# ON FUNCTIONS WITH FOURIER TRANSFORMS IN L $_{ m p}$

### Ron Larsen, Teng-sun Liu, and Ju-kwei Wang

#### 1. INTRODUCTION

Let G and  $\hat{G}$  be two locally compact abelian groups, in Pontrjagin duality. In this paper we intend to study the spaces  $A_p(G)$  consisting of all complex-valued functions  $f \in L_1(G)$  whose Fourier transforms  $\hat{f}$  belong to  $L_p(\hat{G})$   $(p \ge 1)$ . It is quite clear that all the  $A_p(G)$  are dense ideals in  $L_1(G)$  under convolution. Further, if  $f \in A_p(G)$ , then  $\hat{f}$  is a bounded continuous function in  $L_p(\hat{G})$  and therefore belongs to  $L_r(\hat{G})$  for all r > p. Thus we see that the  $A_p(G)$  form an ascending chain of dense ideals in  $L_1(G)$ . We shall show that when they are endowed with suitable norms, the  $A_p(G)$  become Banach algebras (Section 3). Further, their behavior is quite similar to that of  $L_1(G)$ . Thus they all have  $\hat{G}$  as the space of maximal ideals (Section 3), spectral synthesis holds or fails for them according as it holds or fails for  $L_1(G)$  (Section 4), and, in the noncompact case, they all have the Fourier-Stieltjes transforms as multipliers (Section 5).

We also include some other results: In Section 2 we give a description of the dual space of  $A_p(G)$  as a Banach space. Finally, in Section 6 we show that  $A_2(G) = L_1(G) \cap L_2(G)$ , so that the results in C. R. Warner's dissertation (announced in [2]) are special, though prototypical, cases of ours.

We use Rudin [1] as our chief reference. We thank I. D. Berg for many helpful discussions.

# 2. BANACH SPACE STRUCTURE OF $\mathbf{A}_{\mathbf{p}}(\mathbf{G})$

For each p (1  $\leq$  p <  $^{\infty}$ ), set  $\|f\|^p = \|f\|_1 + \|\hat{f}\|_p$  (f  $\in$  A\_p(G)), where

$$\|f\|_{1} = \int_{G} |f(x)| dx$$
,  $\|\hat{f}\|_{p} = \left(\int_{\hat{G}} |f(y)|^{p} dy\right)^{1/p}$ ,

and dx and dy denote integration with, respect to Haar measures on the groups G and G, respectively.

THEOREM 1. For each p  $(1 \le p < \infty)$ ,  $\| \|^p$  is a complete norm for the space  $A_p(G)$ ; that is,  $A_p(G)$  is a Banach space.

*Proof.* It is easy to verify that  $\| \|^p$  is a norm.

Moreover, let  $\{f_n\}\subset A_p(G)$  be a Cauchy sequence. Clearly,  $\{f_n\}$  and  $\{\hat{f}_n\}$  are then Cauchy sequences in  $L_1(G)$  and  $L_p(\hat{G})$ , respectively, and so there exist functions  $f\in L_1(G)$  and  $g\in L_p(\hat{G})$  such that  $\|f_n-f\|_1\to 0$  and  $\|\hat{f}_n-g\|_p\to 0$ . However, since the Fourier transform is norm-decreasing,  $\|\hat{f}_n-\hat{f}\|_\infty\to 0$ , where

Received June 1, 1964.

R. Larsen and J.-K. Wang acknowledge support from contracts NSF-GP-1814 and AFOSR-407-63, respectively.

 $\|\hat{\mathbf{f}}\|_{\infty} = \text{ess. sup } |\hat{\mathbf{f}}(y)|$ , and since some subsequence of  $\{\hat{\mathbf{f}}_n\}$  converges to g almost everywhere, we must conclude that  $\hat{\mathbf{f}} = \mathbf{g}$ .

Therefore  $\|f_n - f\|^p \to 0$ , where  $f \in A_p(G)$ ; that is,  $\| \|^p$  is complete.

Next, consider for each p  $(1 \le p < \infty)$  the mapping

$$\Phi_{p}: A_{p}(G) \rightarrow L_{1}(G) \times L_{p}(\widehat{G})$$

defined by  $\Phi_p(f) = (f, \ \hat{f})$  ( $f \in A_p(G)$ ). This is clearly a linear isometry of  $A_p(G)$  into the Banach space  $L_1(G) \times L_p(\hat{G})$  with the norm  $\|(f, g)\| = \|f\|_1 + \|g\|_p$ . Thus we consider  $A_p(G)$  as a closed subspace of  $L_1(G) \times L_p(\hat{G})$  ( $1 \le p < \infty$ ).

