A GAP-THEOREM FOR ENTIRE FUNCTIONS
OF INFINITE ORDER

Thomas Kovari

1. INTRODUCTION AND NOTATION
Let f(z) = Za, Z'2 be an entire function, and write

M(r, f) = max |f(z)|, m(r,f) = min |i(z)] .

Zi=Tr Z|=r

In a recent paper, W. H. J. Fuchs [2] proved that if f(z) is of finite order and the
sequence {A,} satisfies the “Fabry” gap condition

A
(1) Tlfi — o,
then, for each ¢ > 0, the inequality
(2) log m(r, f) > (1 - €)log M(r, 1)

holds outside a set of logarithmic density O.

For functions of infinite order, (1) certainly does not imply (2). In fact, for
every sequence {X,} satisfying the condition

1
D — = o
1 *n ’

A. J. Macintyre [5] has constructed an entire function bounded on the positive real
axis. In this paper I shall prove that if the gap condltlon (1) is replaced by the more
stringent condition !

(3) 2, > n(log n)z'HIj

(for some 1 > 0), then (2) holds also for functions of infinite order. It would be de-
sirable to replace condition (3) by the “exact” condition

-

»1 .
1

An

but this is beyond the scope of our method. The most that could possibly be squeezed
out of our method is the replacement of (3) by the condition

A, > n(log n)(log log n)ZH]r .
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THEOREM. If the exponents of i(z) satisfy the gap-condition (3), then (2) holds
outside a set of finite logarithmic measure.

The proof is similar to that of [2].

We shall use the notation

A .
m*(r, £) = 51; S log* |f(rei?)| a9,
. 0

n(r, 0), n(r, ©) = number of zeros (respectively, poles) in |z] <r,

N(r, 0) = Sor n(t;: 0) at,

T(r, f) = m(r, f) + N(r, =),

M(r, £, 8, 6) = max If(rei(p)l .
l¢-0]<5/2

We shall assume throughout that £(0) = 1.

2. AUXILIARY PROPOSITIONS

LEMMA 1 [7, p. 30]. If {An} is a strictly increasing sequence of nonnegative
integers, then for all 6 and 6 (0< 6 <27, 0< 6 < 27),

< (4O)M max

max —6'
|¢-0|< 6/2

o< 27

M A ¢
1
27 A e'm

n=1

M .
1
27 Ae™

n=1

The following lemma is a special case of [1, Lemma 10.1].

LEMMA 2. Let S(x) be an increasing, continuous, positive function of x (for
0 < x < ), and let 1(y) be an increasing, continuous, positive function of y (for
0 <y < ), such that

o dy

! [ A
@ - B S
then the set

E = %x| S(X+IRS_1(§77) > S(x)+h}

is of finite measure, for every h > 0.

Proof. For a fixed positive value of h, let x; denote the least value of x satisfy-
ing the inequality
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(5) s(x+m§m) > S(x) +h,

and write &3 = xg + 1/1(S(xq)). After xg, ***, xp.1 and &g, **, £,_1 have been de-
fined, let x, be the least value x in [£,_;, <) that satisfies (5), and let
£, =x,+1/u(S(x,)). Then clearly
0< %9 < §p<x3 <& <y
(6) S(x,) > S(£,_y) > S(x,_1) +h > =+ > S(xg)+ nh > nh,

_ 1 1
2 " *n T US0)) = E(mh)’

(7) (g, - %) < E S

n=2
In view of (6), clearly x  — <, and therefore E is covered by the intervals (x,, &,)-
The result now follows from (7).

LEMMA 3. If Q(r) is an increasing positive function for r > 1, then for every
€e>0and > 1,

og

& Q(r) )
outside an exceptional set of finite logarithmic measure.
Proof. Writing

S(x) = log Q(e*), pu(y) =y'*®, h=1logq,

and using the inequality 1 + u < e", we obtain this lemma immediately from Lemma
2.

