$

$$< 6 \log M(\mathbf{r}) \cdot (\log \log M(\mathbf{r}))^{1+\frac{1}{2}\eta} \cdot \left\{ \frac{4}{5} \log \log M(\mathbf{r}) \right\}^{-2-\eta}$$

$$<$$
 12 log M(r)·(log log M(r)) for $\eta < 1$, $r > r_0$.

We now apply Lemma 1, and using condition (10), we obtain (for $x>x_0$) the inequalities

$$\begin{split} \max \left| \begin{array}{l} \sum\limits_{\lambda_{n} \leq \nu} a_{n} r^{\lambda_{n}} e^{i\lambda_{n}\phi} \right| &= \max \left| \sum\limits_{n=1}^{\ell} a_{n} r^{\lambda_{n}} e^{i\lambda_{n}\phi} \right| \\ &\leq \exp \left\{ \ell \cdot \log \frac{40}{\delta_{r}} \right\} \cdot \max_{\left|\phi - \theta\right| \leq \delta/2} \left| \sum\limits_{n=1}^{\ell} a_{n} r^{\lambda_{n}} e^{i\lambda_{n}\phi} \right| \\ &\leq \exp \left\{ 12 \log M(r) \cdot (\log \log M(r))^{-1 - \frac{1}{2}\eta} \cdot (\log 40 + \gamma \log \log M(r)) \right\} \\ &= \max_{\left|\phi - \theta\right| \leq \delta/2} \left| \sum\limits_{\lambda_{n} \leq \nu} a_{n} r^{\lambda_{n}} e^{i\lambda_{n}\phi} \right| \\ &\leq \exp \left\{ A \cdot \log M(r) \cdot (\log \log M(r))^{-\frac{1}{2}\eta} \right\} \cdot \max_{\left|\phi - \theta\right| \leq \delta/2} \left| \sum\limits_{\lambda_{n} \leq \nu} a_{n} r^{\lambda_{n}} e^{i\lambda_{n}\phi} \right|. \end{split}$$

Combining this result with Lemma 4, we see that

$$\begin{split} \mathbf{M}(\mathbf{r}) &\leq \max_{\left\|\mathbf{z}\right\| = \mathbf{r}} \left\| \sum_{\lambda_{n} \leq \nu} \mathbf{a}_{n} \, \mathbf{z}^{\lambda_{n}} \right\| + \max_{\left\|\mathbf{z}\right\| = \mathbf{r}} \left\| \sum_{\lambda_{n} \geq \nu + 1} \mathbf{a}_{n} \, \mathbf{z}^{\lambda_{n}} \right\| \\ &\leq \exp \left\{ \mathbf{A} \cdot \log \, \mathbf{M}(\mathbf{r}) \cdot (\log \, \log \, \mathbf{M}(\mathbf{r}))^{-\frac{1}{2}\eta} \right\} \cdot \max_{\left\|\phi - \theta\right\| \leq \delta/2} \left\| \sum_{\lambda_{n} \leq \nu} \mathbf{a}_{n} \, \mathbf{r}^{\lambda_{n}} \, \mathbf{e}^{\mathrm{i}\lambda_{n}\phi} \right\| + 1 \\ &\leq \exp \left\{ \mathbf{A} \cdot \log \, \mathbf{M}(\mathbf{r}) \cdot (\log \, \log \, \mathbf{M}(\mathbf{r}))^{-\frac{1}{2}\eta} \right\} \cdot \left\{ \mathbf{M}(\mathbf{r}, \, \theta, \, \delta) + 1 \right\} + 1 \\ &\leq \exp \left\{ \mathbf{A} \cdot \log \, \mathbf{M}(\mathbf{r}) \cdot (\log \, \log \, \mathbf{M}(\mathbf{r}))^{-\frac{1}{2}\eta} \right\} \cdot \left\{ \mathbf{M}(\mathbf{r}, \, \theta, \, \delta) + 2 \right\} \\ &\leq \exp \left\{ \mathbf{A} \cdot \log \, \mathbf{M}(\mathbf{r}) \cdot (\log \, \log \, \mathbf{M}(\mathbf{r}))^{-\frac{1}{2}\eta} \right\} \cdot \mathbf{M}(\mathbf{r}, \, \theta, \, \delta) + o(\mathbf{M}(\mathbf{r})) \cdot \log \, \mathbf{M}(\mathbf{r}) + o(1) \\ &\leq \mathbf{A} \cdot \log \, \mathbf{M}(\mathbf{r}) \cdot (\log \, \log \, \mathbf{M}(\mathbf{r}))^{-\frac{1}{2}\eta} + \log \, \mathbf{M}(\mathbf{r}, \, \theta, \, \delta) = o(\log \, \mathbf{M}(\mathbf{r})) + \log \, \mathbf{M}(\mathbf{r}, \, \theta, \, \delta) \end{split}$$

outside an exceptional set of finite logarithmic measure. Thus we have shown that

$$\log M(r, \theta, \delta) = \{1 + o(1)\} \cdot \log M(r)$$

outside an exceptional set of finite logarithmic measure, and this proves Lemma 5. The following is an adaptation of [1, Lemma 2].