Since the dual space of  $L_1(G) \times L_p(\hat{G})$  is isomorphic to  $L_\infty(G) \times L_q(\hat{G})$ , where  $L_\infty(G)$  is the Banach space of essentially bounded measurable functions with the essential supremum norm, and where 1/p + 1/q = 1, a simple application of the Hahn-Banach theorem shows that each bounded linear functional F on  $A_p(G)$  must be of the form

$$F(f) = \int_{G} f(x) \phi(x) dx + \int_{\widehat{G}} f(y) \psi(y) dy \qquad (f \in A_{p}(G)),$$

for some pair  $(\phi, \psi) \in L_{\infty}(G) \times L_{q}(\widehat{G})$ . However, the pair  $(\phi, \psi)$  corresponding to a given functional may not be unique.

The situation is described more precisely by Theorem 2. In the statement of this theorem,  $A_p^*(G)$  denotes the dual space of  $A_p(G)$  ( $1 \le p < \infty$ ), and  $K_p$  consists of the pairs  $(\phi, \psi) \in L_\infty(G) \times L_q(\hat{G})$  for which there exists a net  $(\tilde{a}_\alpha, \hat{a}_\alpha)$ , belonging to

$$B_p = \{(\widetilde{a}, \, \widehat{a}) | a \in L_1(G), \, \widehat{a} \in L_1(\widehat{G}) \cap L_q(\widehat{G}), \, \, \widetilde{a}(x) = -a(-x) \},$$

such that

In other words,  $K_p$  is the closure of  $B_p$  in the weak topology induced by  $A_p(G)$ .

THEOREM 2. For each p  $(1 \le p < \infty)$ , the dual space  $A_p^*(G)$  of  $A_p(G)$  is isomorphic to  $L_\infty(G) \times L_q(\widehat{G})/K_p$  (1/p + 1/q = 1).

*Proof.* From the remarks preceding the theorem, it is clear that  $A_p^*(G)$  is isomorphic to  $L_\infty(G)\times L_q(\hat{G})/I_p$  for some kernel  $I_p$ . To establish the theorem we must show that  $I_p=K_p$ .

Let  $(\tilde{\mathbf{a}}, \, \hat{\mathbf{a}}) \, \epsilon \, \mathbf{B}_{\mathbf{p}}$ . Then, for each  $\mathbf{f} \, \epsilon \, \mathbf{A}_{\mathbf{p}}(\mathbf{G})$ ,

$$\int_{G} f(x) \tilde{a}(x) dx + \int_{\hat{G}} \hat{f}(y) \hat{a}(y) dy$$

$$= \int_{G} f(x) \tilde{a}(x) dx + \int_{\hat{G}} \left( \int_{G} (-x, y) f(x) dx \right) \hat{a}(y) dy$$

$$= \int_{G} f(x) \tilde{a}(x) dx + \int_{G} f(x) \left( \int_{\hat{G}} (-x, y) \hat{a}(y) dy \right) dx$$

$$= \int_{G} f(x) (\tilde{a}(x) + a(-x)) dx = 0.$$

The interchange of the order of integration is permissible, since  $\hat{a} \in L_1(\hat{G}) \cap L_q(\hat{G})$ . Thus  $B_p \subset I_p$ .

Moreover, any pair  $(\phi, \psi) \in L_{\infty}(G) \times L_q(\widehat{G})$  that is the limit of a net in  $B_p$ , in the sense described before the statement of the theorem, obviously belongs to  $I_p$ ; that is,  $K_p \subset I_p$ . Hence we need only show that no other pair  $(\phi, \psi)$  can occur. For this it is clearly sufficient to show that if  $(\phi, \psi)$  belongs to  $I_p$ , then for each  $f \in A_p(G)$  and each  $\epsilon > 0$  we can find  $(\widetilde{a}, \widehat{a}) \in B_p$  such that

(1) 
$$\left| \int_{G} f(x) \phi(x) dx - \int_{G} f(x) \tilde{a}(x) dx \right| < \varepsilon,$$

(2) 
$$\left| \int_{\widehat{G}} \widehat{f}(y) \psi(y) dy - \int_{\widehat{G}} \widehat{f}(y) \widehat{a}(y) dy \right| < \varepsilon.$$

Since  $(\phi, \psi) \in I_p$ , the inequality (2) implies (1), and so we have only to show that (2) holds.