LEMMA 4. Let f(z) = Zanz" be an entive function, let r = |z| and w > 0, and
let v and R(z) be defined by the equations

(8) v = [3log M(r) - (log log M(r))1 7],
R(z) = 2 r?nzn
n=pr+1

Then, outside an exceptional set of finite logarithmic measure, |R(z)| <1.

Proof. With r < p, we have the inequalities

|an| < ME),
bt r\* _ r\v+l p
|R<z)|§M(p)n=21(5) - M) (£) 525,
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_P_
+10gp-r

log |[R(z)| < log M(p)+ (v +1)log (1 - PI; r)
(9)

p
+10gm_

< log M(p) - (v +1) 2 ;)r

1
(log log M(r))Hw

Putting p=1r { 1+ } , we obtain from (8) and (9) the inequality

p

log IR(z)I < log M(p) - 3log M(r) 'g—k (1 + w)log log log M(r) + log T

Applying Lemma 3 to the function Q(r) = log M(r), with q = e, we get the bound

— r -
log M(p) = log M (r + (log Tog M(r))1™® ) < e-log M(r)

outside a set E of finite logarithmic measure. Hence, for r ¢ E and r > Ty,

1

10 log M(r) + (1 + w)log log log M(r) +1 < O.

log |R(z)| < -

The following Lemma is an adaptation of [4, Lemma VII].

LEMMA 5. Let f(z) = Za, z)\n be an entive function satisfying the gap-condition
(3). Let 6. and 6, be functions of r, subject only to the condition that

(10) 6, > (log M(r))™Y
for some y > 0. Then, for every € > 0,
(11) log M(r, 6., 6,) > (1 - €)log M(r)
outside an exceptional set of finile logarithmic measure.
Proof. Clearly, (3) implies that
n < 2, (log An)"z'n.
Put w =7/2, and define v by (8). I Ay < v <Apy;, then
2 < 22, (log Aﬁ)'z'n < 2v (log 11)"2"77

1+in

_z_n
< 6log M(r) - (log log M(r)) 2. {log 3 + log log M(r) + ( 1+ —é—n)log log log M(r)}

1+z'r] 4 -2-m
< 61log M(r)- (log log M(r)) ‘1% log log M(r)

_l_i'r’

< 12 log M(r) - (log log M(r)) 2 for n <1, r>rg,.
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We now apply Lemma 1, and using condition (10), we obtain (for x > x;) the inequal-
ities

L
max| 2 a, Pt | o ax | 2 anrhnelhngb
¢ AnSV ¢ [n=1
IQ -
< exp {ﬂ'log—é—q}' max 27 a An lhn(b
|¢-0] <6/2 In=1
—l-l-’l’]
< exp ) 12 log M(r) - (log log M(r)) - (log 40 + v log log M(r))
max 20 a, rhnelhnd)
lo-0|<6/2 | 0<v
=
< exp{A-log M(r) - (log log M(r)) 2 } max 2 a, r}”nelhn(ﬁ
|p-0]<6/2 12, <v

Combining this result with Lemma 4, we see that

M(r) < max 27 anz)tn + max 27 anz)\n
M P jaox (a2 v
'"77 A ir ¢
< exp) A -log M(r) - (log log M(r)) . max 27 a,r e 17 [4+1
Cle-0]<6/2 Ia,<v

< exp{ A -log M(r) - (log log M(r)) - {M(r, 6,6)+1} +1

-> 7N
< exp{A log M(r) - (1og log M(r)) e } {M(r, 9, 5)+ 2}
} *M(r, 6, 6)+ o(M(r))-log M(r) + o(1)

< exp{A log M(r) - (log log M(r))

< A-log M(r) - (log log M(r)) + log M(r, 6, 6) = o(log M(r)) + log M(r, 6, 6)
outside an exceptional set of finite logarithmic measure. Thus we have shown that
log M(r, 6, 6) = {1+ o(1)} -log M(r)

outside an exceptional set of finite logarithmic measure, and this proves Lemma 5.

