ON FUNCTIONS WITH FOURIER TRANSFORMS IN Ly
Ron Larsen, Teng-sun Liu, and Ju-kwei Wang

1. INTRODUCTION

Let G and G be two locally compact abelian groups, in Pontrjagin duality. In
this paper we intend to study the spaces A,(G) consisting of all complex-valued
functions f € L;(G) whose Fourier transforms f belong to L (G) (p>1). Itis
quite clear that all the A,(G) are dense ideals in L1(G) under convolution. Further,
if £ € Ay(G), then f is.a bounded continuous function in LP(G) and therefore belongs
to L (Gf for all r > p. Thus we see that the A,(G) form an ascending chain of
dense ideals in L;(G). We shall show that when they are endowed with suitable
norms, the A (G) become Banach algebras (Section 3). Further, their bebavior is
quite similar to that of L;(G). Thus they all have G as the space of maximal ideals
(Section 3), spectral synthesis holds or fails for them according as it holds or fails
for L;(G) (Section 4), and, in the noncompact case, they all have the Fourier-
Stieltjes transforms as multipliers (Section 5).

We also include some other results: In Section 2 we give a description of the
dual space of Ap(G) as a Banach space. Finally, in Section 6 we show that
A2(G) = Li(G) M Lz(G), so that the results in C. R. Warner’s dissertation (announced
in[2]) are special, though prototypical, cases of ours.

We use Rudin [1] as our chief reference. We thank I. D. Berg for many helpful
discussions.

2., BANACH SPACE STRUCTURE OF AP(G)

For each p (1 <p <), set [£]|P = ||t} + [|f], (f € A,(G)), where

. 1/
I, = §_llax, 8l = (5, 1o FPar)

and dx and dy denote integrationlwith,respect to Haar measures on the groups G
and G, respectively.

THEOREM 1. For each p (1 <p <), " ”P is a complete novm for the space
Ap(G); that is, AL(G) is a Banach space.

Proof. 1t is easy to verify that || |P is a norm.

Moreover, let {f,} CA,(G) be a Cauchy sequence. Clearly, {f,} and {f,} are
then Cauchy sequences in LI(G) and L (G) respectively, and so there exist func-
tions f € L)(G) and g € Ly(G) such that l£n - £l 1 — 0 ana [f, - gll, — 0. How-
ever, since the Fourier transform is norm-decreasing, f -1 || — 0, where
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I £ lo = ess. sup |f(y)|, and since some subsequence of {fa} converges to g almost
everywhere, we must conclude that f = g.

Therefore ||f, - £|[° — 0, where f € Ap(G); that is, | II® is complete.
Next, consider for each p (1 <p < «) the mapping

$5: Ap(G) — L(G) x L(G)

defined by ®p(f) = (f, f) (f € AE(G)) This is clearly a linear isometry of Ap(G) into
the Banach space Lj(G) X L(G) with the norm ||(f, g) I = l£]1 + |ellp - Thus we
consider AP(G) as a closed subspace of Lj(G) X LP(G) (1 <p<=).

Since the dual space of Li(G) X L (G) is isomorphic to L(G) X Lq(G) where
L. (G) is the Banach space of essentlally bounded measurable functions with the es-
sential supremum norm, and where 1/p + 1/q = 1, a simple application of the Hahn-
Banach theorem shows that each bounded linear funct1ona1 F on Ap(G) must be of
the form

R = §_t@eaxs [ ivmay @ e agon,

for some pair (¢, ¥) € L(G) X Lq(é). However, the pair (¢, ¥) corresponding to a
given functional may not be unique.

The situation is described more precisely by Theorem 2. In the statement of
this theorem, A*(G‘ denotes the dual space of Ap(G) (1 <p <), and K, consists

of the pairs (qS, l,b) € L,(G) X Lq(G) for which there exists a net (2, a) belonging
to

B, = {(& 8)| a € Li(G), 4 € Ly(6) N L(G), &(x) = -a(-x},

such that

li(;n SG f(x) 8y (x) dx SG £(x) ¢(x) dx,

(f € AL(G))

1l

lim S« Hy)d,(y) dy S~ fty) w(y) ay .
o G G
In other words, K is the closure of By in the weak topology induced by AP(G)
THEOREM 2. For each p (1 <p < =), the dual space A*(G) of &,(G) is iso-
morphic to Loo(G) X L (G)/K (1/p+ 1/q = 1).