With this in mind we first note that  $C_p = \{\hat{\mathbf{a}} \mid (\widetilde{\mathbf{a}}, \, \widehat{\mathbf{a}}) \in B_p \}$  is a self-adjoint, separating subalgebra under pointwise multiplication of  $C_0(\widehat{\mathbf{G}})$ , the space of continuous functions on  $\widehat{\mathbf{G}}$  vanishing at infinity; it follows from the Stone-Weierstrass theorem that  $C_p$  is norm-dense in  $C_0(\widehat{\mathbf{G}})$ . Hence  $C_p$  is also norm-dense in  $L_q(\widehat{\mathbf{G}})$   $(q \neq \infty)$ .

Thus for each f  $\varepsilon\,A_p(G)$  (p >1) and each  $\epsilon>0$  there exists an  $\boldsymbol{\hat{a}}\,\varepsilon\,C_p$  such that

$$\left(\int_{\widehat{G}} |\psi(y) - \widehat{a}(y)|^q dy\right)^{1/q} < \epsilon/\|\widehat{f}\|_p$$

and hence

$$\begin{split} \left| \int_{\widehat{G}} \, \widehat{f}(y) \, \psi(y) \, dy \, - \int_{\widehat{G}} \, \widehat{f}(y) \, \widehat{a}(y) \, dy \right| \\ \\ & \leq \left( \int_{\widehat{G}} \, \left| \, \widehat{f}(y) \, \right|^p \, dy \right)^{1/p} \left( \int_{\widehat{G}} \, \left| \, \psi(y) \, - \, \widehat{a}(y) \, \right|^q \, dy \right)^{1/q} < \, \epsilon \, . \end{split}$$

Similarly, we can prove inequality (2) in the case  $p=1,\ q=\infty$  by using the fact that the functions in  $L_\infty(\hat G)$  can be uniformly approximated on compact sets by functions in  $C_1$ .

### 3. BANACH ALGEBRA STRUCTURE OF $A_p(G)$

THEOREM 3. For each p (1  $\leq$  p <  $^\infty$ ), A  $_p\!(G)$  is a Banach algebra under convolution with the norm  $\parallel \ \parallel^p$  .

*Proof.* In the preceding section we showed that  $A_p(G)$  is a Banach space with the norm  $\| \|^p$ .

Moreover, for each pair f, g in  $A_p(G)$ ,  $f * g \in L_1(G)$  since f,  $g \in L_1(G)$  and

$$\|\widehat{\mathbf{f}} * \mathbf{g}\|_{\mathbf{p}} = \|\widehat{\mathbf{f}}\widehat{\mathbf{g}}\|_{\mathbf{p}} \leq \|\widehat{\mathbf{f}}\|_{\infty} \|\widehat{\mathbf{g}}\|_{\mathbf{p}}.$$

The right-hand side of the inequality is finite, since  $\hat{g} \in L_p(\hat{G})$ . Thus  $f * g \in A_p(G)$ , in other words;  $A_p(G)$  is closed under convolution.

Finally, for each f,  $g \in A_p(G)$ ,

$$\begin{split} \|\mathbf{f} * \mathbf{g}\|^{p} &= \|\mathbf{f} * \mathbf{g}\|_{1} + \|\hat{\mathbf{f}}\hat{\mathbf{g}}\|_{p} \leq \|\mathbf{f}\|_{1} \|\mathbf{g}\|_{1} + \|\hat{\mathbf{f}}\|_{\infty} \|\hat{\mathbf{g}}\|_{p} \\ &\leq \|\mathbf{f}\|_{1} (\|\mathbf{g}\|_{1} + \|\hat{\mathbf{g}}\|_{p}) \\ &\leq (\|\mathbf{f}\|_{1} + \|\hat{\mathbf{f}}\|_{p}) (\|\mathbf{g}\|_{1} + \|\hat{\mathbf{g}}\|_{p}) = \|\mathbf{f}\|^{p} \|\mathbf{g}\|^{p}. \end{split}$$

Therefore  $A_p(G)$  is a Banach algebra.

Remark. In the case p = 1, it is easy to see that  $A_1(G)$  is also a Banach algebra under pointwise multiplication.

The next theorem identifies the space of maximal ideals of  $\boldsymbol{A}_p(G)$  as the dual group  $\boldsymbol{G}_{\boldsymbol{\cdot}}$ 

THEOREM 4. For each p (1  $\leq$  p <  $^{\infty}$ ), the space of maximal ideals of  $A_p(G)$  can be identified with the dual group  $\hat{G}$ .