The following is an adaptation of [1, Lemma 2].
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LEMMA 6. Let f(z) be a meromorphic function (of finite ov infinite ovder), and
let {ay} and {b,} be the sequences of its zevos and poles, respectively, each
zevo ov pole appearving as often as its multiplicity indicates. Let {dm} , the com-
bined sequence of zevos and poles, be arvanged according to increasing modulus.
Let T' be the countable union of the (eccentric) discs

m

Z 2m2

Iz—d 1

Then,if z ¢ T and r, < |z] <R <2]z],

zf'(z) R 3 3
12 Iz) < A ( ——) T(R, f) .
. ] . ) R+ Iz! ]
Proof. The Jensen-Nevanlinna identity, with p = — — is the formula
£1(z) 1 2m i 2pel ?®
= 5 log |f(p e'?)| —————= d¢

(z) 2m ; I ] (pe1¢ - 7)2

P2 - |anf p% - by|?

lay [<p (P - 2, 2)(2 - a,) ] by |[<p (p% - b z)(z - by)

Using the inequalities

p? - |c|? p% - |c|? p+ el _ 2
- < = < (for |c| <p),
lp? - €z|% = plz| - |c|z] |z|  — |z
and
2pei‘iJ ' 2p
(pei® - z)2| (o - |2])?’
we obtain the bound
zf'(z) ZPIZI p ( l)} + 9 > 1
(ORI P TR A Gt V5 Tl Py 0 P

If z ¢ T', we deduce that (with |z]| =r)

zf'(z) 2pr 1 4p 2
W < {meoem(n )y B

Since

m(p, ) +m(p, 1) < 2T(p) +0O(1) < 3T(p) < 3T(R)

(by Nevanlinna’s first fundamental theorem), and since

22 m?® < {nlp, 0)+n(p, «)}> = n*p),
lam|<p
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R
B Zne) = BrLagp) < Sp 2 gt < N(R, 0)+ N(R, =) < 2T(R)+O(1)
and
2
2pr 8R 40 _ 4R

G-02" ®-n)? (¥ <%).
we see that

2 3 3

2y (Z)‘ <2 () T®+256 S (R) TR < 536 () TR

LEMMA 7. For any entive function £(z),

zf'(z)
f(z)

outside an exceptional sel of finite logarithmic measure.
- dl <

(13) < A-log4 M(r, f) (r = |z|)

Proof. The disc | z is contained in the annulus

2m?2

a(1+:5) " <l <a(1-5) 7

Hence T, the exceptional set of Lemma 6, is contained in the union E of the annuli
1 -1 1 -1

If E* is the 1ntersect10n of E with the positive real ax1s then the logarithmic
measure of E*

27 log————z—rlr—l— < 2 —22 = %
m=1 1-—> -1m
2m
In (12) we now write R=r+—21:—, r= ]zl, and we apply Lemma 3 with
' log“ T(r)

Q(r) =T(r), q=e, and € = 1. I E, is the exceptional set of Lemma 3, then (12)
and the inequality of Lemma 3 hold simultaneously for r ¢ Eg U E* and we deduce
that

Zil(zr) < A®R/r)’10g® T(x)-e*-T(x)®> < AT(x)* for r> rg-

Since T(r, f) < log M(r, f), for entire functions, the lemma follows at once.
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3. PROOF OF THE THEOREM
We can now easily prove our theorem. If we write
6, = (log M(r))™%,

(11) and (13) hold simultaneously outside an exceptional set E of finite logarithmic
measure. For each ¢ there exists by Lemma 5 a real y such that

|¢ - 4/| < 6. = (log M(r))'4 and log |f(rei"b)| > (1 - e/2)1log M(r).

Now, using (13), we deduce that

. . ¢ .
log |f(rel?)| = log f(re“p)| + ilog f(rele) deo
w 20

fi(ret?)

: . |a6| > (1 - e/2)log M(r) - A5 log* M(r)
f(reif)

6
> (1 - £/2)log M@) - § r‘
v

= (1 -¢/2)log M(r) - A > (1 - £)log M(r)

for r > r,, r ¢ E. This proves the theorem.
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