Proof. From the remarks preceding the theorem, it is clear that A’E(G) is iso-
morphic to LOO(G) X L (G)/I for some kernel I,. To establish the theorem we must
show that I

Let (8, a.) € Bp' Then, for each f € AP(G),
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{ twamax+ | fvamay
G G

{ fwamax ( (% y)f(x)dx).a(y)dy
G G G

[JEGECE f(x>( [ % y)a(y>dy)dx
G G G

S £(x) (8(x) + a(-x))dx = 0.
G

I

The 1nterchange of the order of integration is permissible, since a € Ll(G) N L (G)
Thus B C I

Moreover, any pair. (¢, ¥) € L(G) X L (é) that is the limit of a net in B,
the sense described before the statement of the theorem, obviously belongs to Ip,
that is, K clI Hence we need only show that no other pair (¢, ¥) can occur. For
this it is clearlrj)r sufficient to show that if (qb, ¥) belongs to I, then for each
feA (G) and each € > 0 we can find (&, 2) € Bp such that

(1) SG £(x) ¢(x) dx - SG f(x)&x) dx | <e,

(2) J, I may - §, fnimey| <c.

Since (¢, ¥) € I, the inequality (2) implies ( 1), and so we have only to show that
(2) holds.

With this in mind we first note that C, = {4| (&, 4) € B, } is a self-adjoint,

separating subalgebra under pointwise mu1t1phcat10n of Cy (G) the space of continu-
ous functions on G vanishing at infinity; it follows from the Stone-Weierstrass
theorem that C, is norm-dense in CO(G) Hence C, is also norm-dense in Lq(G)

(q # ).
Thus for each f € AP(G) (p > 1) and each & > 0 there exists an 4 € Cp such that

1/ .
(SA |¥() - a1 dY) "< e/ tll,
G
and hence

]S v a -, 9aw dy]
G G

n 1/p 1/q
<(§, lioPay) " (§, 1w -dmltay) <.
G G .
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Similarly, we can prove inequality (2) in the case p = 1, q = « by using the fact
that the functions in L«(G) can be uniformly approximated on compact sets by func-
tions in Cy .

3. BANACH ALGEBRA STRUCTURE OF AP(G)
THEOREM 3. For each p (1 <p < =), AP(G) is a Banach algebva under convo-
lution with the norm || ||P.

Proof. In the preceding section we showed that Ap(G) is a Banach space with
the norm | ||P.

Moreover, for each pair f, g in Ap(G), f* g € L)(G) since f, g € L;(G) and

PN PN -~ -
lexellp = lfely < 2l €], -

The right-hand side of the inequality is finite, since g € LP(G). Thus
fxge AP(G), in other words; Ay(G) is closed under convolution.

Finally, for each f, g € AP(G),

£ glP

l£«ell, + I£el, < Nl el + 120, 1€
< el el + Mgl
< el + M) el + 110 = 1217 lel®.

Therefore Ap(G) is a Banach algebra.

P

Remark. In the case p = 1, it is easy to see that A {(G) is also a Banach algebra
under pointwise multiplication.

TheG next theorem identifies the space of maximal ideals of A,(G) as the dual
group G,

THEOREM 4, Foreach p (1<p < ) the space of maximal ideals of AP(G)
can be identified with the dual group G.

Proof. Let f € Ap(G), f #0. Then, for each positive integer n,
lem e = et gl P = flen-tag])y o+ 2201 E]
e Fin A TR i R
< Nt el + ) < el fele.
Hence, for each n,
(el /™ < el D72 efey /e

Letting n tend to infinity, we see that

(3) lellg, < Iell, @=0),
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where || Hg is the spectral radius norm in the algebra A,(G). Clearly (3) holds
also in the case f= 0.

Hence, if F is any multiplicative linear functional on AP(G), then
IF@| < l£lg, < lell, < A(G);

that is, F defines an Lj-bounded multiplicative linear functional on Ap(G) consid-
ered as a subspace of Lj(G). Thus F may be extended to a multiplicative linear
functional on all of L;(G), and the extension is unique, since AP(G) is norm-dense
in L I(G)'

Therefore, since the maximal ideal space of L;(G) is G, there corresponds, to
each multiplicative linear functional F on AP(G), a unique continuous character
(-, y) on G such that

RO = | (% Didx (1 < AG),

and conversely. It is easy to verify that the usual topology on the dual group G co-
incides with the Gelfand topology on G considered as the space of multiplicative
linear functionals.

Thus the maximal ideal space of Ap(G) may be identified with G.

4., IDEAL THEORY IN AP(G)

In this section we shall show that there exists a one-to-one correspondence be-
tween the closed ideals in Lj;(G) and the closed ideals in AP(G). This is accom-
plished by the following theorem.

THEOREM 5. Fovr each p (1 < p < =) the following two statements hold:

i) If 1 is a closed ideal in L(G), then I=1; N AP(G) is a closed ideal in
A_(G).
P

ii) If 1 is a closed ideal in Ap(G) and 1y is the closure of 1 in L)(G), then I,
is a closed ideal in Lj(G) and 1=1y N AP(G).