*Proof.* Let  $f \in A_p(G)$ ,  $f \neq 0$ . Then, for each positive integer n,

$$\begin{split} \|\mathbf{f}^{\mathbf{n}}\|^{\mathbf{p}} &= \|\mathbf{f}^{\mathbf{n}-1} * \mathbf{f}\|^{\mathbf{p}} = \|\mathbf{f}^{\mathbf{n}-1} * \mathbf{f}\|_{1} + \|\hat{\mathbf{f}}^{\mathbf{n}-1} \hat{\mathbf{f}}\|_{\mathbf{p}} \\ &\leq \|\mathbf{f}^{\mathbf{n}-1}\|_{1} \|\mathbf{f}\|_{1} + \|\hat{\mathbf{f}}^{\mathbf{n}-1}\|_{\infty} \|\hat{\mathbf{f}}\|_{\mathbf{p}} \\ &\leq \|\mathbf{f}^{\mathbf{n}-1}\|_{1} (\|\mathbf{f}\|_{1} + \|\hat{\mathbf{f}}\|_{\mathbf{p}}) \leq \|\mathbf{f}\|_{1}^{\mathbf{n}-1} \|\mathbf{f}\|^{\mathbf{p}} \,. \end{split}$$

Hence, for each n,

$$(\|f^n\|^p)^{1/n} \le \|f\|_1^{(n-1)/n} (\|f\|^p)^{1/n}.$$

Letting n tend to infinity, we see that

$$\|\mathbf{f}\|_{\mathrm{Sp}}^{\mathrm{p}} \leq \|\mathbf{f}\|_{\mathrm{1}} \quad (\mathbf{f} \neq \mathbf{0}),$$

where  $\| \|_{Sp}^p$  is the spectral radius norm in the algebra  $A_p(G)$ . Clearly (3) holds also in the case f = 0.

Hence, if F is any multiplicative linear functional on Ap(G), then

$$\big|\,F(f)\big|\,\leq\,\big\|f\big\|_{\operatorname{Sp}}^p\,\leq\,\big\|f\big\|_1\qquad(f\,\in\,A_p(G))\,;$$

that is, F defines an  $L_1$ -bounded multiplicative linear functional on  $A_p(G)$  considered as a subspace of  $L_1(G)$ . Thus F may be extended to a multiplicative linear functional on all of  $L_1(G)$ , and the extension is unique, since  $A_p(G)$  is norm-dense in  $L_1(G)$ .

Therefore, since the maximal ideal space of  $L_1(G)$  is  $\hat{G}$ , there corresponds, to each multiplicative linear functional F on  $A_p(G)$ , a unique continuous character  $(\cdot, y)$  on G such that

$$F(f) = \int_{G} (-x, y) f(x) dx \qquad (f \in A_p(G)),$$

and conversely. It is easy to verify that the usual topology on the dual group  $\hat{G}$  coincides with the Gelfand topology on  $\hat{G}$  considered as the space of multiplicative linear functionals.

Thus the maximal ideal space of  $A_p(G)$  may be identified with  $\hat{G}$ .

## 4. IDEAL THEORY IN $A_p(G)$

In this section we shall show that there exists a one-to-one correspondence between the closed ideals in  $L_1(G)$  and the closed ideals in  $A_p(G)$ . This is accomplished by the following theorem.

THEOREM 5. For each p  $(1 \le p < \infty)$  the following two statements hold:

- i) If  $I_1$  is a closed ideal in  $L_1(G),$  then  $I=I_1\cap A_p(G)$  is a closed ideal in  $A_p(G).$
- ii) If I is a closed ideal in  $A_p(G)$  and  $I_1$  is the closure of I in  $L_1(G)$ , then  $I_1$  is a closed ideal in  $L_1(G)$  and  $I=I_1\cap A_p(G)$ .

*Proof.* The proof of i) is immediate and will be omitted. Similarly, in ii) it is easy to verify that  $I_1$  is a closed ideal in  $L_1(G)$  and that  $I \subset I_1 \cap A_p(G)$ .

