CONCERNING THE ORDER STRUCTURE OF
KOTHE SEQUENCE SPACES, II

A. L. Peressini
1. INTRODUCTION

This paper investigates the order structure of the space L(A, p) of weakly con-
tinuous linear mappings of a sequence space A into another sequence space p. The
weak topologies referred to here are those formed with respect to the respective
o -duals of A and p, while the order structure of L(x, ) is that generated by the
positive mappings in L(X, ) when A and p are equipped with their natural order.
We shall use several important results concerning the algebraic structure of L(x, p)
that are found in the fundamental paper [6] of G. K&the and O. Toeplitz and in the
work of H. S. Allen (see [1] and Chapter 6 of [4]). We shall also use the results and
terminology of our earlier work [8].

2. PRELIMINARY MATERIAL

TBhroughout this paper we shall assume that A and p are real sequence spaces
containing the space ¢ of sequences with only a finite number of nonzero compo-
nents. The positive cones of sequences with nonnegative components in A and p will
be denoted systematically by K, and Ky, respectively; K';t and K;,, will denote the
corresponding dual cones in the @-duals A* and p* of A and p, respectively. We
shall always assume that A is a solid; that is, if |x| \g |y| and y € A, then x € A
(here |x| = (|x;|) denotes the lattice-theoretic absolute value of x in A). We refer
thereader to [5] and [8] for further details concerning the topological and order-
theoretic properties of sequence spaces.

A matrix transformation on A into p is an infinite matrix A = (aij) with the fol-
lowing properties:

(M,) For each x= (xj) € 2, the series Ej‘ﬁ 1 23jX;j converges absolutely for each i.

(M,) For each x = (x;) € A, the equation y; = =52;a;:x; defines an element
f x_] i j=l1ij4;
y =(y;) of p.

If A =(a;;) is a matrix transformation on A into u, then the mapping y = Ax defined
by (M,) is clearly a linear mapping of A into . On the other hand, if T is a linear
mapping of A into p and if there exists a matrix transformation A of A into p such
that Tx = Ax for all x € A, then T is represented by A. If T is represented by a
matrix transformation A, then A is unique, since A contains the “unit vectors?”

ek} = (6;.:i=1, 2, ---) (6;, denotes the Kronecker delta). The following result,
essentially due to G. Kothe, O. Toeplitz, and H. S. Allen, is stated here in a form
convenient for our purposes.

(2.1) PROPOSITION. The following conditions on a linear mapping T of A into
U arve equivalent:
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a) T is represented by a matrix tvansformation of X into L.
b) T is sequentially continuous for the weak topologies o (A, A*) and o(u, p*).
c) T is continuous for o(\, A*) and o(u, p*).

If T is continuous for o(x, A*) and o(u, u¥*), then the adjoint mapping T' is vepre-
sented by the transpose AT of the matrix transformation A vepresenting T.

Proof. a) implies ¢) by (6.2, II) of [4]. c¢) obviously implies b), and b) implies a)
by Satz 1 of Section 8 in [6]. The last assertion also follows from (6.2, II) of [4].

3. THE SPACES LP(A, u) AND L(}, p)

In accordance with accepted usage, a linear mapping T of A into p is positive
(respectively, order-bounded) if Tx > 0 whenever x> 0 (respectively, if T maps
every order-bounded set in ‘A into an order-bounded set in p). The vector space
Lb(h, 1) of all order-bounded linear mappings of A into p is ordered by the cone
94, of all positive linear mappings of A into u. It is easy to verify that if
R =Ny N L(A, p), then T € N if and only if T is represented by a matrix A whose
entries are all nonnegative. In our discussions of order properties of Lb(h, 1) and
L(x, ), the order structure shall be understood to be that generated by 9, and 9%,
respectively.

The following generalizes a known result concerning linear functionals (see ‘for
example [3, pp. 35-36]; the formulas on p. 36 also carry over to this more general
context).

(3.1) PROPOSITION. If u is a solid sequence space, then Lb(h, W) is an ovder-
complete vector laltice.