LEMMA 6. Let f(z) be a meromorphic function (of finite or infinite order), and let $\{a_k\}$ and $\{b_k\}$ be the sequences of its zeros and poles, respectively, each zero or pole appearing as often as its multiplicity indicates. Let $\{d_m\}$, the combined sequence of zeros and poles, be arranged according to increasing modulus. Let Γ be the countable union of the (eccentric) discs

$$\left|\frac{z-d_{\mathrm{m}}}{z}\right|<\frac{1}{2m^2}.$$

Then, if $z \notin \Gamma$ and $r_0 < |z| < R < 2|z|$,

(12)
$$\left|\frac{zf'(z)}{f(z)}\right| < A\left(\frac{R}{R-|z|}\right)^3 T(R, f)^3.$$

Proof. The Jensen-Nevanlinna identity, with $\rho = \frac{R + |z|}{2}$, is the formula

$$\begin{split} \frac{f'(z)}{f(z)} &= \frac{1}{2\pi} \int_0^{2\pi} \log \left| f(\rho e^{i\phi}) \right| \frac{2\rho e^{i\phi}}{(\rho e^{i\phi} - z)^2} d\phi \\ &+ \sum_{\left| a_n \right| < \rho} \frac{\rho^2 - \left| a_n \right|^2}{(\rho - \bar{a}_n z)(z - a_n)} - \sum_{\left| b_k \right| < \rho} \frac{\rho^2 - \left| b_k \right|^2}{(\rho^2 - \bar{b}_k z)(z - b_k)}. \end{split}$$

Using the inequalities

$$\frac{\rho^2 - |c|^2}{|\rho^2 - \bar{c}z|^2} \le \frac{\rho^2 - |c|^2}{\rho |z| - |c||z|} = \frac{\rho + |c|}{|z|} \le \frac{2\rho}{|z|} \quad \text{(for } |c| < \rho),$$

and

$$\left| \frac{2\rho \mathrm{e}^{\mathrm{i}\phi}}{(\rho \mathrm{e}^{\mathrm{i}\phi} - \mathrm{z})^2}
ight| < \frac{2\rho}{(
ho - \left| \mathrm{z} \right|)^2},$$

we obtain the bound

$$\left|\frac{zf'(z)}{f(z)}\right| \leq \frac{2\rho |z|}{(\rho - |z|)^2} \left\{ m(\rho, f) + m\left(\rho, \frac{1}{f}\right) \right\} + 2\rho \sum_{\left|d_{m}\right| < \rho} \frac{1}{\left|z - d_{m}\right|}.$$

If $z \notin \Gamma$, we deduce that (with |z| = r)

$$\left|\frac{zf'(z)}{f(z)}\right| \leq \frac{2\rho r}{(\rho-r)^2} \left\{ m(\rho, f) + m\left(\rho, \frac{1}{f}\right) \right\} + \frac{4\rho}{r} \sum_{\left|d_{rr}\right| \leq \rho} m^2.$$

Since

$$m(\rho, f) + m(\rho, \frac{1}{f}) \le 2T(\rho) + O(1) < 3T(\rho) < 3T(R)$$

(by Nevanlinna's first fundamental theorem), and since

$$\sum_{\substack{|d_m|<\rho}} m^2 \leq \{n(\rho, 0) + n(\rho, \infty)\}^3 = n^3(\rho),$$

$$\frac{R-x}{2R} n(\rho) = \frac{R-\rho}{R} n(\rho) \leq \int_{\rho}^{R} \frac{n(t)}{t} dt \leq N(R, 0) + N(R, \infty) \leq 2T(R) + O(1)$$

and

$$\frac{2\rho \mathbf{r}}{(\rho - \mathbf{r})^2} \le \frac{8R^2}{(R - \mathbf{r})^2} \qquad \left(\frac{4\rho}{\mathbf{r}} \le \frac{4R}{\mathbf{r}}\right),$$

we see that

$$\left|\frac{zf'(z)}{f(z)}\right| \leq 24\left(\frac{R}{R-r}\right)^2 T(R) + 256\frac{R}{r}\left(\frac{R}{R-r}\right)^3 T(R)^3 \leq 536\left(\frac{R}{R-r}\right)^3 T(R)^3.$$

LEMMA 7. For any entire function f(z),

(13)
$$\left|\frac{zf'(z)}{f(z)}\right| < A \cdot \log^4 M(r, f) \quad (r = |z|)$$

outside an exceptional set of finite logarithmic measure.