Let  $f \in I_1 \cap A_p(G)$ . We must show that for each  $\epsilon > 0$  we can find a function  $h \in I$  such that  $\|h - f\|^p < \epsilon$ . Since  $f \in I_1 \cap A_p(G)$ , there exists a sequence  $\{f_n\} \subset I$  such that  $\|f_n - f\|_1 \to 0$ . Let  $\{u_\alpha\} \subset A_p(G)$  be an approximate identity in  $L_1(G)$  for which

$$\|\mathbf{u}_{\alpha}\|_{1} \leq 1$$
,  $0 \leq |\hat{\mathbf{u}}_{\alpha}(y)| < 1$ ,

and  $\hat{\mathbf{u}}_{\alpha}$  has compact support for each  $\alpha$ . It is then clear that

$$\|\mathbf{f}_{\mathbf{n}} * \mathbf{u}_{\alpha} - \mathbf{f} * \mathbf{u}_{\alpha}\|_{1} \to 0$$

as  $n\to \infty,$  uniformly in  $\alpha.$  In particular, for each  $\delta$  (0  $<\delta$  <1) there exists an  $n_0$  such that

$$(4) \qquad \|f_{n_{0}}*u_{\alpha}-f\|_{1} \leq \|f_{n_{0}}*u_{\alpha}-f*u_{\alpha}\|_{1} + \|f*u_{\alpha}-f\|_{1} < \frac{1}{4} \, \delta + \|f*u_{\alpha}-f\|_{1}$$

for all  $\alpha$ .

Next choose a compact set  $K \subseteq \boldsymbol{\hat{G}}$  such that

$$\int_{\thicksim K} \big| \mathbf{\hat{f}_{n_0}}(y) \big|^p \, dy < \frac{\delta^p}{2^{2p+1}}, \quad \text{ and } \quad \int_{\thicksim K} \big| f(y) \big|^p \, dy < \frac{\delta^p}{2^{2p+1}}.$$

This is possible, since  $f_{n_0}$ ,  $f \in A_p(G)$ . Then, for all  $\alpha$ ,

$$\int_{\widehat{G}} |\hat{\mathbf{f}}_{n_{0}}(y) \hat{\mathbf{u}}_{\alpha}(y) - \hat{\mathbf{f}}(y)|^{p} dy \\
\leq \int_{K} |\hat{\mathbf{f}}_{n_{0}}(y) \hat{\mathbf{u}}_{\alpha}(y) - \hat{\mathbf{f}}(y)|^{p} dy + \int_{\sim_{K}} |\hat{\mathbf{f}}_{n_{0}}(y) \hat{\mathbf{u}}_{\alpha}(y) - \hat{\mathbf{f}}(y)|^{p} dy \\
\leq \int_{K} |\hat{\mathbf{f}}_{n_{0}}(y) \hat{\mathbf{u}}_{\alpha}(y) - \hat{\mathbf{f}}(y)|^{p} dy + 2^{p} \int_{\sim_{K}} (|\hat{\mathbf{f}}_{n_{0}}(y)|^{p} + |\hat{\mathbf{f}}(y)|^{p}) dy$$
(5)

$$\leq \, \int_{K} \, \big| \boldsymbol{\hat{f}_n}_0(\boldsymbol{y}) \boldsymbol{\hat{u}}_{\alpha}(\boldsymbol{y}) - \boldsymbol{\hat{f}}(\boldsymbol{y}) \big|^p \, d\boldsymbol{y} + \delta^{p} / 2^p.$$

However, since  $\|\mathbf{f}*\mathbf{u}_{\alpha}-\mathbf{f}\|_{1}\to 0$  over  $\alpha$ , it is clear from (4) that we can choose an  $\alpha_{0}$  such that both

(6) 
$$\|\hat{\mathbf{f}}_{\mathbf{n}_0}\hat{\mathbf{u}}_{\alpha} - \hat{\mathbf{f}}\|_{\infty}^p < \delta^p/2^p$$

and

$$\|\mathbf{f}_{\mathbf{n}_0} * \mathbf{u}_{\alpha} - \mathbf{f}\|_1 < \delta/2$$

hold for  $\alpha > \alpha_0$ .

Then, combining the inequalities (5) to (7), we see that

$$\begin{split} \|f_{n_0} * u_{\alpha} - f\|^p &= \|f_{n_0} * u_{\alpha} - f\|_1 + \|\hat{f}_{n_0} \hat{u}_{\alpha} - \hat{f}\|_p \\ &< \frac{1}{2} \delta + \frac{1}{2} \delta \left[ m(K) + 1 \right]^{1/p} \quad (\alpha > \alpha_0), \end{split}$$

where m denotes the Haar measure on G.