Proof. I T € LP(A, p) and x € K, then T[6, x| is majorized in p. Define

TH(x) = sup {Ty: y € [0, x]}; then Tt is clearly positively homogeneous on Kj ;
moreover, Tt is additive on K, , since X is a lattice. If we define

T+x = Thxt - hx

for each x € A, then Tt is a positive linear mapping of A into u, and we can easily
verify that Tt is the supremum of T and 0 in LP(), p). If M is a directed(<) sub-
set (that is, if for all Ty, T, in M, there isa T3 € M such that T3 > Ty, T3 > T3)
of S)tb that is majorized by T, € %, then the mapping T, of K, into p defined by

T)x = sup{Tx: T € M}

is additive since 9 is directed (<), and it is clearly positively homogeneous.
Therefore the extension of T; to A is a positive kinear map that is the supremum
of M. We conclude that Lb(h, W) is an order-complete vector lattice.

Even if A and p are perfect, it is not generally true that L(x, p) is a lattice.
For example, suppose that A = u=¢2 and that A = (aij) is defined by

1
-]

if i#j,
4; =
0 ifi=j.
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Then A satisfies Hilbert’s criterion for elements of L(¢2, 92), while |A| does not.

(3.2) PROPOSITION. If L(X, u) is a lattice, then 1. is a lattice and L(X, 1) co-
incides with the space of lineary mappings on M\ into | that ave continuous for
o(gt, 2¥) and olw, u*). Moreover, if pu is solid, then L(X, 1) is a solid sublattice of
Lo(a, p).

Proof. By (6.4, I) in [4], the column space of L(X, u) is p; hence, if L(x, p) is
a lattice, then p is a lattice. Suppose L(2, i) is a lattice; then, in particular,
LA, p)=9% - %, that is, N is a generating cone in L(x, p).

We assert that whenever % is generating, then L(), u) is precisely the class of
linear maps on X\ into p that are continuous for o(A, A*) and o(n, pu*). For if
T € L(x, p), then T =T; - T, where T; and T, are positive, weakly continuous
linear maps. It follows that the adjoints T] and T} are positive mappings that are
continuous for o(u*, p) and o(A*, A\). By Theorem (4.1) in [7] we conclude that T;
and T, are continuous for o(x, A*) and o(p, u*); hence T is continuous for these
topologies. On the other hand, if T is continuous for the normal topologies o(x, A¥*)
and o(y, p*), then T is continuous for oA, A*) and o(u, p*), since the normal
topologies are coarser than the respective Mackey topologies (see Section 30, 2(4) in
[5]). It now follows from (2.1) that L(\, p) is the space of linear mappings on X into
@ that are continuous for o(x, A*) and o(p, p*).

Suppose that p is solid, that A € Lb(x, p), and that |A| < |B| for some
B e L(x, p). If'x, — 6 in A for o(x, A*), then Ixal — 0 for o(xr, A*), since A is
a locally convex lattice for this topology. Since |[B| € L(A, p), we conclude that
|B| |x4| — 6 for o(u, p*); hence |A| |x,| — 6 for o(u, p*), since K, isa
normal cone for o(u, p*). Because |Axy| < |A| |xql, it follows that Axg — 6 for
o{u, u*), since p is a locally convex lattice for this topology. Therefore
A € L(x, u), that is, L(x, p) is a solid sublattice of LP(), p).

The method employed to prove the last part of Proposition (3.2) can easily be
modified to establish the following result: L(A, p) is a lattice if yu is solid and %
is generating,

The next result gives a number of sufficient conditions for L(\, ) to be a lat-
tice.

(3.3) PROPOSITION. Each of the following conditions implies that L(A, 1) is a
lattice:

a) A is perfect and | is either the space (c) of convergent sequences ov the
space (cqg) of null-sequences. '

b) X is perfect and | is the space (m) of bounded sequences.
c) u is pevfect and X =¢1.
d) A2 ¢ and p is perfect.