Proof. The disc $\left|\frac{z-d}{z}\right| < \frac{1}{2m^2}$ is contained in the annulus

$$d\left(1+\frac{1}{2m^2}\right)^{-1} < |z| < d\left(1-\frac{1}{2m^2}\right)^{-1}.$$

Hence Γ , the exceptional set of Lemma 6, is contained in the union E of the annuli

$$d_{\rm m} \left(1 + \frac{1}{2m^2}\right)^{-1} < |z| < d_{\rm m} \left(1 - \frac{1}{2m^2}\right)^{-1}$$
.

If E^* is the intersection of E with the positive real axis, then the logarithmic measure of E^* is

$$\sum_{m=1}^{\infty} \log \frac{1 + \frac{1}{2m^2}}{1 - \frac{1}{2m^2}} < \sum_{m=1}^{\infty} \frac{2}{m^2} = \frac{\pi^2}{3}.$$

In (12) we now write $R = r + \frac{r}{\log^2 T(r)}$, r = |z|, and we apply Lemma 3 with

Q(r) = T(r), q = e, and ϵ = 1. If E₀ is the exceptional set of Lemma 3, then (12) and the inequality of Lemma 3 hold simultaneously for r \notin E₀ \cup E*, and we deduce that

$$\left|\frac{zf'(z)}{f(z)}\right| < A(R/r)^3 \log^6 T(r) \cdot e^4 \cdot T(r)^3 < AT(r)^4 \quad \text{ for } r > r_0.$$

Since $T(r, f) \le \log M(r, f)$, for entire functions, the lemma follows at once.

3. PROOF OF THE THEOREM

We can now easily prove our theorem. If we write

$$\delta_{\mathbf{r}} = (\log M(\mathbf{r}))^{-4},$$

(11) and (13) hold simultaneously outside an exceptional set E of finite logarithmic measure. For each ϕ there exists by Lemma 5 a real ψ such that

$$|\phi - \psi| < \delta_r = (\log M(r))^{-4}$$
 and $\log |f(re^{i\psi})| > (1 - \epsilon/2) \log M(r)$.

Now, using (13), we deduce that

$$\begin{split} \log \left| f(\mathbf{r} e^{\mathbf{i} \phi}) \right| &= \log \left| f(\mathbf{r} e^{\mathbf{i} \psi}) \right| + \int_{\psi}^{\phi} \frac{\partial}{\partial \theta} \log \left| f(\mathbf{r} e^{\mathbf{i} \theta}) \right| d\theta \\ \\ &\geq (1 - \epsilon/2) \log M(\mathbf{r}) - \int_{\psi}^{\phi} \mathbf{r} \left| \frac{f'(\mathbf{r} e^{\mathbf{i} \theta})}{f(\mathbf{r} e^{\mathbf{i} \theta})} \right| \left| d\theta \right| > (1 - \epsilon/2) \log M(\mathbf{r}) - A\delta_{\mathbf{r}} \log^4 M(\mathbf{r}) \\ \\ &= (1 - \epsilon/2) \log M(\mathbf{r}) - A > (1 - \epsilon) \log M(\mathbf{r}) \end{split}$$

for $r > r_0$, $r \notin E$. This proves the theorem.

REFERENCES

- 1. A. Edrei and W. H. J. Fuchs, Bounds for the number of deficient values of certain classes of meromorphic functions, Proc. London Math. Soc. (3) 12 (1962), 315-344
- 2. W. H. J. Fuchs, *Proof of a conjecture of G. Pólya concerning gap series*, Illinois J. Math. 7 (1963), 661-667.
- 3. T. Kövari, On theorems of G. Pólya and P. Turán, J. Analyse Math., 6 (1958), 323-332.
- 4. ——, On the Borel exceptional values of lacunary integral functions, J. Analyse Math., 9 (1961/62), 71-109.
- 5. A. J. Macintyre, Asymptotic paths of integral functions with gap power series, Proc. London Math. Soc. (3) 2 (1952), 386-296.
- 6. P. Turán, Eine neue Methode in der Analysis und deren Anwendungen, Akadémiai Kiadó, Budapest, 1953.
- 7. ——, Über lakunäre Potenzreihen, Rev. Math. Pures Appl. 1 (1956), no. 3, 27-

Imperial College, University of London