Let  $\delta < 2\epsilon/\{1 + [m(K) + 1]^{1/p}\}$ . Then  $\|f_{n_0} * u_{\alpha} - f\|^p < \epsilon$ . Since  $f_{n_0} * u_{\alpha} \in I$  (I is an ideal), this completes the proof.

*Remark.* From this theorem we can draw some immediate conclusions about the ideal theory for  $A_p(G)$  [1, Chapter 7]:

a) The closed ideals of  $\boldsymbol{A}_{p}\!\!\left(\boldsymbol{G}\right)$  are precisely the closed, translation invariant subspaces.

- b) Wiener's theorem holds in  $A_p(G)$ ; that is, if  $f \in A_p(G)$  and  $\hat{f}(y) \neq 0$  for all  $y \in G$ , then the space spanned by the translates of f is norm-dense in  $A_p(G)$ .
  - c) In general, spectral synthesis fails in  $A_{D}(G)$ .

## 5. MULTIPLIERS OF $A_p(G)$

A multiplier of  $A_p(G)$  is a bounded function  $\phi$  defined on  $\hat{G}$  such that  $\phi \hat{f}$  is a Fourier transform of some function in  $A_p(G)$  wherever  $\hat{f}$  is such a Fourier transform. Multipliers of  $L_l(G)$  have been defined similarly, and Helson and Edwards proved that the multipliers of  $L_l(G)$  are precisely the Fourier-Stieltjes transforms of M(G), the set of finite, complex-valued, regular Borel measures on G [1, p. 73]. In this section we shall show that each Fourier-Stieltjes transform is a multiplier of  $A_p(G)$ , and that for noncompact groups G each multiplier of  $A_p(G)$  is a Fourier-Stieltjes transform.

THEOREM 6. For each p  $(1 every Fourier-Stieltjes transform of a measure in M(G) is a multiplier of <math>A_p(G)$ ; and if G is noncompact then every multiplier of  $A_p(G)$  is a Fourier-Stieltjes transform of some measure in M(G).

*Proof.* Let  $f \in A_p(G)$  and  $\mu \in M(G)$ . Then  $f \in L_1(G)$ . Hence  $\hat{\mu} \hat{f} \in L_1(G)$ , where  $\hat{f} \in L_1(G)$  denotes the set of Fourier transforms. Since  $\hat{f} \in L_p(G)$  is a bounded continuous function and  $\hat{f} \in L_p(G)$ , we see that  $\hat{f} \in L_p(G)$ . Hence  $\hat{f} \in L_p(G)$ , and  $\hat{f} \in L_p(G)$  is a multiplier.

Now let G be a noncompact group, and suppose  $\phi$  is a multiplier of  $A_p(G)$ . It is easy to verify that  $A_p(G)$  is a Banach space with the norm  $\|\hat{\mathbf{f}}\| = \|\mathbf{f}\|^p$  ( $\hat{\mathbf{f}} \in A_p(G)$ ), and that  $B(\hat{\mathbf{G}})$ , the space of Fourier-Stieltjes transforms of measure in M(G), is a Banach space with the norm  $\|\hat{\mu}\|_B = \|\mu\|$  ( $\hat{\mu} \in B(\hat{G})$ ), where  $\|\mu\|$  is the total variation of the measure  $\mu$ . Define the linear transformation  $T: A_p(G) \to B(\hat{G})$  by  $T\hat{\mathbf{f}} = \phi\hat{\mathbf{f}}$  ( $\hat{\mathbf{f}} \in A_p(G)$ ). If

$$\hat{f}_n \to \hat{f}$$
 in  $A_p(G)$  and  $T\hat{f}_n \to \hat{\mu}$  in  $B(\hat{G})$ ,

then  $\hat{\mathbf{f}}_n \to \hat{\mathbf{f}}$  pointwise, and  $T\hat{\mathbf{f}}_n = \phi \, \hat{\mathbf{f}}_n \to \hat{\boldsymbol{\mu}}$  pointwise. This shows that  $\hat{\boldsymbol{\mu}} = \phi \, \hat{\mathbf{f}} = T\hat{\mathbf{f}}$ , and therefore the transformation T is closed. By the closed-graph theorem we see that T is a bounded linear transformation, and hence there exists some constant K such that

$$\|\phi \hat{\mathbf{f}}\|_{\mathbf{B}} \leq K \|\hat{\mathbf{f}}\| = K(\|\mathbf{f}\|_{1} + \|\hat{\mathbf{f}}\|_{\mathbf{p}}) \quad (\hat{\mathbf{f}} \in A_{\mathbf{p}}(G)^{\hat{}}).$$

Let V be any open subset of  $\hat{G}$  with compact closure, and choose f in  $A_p(G)$  such that  $\hat{f}(y) = 1$  (y  $\in$  V) [1, p. 48]. If  $\hat{\mu} = \phi \hat{f}$ , then  $\phi$  is continuous on V, and hence  $\phi$  is continuous on  $\hat{G}$ .