Proof. a) Suppose that A = (a;j) € L(a, (c)), and define ¢() = (a;;: j = 1, 2, ---).
Then ¢(1) € A* by (M;), and if x € A, then {<{x, ¢{1)>:i=1, 2, ---1"is an element
of (c) by (M,). Therefore {¢(})} is a Cauchy sequence for o(1*, 1), hence {¢(1}
is convergent since A is perfect. The lattice operations in A* are o(A*, A)-sequen-
tially continuous by Proposition 2 of [8], hence {| ¢(i)| } is o(A*, \)-convergent.
For a given x € 2, define y = (y;) by

Vi = _Ellaijlxj = <x, |¢(i)|>;
j=
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then y € (c), and since ‘qb(i)l € 2*, the series is absolutely convergent for each i.
It follows that |A| € L(x, (c)). A similar proof shows that L(X, (cg)) is a lattice.

b) Suppose that A € L(x, (m)), and define {¢{i)} as in a); then ¢(i) € 3* for
each i, and the sequence <x, ¢ i)>-: i=1, 2, } is in (m) for each x € A. There-
fore {(;b(i) } is o(x*, x)-bounded. It follows from Section 30, 5(6) in [5] that {|s(})]}
is 0(A*, X)-bounded, since X is perfect. Thus <{x, |¢( | > = Z21 |ay;| x; is abso-
lutely convergent for each i and each x € A; moreover, the sequence 'y = (y;) de-
fined by

5= Zlagla = Gn 160>
J=

is in (m) for each x € X, Therefore ]AI € L(», (m)).

c) Since both ¢! and p are perfect, we know that
Le!, )T = {AT: A e Le!, 1} = L(p*, (m))

see (6.4, I) in [4]). Therefore, if A € L(¢!, u), then AT € L(n*, (m)). By b),
A|T = |AT| € L(u*, (m)), hence |A| € L(e!, p), that is, L(e!, p) is a lattice.

d) Obviously, if p=w, then L()\, ) is a lattice. But since u is perfect, we see
that L(¢, p) = L(p*, w)T by (6.4, I) in [4], and hence L(¢, ) is a lattice.

Since A is solid, the cone K, in A is generating, that is, A = K, - K,. Hence the
class & = {[-x, x]: x € K, } is a fundamental system of order-bounded sets in X.
Each order interval in a sequence space is bounded for the weak topology formed
with respect to the a-dual of the space, since the dual cone is generating. It follows
easily from this that the &-topology on Lb(}\, @) or L(x, u) (that is, the topology of
uniform convergence on order-bounded sets) is locally convex whenever pu is
equipped with any locally convex topology € such that u()' = p*. In particular, if
¢ =o(u, p*) (respectively, T = o1, £*)), we shall refer to the corresponding &-
topology on LP(A, p) or L(x, ) as the 8 5-topology (respectively, the &,-topology).

(3.4) PROPOSITION. The cones %1, and R are closed and novmal in LP(Q\, 1)
and L(A, ), respectively, for the Sg-topology and the ©o-topology.

Proof. The fact that % and 9%, are closed cones follows as in (8.1) of [9]. If
x € K, then [-x, x] = [0, x] - [0, x], hence the class {[6, x] - [0, x]: x € K) } isa
fundamental system of order-bounded subsets of A. Therefore %p and N are nor-
mal for the &;-topology and the &q-topology since Kj; is normal for ofu, L*) and

o(p, p¥*).
(3.5) PROPOSITION. If u is solid, then the So-topology on LP(, u) (respec-

tively, on L(\, ) if L(\, p) is a lattice) is the coarsest topology T finer than the
topology of simple convergence for which the lattice operations arve T -continuous.

Proof. Let Ny = {T: T([-xq, x0]) < [-vg, vo]°} be an &,-neighborhood of 6,
where xy € K; and vy € K;,. Then Ng= {T: T(x0) € [-vo, vo|®} is a 6-neighbor-
hood for ¥ . If the lattice operations are <% -continuous, there exists a T -neigh-
borhood V of 6 such that |T| € N, whenever T € V. Then, if x € [-xq, X,

T € V, and v € [-v, Vo], we see that
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{Tx, v) = {Ttxt, vD - {Ttx", v> - T %, vD + {T %", v
< LTt vy D+ T x7, vy D+ {75t v > + {T7x7, vy >
= LTl v >+ <17 x], vy > = Tl =], vy > < <ITlxy, vo> < 1.