Proof. The proof of i) is immediate and will be omitted. Similarly, in ii) it is
easy to verify that I, is a closed ideal in L;(G) and that IC I; N AP(G).

Let feI; N Ap(G). We must show that for each € > 0 we can find a function
h € I such that |h - £f||P <e. Since f e I; N A_(G), there exists a sequence
{fn} < I such that |[f, - f[|; — 0. Let {uy} € A(G) be an approximate identity in
L,(G) for which
leoll, <1, 0< el <1,

and ﬁa has compact support for each «. It is then clear that

”%*“a"f*ualh —0

as n — ©, uniformly in «@. In particular, for each 6 (0 < 6 < 1) there exists an ng
such that
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1

@) g, *vg -t < Mn *ug - Exuglly + It *ug - 2], < g0+ [txuq -1,

for all «.

Next choose a compact set K C G such that

6P 5P
S ]f (y)lpdy < == prr=se and S lt) P dy < —5— P

~ ~

This is possible, since f,,, f € A(G). Then, for all «,
S,\ |fn0(y)ua(y) - f(y)|P dy
G

(5) < SK |fn0(Y)ua(Y) - f(y)|P dy + S..K Ifno(y)ﬁa(y) - f(y)|P ay

< § Ny @ig - iPay+2° § (£ o17 + |E)F)ay

< SK |fno(y)ﬁa(y) - f(y)|P dy + 6 /2P,

However, since ||f*ugy - f ”1 — 0 over «a, it is clear from (4) that we can
choose an o such that both

(6) llfnoﬁa -f]E < 8P/2®
and
(7) "fno*ua -], < 6/2

hold for a>- ag.

Then, combining the inequalities (5) to (7), we see that

”an * Uy - f"p = "fno * Uy - f"l + "fno‘}a - j?"p
< % ) +%5 [m(K) + 1]1/p (a> ayp),

where m denotes the Haar measure on G.
Let 6 < 2¢/{1+ [m(K)+1]'/P}. Then "fno *uy - £|P <e. Since fn, * Yo € 1
(I is an ideal), this completes the proof.

Remavrk. From this theorem we can draw some immediate conclusions about the
ideal theory for AL(G) [1, Chapter 7}

a) The closed ideals of A (G) are precisely the closed, translation invariant
subspaces.
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b) Wiener’s theorem holds in AP(G); that is, if f € AP(G) and f(y) # 0 for all
y € G, then the space spanned by the translates of f is norm-dense in AP(G).

¢) In general, spectral synthesis fails in AP(G).

5. MULTIPLIERS OF AP(G)

A multiplier of Ay(G) is a bounded function ¢ defined on G such that ¢f is a
Fourier transform of some function in AP(G) wherever f is such a Fourier trans-
form. Multipliers of L;(G) have been defined similarly, and Helson and Edwards
proved that the multipliers of Lj(G) are precisely the Fourier-Stieltjes transforms
of M(G), the set of finite, complex-valued, regular Borel measures.on G [1, p. 73].
In this section we shall show that each Fourier-Stieltjes transform is a multiplier of
A,(G), and that for noncompact groups G each multiplier of Ap(G) is a Fourier-
Stieltjes transform.

THEOREM 6. For eachp (1 <p < =) every Fourier-Stieltjes transform of a
measure in M(G) is a multiplier of Ap(G); and if G is noncompact then every multi-
plier of Ap(G) is a Fourier-Stieltjes transform of some measure in M(G).

Proof. Let f € Ap(G) and p € M(G). Then f € L1(G). Hence if € L1(G)”,
where ~ denotes the set of Fourier !:\ra}nsforrr}\s. Since fl‘ is a bounded continuous .
function and f € LP(G), we see that uf € L(G). Hence pf belongs to Ap(G), and
is a multiplier.

Now let G be a noncompact group, and suppose ¢ is a multiplier of A ..P(G)' It is
easy to verify that Ay(G)” is a Banach space with the norm [|f|| = [[£[|? (f e Ap(G)7),
and that B(G), the space of Fourier-Stieltjes transforms of measure in M(G), is a
Banach space with the norm |[i|g = [|n] (& € B(G)), where ||p| is the total varia-
tion of the measure p. Define the linear transformation T: AP(G)“ — B(G) by
Tf = ¢f (€ ALG)"). If

_fn—>f in AG)” and Tf,— [0 in B(G),

then fn —f pointwise, and Tfn = qbfn - ﬂ pointwise. This shows that ﬁ, = qbf =Tf s

and therefore the transformation T is closed. By the closed-graph theorem we see
that T is a bounded linear transformation, and hence there exists some constant K
such that

loflly <x Il = x(lell, + 1)) @ e ax@).