Given  $y_1$ ,  $y_2$ , ...,  $y_n$  in  $\boldsymbol{\hat{G}}$  and  $\epsilon>0$ , let V be an open subset of G such that  $y_i$   $\epsilon$  V (i = 1, 2, ..., n) and m(V)<1. Such a V exists, since G is noncompact and hence  $m\left\{y_i\right\}$  = 0 (i = 1, 2, ..., n). Then choose f  $\epsilon$   $A_p(G)$  such that

- i)  $\hat{f}(y_i) = 1$  (i = 1, 2, ..., n),
- ii)  $\|f\|_1 < 1 + \varepsilon$ , and
- iii) f has compact support in V.

It follows immediately from the choice of V and f that  $\|\hat{\mathbf{f}}\|_{p} < 1 + \epsilon$ .

We see that if  $c_1$  ,  $c_2$  , ... ,  $c_n$  are complex numbers and  $\hat{\mu} = \phi \, \hat{\mathbf{f}}$ , then

$$\begin{split} \left| \sum_{i=1}^{n} c_{i} \phi(y_{i}) \right| &= \left| \sum_{i=1}^{n} c_{i} \phi(y_{i}) \hat{f}(y_{i}) \right| \\ &= \left| \sum_{i=1}^{n} c_{i} \hat{\mu}(y_{i}) \right| \leq \left\| \mu \right\| \left\| \sum_{i=1}^{n} c_{i}(\cdot, y_{i}) \right\|_{\infty} \\ &\leq K(\left\| f \right\|_{1} + \left\| \hat{f} \right\|_{p}) \left\| \sum_{i=1}^{n} c_{i}(\cdot, y_{i}) \right\|_{\infty} \\ &\leq 2K(1+\epsilon) \left\| \sum_{i=1}^{n} c_{i}(\cdot, y_{i}) \right\|_{\infty} \end{split}$$

But this last inequality together with the continuity of  $\phi$  implies that  $\phi$  is a Fourier-Stieltjes transform [1, p. 32].

Remark. In general the converse of Theorem 6 for compact groups is not true. Let G be the circle group  $\{e^{i\,\theta}\,|\,0\leq\theta<2\pi\}$ , and let  $\{a_n\}_{n=-\infty}^{+\infty}$  be a bounded sequence of complex numbers that is not the Fourier-Stieltjes transform of any measure in M(G). We claim that  $\{a_n\}$  is a multiplier of  $A_1(G)$ . If  $f\in A_1(G)$ , then  $\sum_{n=-\infty}^{+\infty}|\hat{f}(n)|$  converges, and so  $\sum_{n=-\infty}^{+\infty}|a_n\hat{f}(n)|$  also converges. But  $\{a_n\hat{f}(n)\}$  is the set of Fourier coefficients of  $\sum_{n=-\infty}^{+\infty}|a_n\hat{f}(n)|e^{in\,\theta}$ , which belongs to  $A_1(G)$ .

In the following, we write  $f_z(z) = f(x - z)$  for a function f defined on G, with  $x, z \in G$ .

THEOREM 7. If G is a noncompact group and T:  $A_p(G) \to A_p(G)$  is a bounded linear transformation satisfying  $T(f_z) = (Tf)_z$  for all  $z \in G$ , then there exists some  $\mu \in M(G)$  such that  $Tf = \mu * f$ .

*Proof.* First we shall show that (Tf) \* g = T(f \* g) for all f, g  $\in$  A<sub>p</sub>(G). This will be done by showing that every bounded linear functional on A<sub>p</sub>(G) has the same value on both T(f \* g) and (Tf) \* g.