Let VAbe any open subset of G with fompitct closure, and choose f in AP(G)
such that f(y) =1 (y € V) [1, p. 48]. If p = ¢f, then ¢ is continuous on V, and hence
¢ is continuous on G.

Given y;, 2, ***, ¥ in G and € > 0, let V be an open subset of G such that
y; € V(i=1,2 -, n) and m(V) < 1. Sucha V exists, since G is noncompact and
hence m{y;} =0 (i=1, 2, -=-, n). Then choose f € Ay(G) such that

i) f(Yi) =1 (i = 1, 2: % n)7
ii) ||£f]l; <1 +e¢, and
iii) f has compact support in V.

It follows immediately from the choice of V and f that [[f]l, <1 +e.
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We see that if ¢;, ¢, ***, ¢, are complex numbers and b= ¢f, then

n

22 c; ¢(y;)

i=1

I
VE

c; ¢y i)

1

e
1]

E cj_(', yl)

i=1

< wl

n
=2 CiH(Yi)
i=]

o0

< xlly + 1) |2 e, 5

[}

< 2K(1+¢)

.
<O

27 c;(-, Yi)l
i=1

But this last inequality together with the continuity of ¢ implies that ¢ is a Fourier-
Stieltjes transform [1, p. 32].

Remark. In general the converse of Theorem 6 for compact groups is not true.
Let G be the circle group {ei? |0 < 6 <27}, and let {an ::o_oo be a bounded se-
quence of complex numbers that is not the Fourier-Stieltjes transform of any meas-
ure in M(G). We claim that {an}+is a multiplier of Aj(G). If f € A;(G), then

~ o0 A A
E::)_oo |f(n)| converges, and SO 2 ___o !anfa(n)l also converges. But {anf(n)} is
the set of Fourier coefficients of Z}2° a, f(n)e!® 9, which belongs to A;(G).

In the following, we write f,(z) = f(x - z) for a function f defined on G, with

X, 2z € G,

THEOREM 1. If G is a noncompact group and T: Ap(G) — Ap(G) is a bounded
linear transformation satisfying T(f,) = (Tf), for all z € G, then theve exists some
uw € M(G) such that Tf = p * 1. )

Proof. First we shall show that (Tf) x g=T(f* g) for all f, g € AP(G). This
will be done by showing that every bounded linear functional on AP(G) has the same
value on both T(f * g) and (Tf) * g.

Let F be a bounded linear functional on AP(G). Then FoT is againa boundedﬁ
linear functional on AP(G), and there exist functions @, a € L (G) and B, b € Lq(G)
(1/p + 1/q = 1) such that

7D = | twamax+ | fnamdy
G G

and

FoT(f) = SG £(x) a(x) dx + S& fly)b(y)dy .

From the last relations it follows that
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RTrr @) = § (TExg)(atax+ | (107 (06
G

S (S (Tf)(X-Z)g(Z)dz)a(x)dx
G \Ya

+ § (- “”(XG (-2, y)g(z) dz) B(y) dy

§ e | § rermamant §, e moma | e

S g(z) FoT (f,)dz
G

§ e[ § smawanst §, @) ewmay|a

{ aro@ama+ | @+ mbmey
G G

FoT(f xg).

Hence Tf * g = T(f * g), and by symmetry, Tf * g = Tg * f. Thus (Tf)"g = (Tg)"f.
From this it follows that there exists a function ¢ on G such that (Tf)" = ¢f for all
f € Ap(G). Clearly, ¢ is a multiplier and has the form {i with g € M(G), by Theo-
rem 6. Thus (Tf)* = it f, and therefore, by the uniqueness of the Fourier-Stieltjes
transforms, Tf=p * f,

6. Ax(G)

With the results of the preceding sections it is simple to prove the following
theorem.

THEOREM 8. L;(G) N Ly(G) = A,(G).
Proof. We are considering L;(G) N L,(G) as a Banach space with the norm

Nelly o, = Nelly + M2l @ € (@ 0 L (G).

By the Plancherel theorem it is clear that we can consider L(G) N L{G) as a
closed subspace of A,(G), and it is easy to verify that L;(G) N L,(G) is an ideal in

However, if I; denotes the closure of 1L.1(G) N L(G) in L(G), then from Theo-
rem 5 and the relation I; = L;(G) we conclude that

L1(G) NL,(G) = I, N A,(G) = A,(G).
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Remarks. a) It follows immediately from the theorem that if £ € A(G) and g is
the inverse Plancherel transform of f, then f=g.

b) The plausible conjecture that Lj(G) N Lp(G) = A4(G) (1<p <2, 1/p+1/q=1)
is false.
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