Let F be a bounded linear functional on  $A_p(G)$ . Then FoT is again a bounded linear functional on  $A_p(G)$ , and there exist functions  $\alpha$ , a  $\in L_{\infty}(G)$  and  $\beta$ , b  $\in L_q(\widehat{G})$  (1/p+1/q=1) such that

$$\mathbf{F}(\mathbf{f}) = \int_{\mathbf{G}} \mathbf{f}(\mathbf{x}) \, \alpha(\mathbf{x}) \, d\mathbf{x} + \int_{\mathbf{\hat{G}}} \mathbf{\hat{f}}(\mathbf{y}) \, \beta(\mathbf{y}) \, d\mathbf{y}$$

and

$$\mathbf{F} \circ \mathbf{T}(\mathbf{f}) = \int_{\mathbf{G}} \mathbf{f}(\mathbf{x}) \mathbf{a}(\mathbf{x}) d\mathbf{x} + \int_{\mathbf{\hat{G}}} \mathbf{\hat{f}}(\mathbf{y}) \mathbf{b}(\mathbf{y}) d\mathbf{y}.$$

From the last relations it follows that

$$F(Tf * g) = \int_{G} (Tf * g)(x) \alpha(x) dx + \int_{\hat{G}} (Tf)^{\hat{}}(y) \hat{g}(y) \beta(y) dy$$

$$= \int_{G} \left( \int_{G} (Tf)(x - z) g(z) dz \right) \alpha(x) dx$$

$$+ \int_{\hat{G}} (Tf)^{\hat{}}(y) \left( \int_{G} (-z, y) g(z) dz \right) \beta(y) dy$$

$$= \int_{G} g(z) \left[ \int_{G} T(f_{z})(x) \alpha(x) dx + \int_{\hat{G}} [T(f_{z})]^{\hat{}}(y) \beta(y) dy \right] dz$$

$$= \int_{G} g(z) F \circ T(f_{z}) dz$$

$$= \int_{G} g(z) \left[ \int_{G} f_{z}(x) a(x) dx + \int_{\hat{G}} (f_{z})^{\hat{}}(y) b(y) dy \right] dz$$

$$= \int_{G} (f * g)(x) a(x) dx + \int_{\hat{G}} (f * g)^{\hat{}}(y) b(y) dy$$

$$= F \circ T(f * g).$$

Hence Tf \* g = T(f \* g), and by symmetry, Tf \* g = Tg \* f. Thus (Tf)^ $\hat{g}$  = (Tg)^ $\hat{f}$ . From this it follows that there exists a function  $\phi$  on  $\hat{G}$  such that (Tf)^ =  $\phi \hat{f}$  for all f  $\in$  A<sub>p</sub>(G). Clearly,  $\phi$  is a multiplier and has the form  $\hat{\mu}$  with  $\mu \in M(G)$ , by Theorem 6. Thus (Tf)^ =  $\hat{\mu}$   $\hat{f}$ , and therefore, by the uniqueness of the Fourier-Stieltjes transforms, Tf =  $\mu$  \* f.

With the results of the preceding sections it is simple to prove the following theorem.

THEOREM 8.  $L_1(G) \cap L_2(G) = A_2(G)$ .

*Proof.* We are considering  $L_1(G) \cap L_2(G)$  as a Banach space with the norm

$$\|\mathbf{f}\|_{1,2} = \|\mathbf{f}\|_1 + \|\mathbf{f}\|_2 \quad (\mathbf{f} \in \mathbf{L}_1(\mathbf{G}) \cap \mathbf{L}_2(\mathbf{G})).$$

By the Plancherel theorem it is clear that we can consider  $L_1(G) \cap L_2(G)$  as a closed subspace of  $A_2(G)$ , and it is easy to verify that  $L_1(G) \cap L_2(G)$  is an ideal in  $A_2(G)$ .

However, if  $I_1$  denotes the closure of  $L_1(G) \cap L_2(G)$  in  $L_1(G)$ , then from Theorem 5 and the relation  $I_1 = L_1(G)$  we conclude that

$$L_1(G) \cap L_2(G) = I_1 \cap A_2(G) = A_2(G)$$
.

*Remarks.* a) It follows immediately from the theorem that if  $f \in A_2(G)$  and g is the inverse Plancherel transform of  $\hat{f}$ , then f = g.

b) The plausible conjecture that  $\,L_1(G) \, \cap \, L_p(G) = A_q(G) \,$  (1 is false.

#### REFERENCES

- 1. W. Rudin, Fourier analysis on groups, Interscience Publishers, New York London, 1962.
- 2. C. R. Warner, The Banach algebra  $L^1(G) \cap L^2(G)$ , Preliminary Report. Amer. Math. Soc. Notices 9 (1962), 128 (Abstract No. 590-31).

Yale University University of Pennsylvania