Therefore T € N, that is, ¥ is finer than the &  -topology.

To complete the proof, it is enough to prove the continuity of the lattice opera-
tions at 0 for the G,-topology, since 9, and 9 are normal for this topology by
Proposition (3.4). Given a 6-neighborhood N (defined as in the first part of the
proof), x € [-x,, X¢l, and T € N, we note that

|T|x < |T|xq = sup {Tz: z € [-x,, x4} .

Now Tz € [-v,, vo]0 for each z € [-xg, %], since T € N; hence, since o(u, p¥)
is locally order-complete by Proposition (3.2) in [7], we conclude that

IT|x € [-vq, vol°,
that is, ITI € Ny. Therefore the lattice operations are continuous at 6 for the
&,-topology.

(3.6) PROPOSITION. If A and p* have ovder units, the & ,-topology is novm-
able. If the &, -topology is normable, then N has an ovder unit.

Proof. If xg and vg are order units in A and p¥ respectively, then the class
{n [xgy, xgl: n=1, 2, ---} is a fundamental system of order-bounded sets in A,

the family {%[-vo , volP:n=1, 2, } is a neighborhood basis in p for o(w, p*),

and hence the positive multiples of the set
N() = {Ti T(['xo, Xo]) - ['Vo, Vo]o}

form a neighborhood basis of 6 for the &_,-topology. Therefore the & ,-topology is
normable.

Suppose that the &, -topology is normable and that U is the unit ball for this
topology. Then for some x,; € K, and v, € K,,, the neighborhood N, defined in the
first part of the proof is contained in U. Therefore, if x € K, , there exists a

1 0. . .
2o > 0 such that 'XBT([—XO, xgl) € [-vq, Vol implies that Tx € [-vy, v(]°, since

{x} is order-bounded. If x ¢ L s 1y , there exists a o(A, A*)-continuous
R 0 R 0

linear functional fo on A such that

fo(x) > 1 > sup {fo(y): y € [—%O—xo, —;‘?xo] } .

Choose w;, € [-v,, v |0 so that |[{wy, v; >| =1 for some v, € [-vy, vg]. The
linear mapping T, of A into p defined by

Ty z = £,(z) wy (z € )

is obviously continuous for o(A, A*) and o(u, p*). Therefore
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[KToy, vD| = [to)] [<wo, vD| <1

for all y € [—%—-xo, k—lxo] and for all v € [-v(, vg]; hence, by virtue of the choice
0 0

of Ay, we conclude that Tx € [-vo, vo]o. However, by the definition of Tg,
IKTox, vy D] = |1 [Kwy, vi D] > 1,

and hence T, x 4 [—vo, vo]o. This contradiction proves that x € ['}%XO’ }%xo],
that is, x; is an order unit of A. 0 0

It is not generally true that the supremum of a directed (<) subset of an ordered,
locally convex space is in the closure of the subset. (For example, the set

k
u(k) = Z} e(n) k= 1, 2, cee

n=1

has the supremum e = (1, 1, 1, ---) in the space (m) of bounded real sequences, yet
the sphere of radius 1/2 centered at e does not contain u k} for any k.) However,
we can prove the following result.

(3.7) LEMMA. If M is a directed(<) (respectively, directed (>)) subset of a
solid sequence space |. that has a supremum a (respectively, infimum ), then the
filter (M) of sections of M converges to a for o(u, u*).

Proof. Since p is a solid sequence space, | is an order-complete sublattice of
L** hence a is also the supremum (respectively, infimum) of 9 in p**. Without
loss in generality, we can assume that a = § and that M is directed (>).

In view of the fact that o(u**, p*) induces o(u, p*) on p, it would suffice to
show that the filter base F(M) converges to 6 for o(u** p*). Since p** is per-
fect, it is complete for o(u**, u*) by Section 30, 5(7) in [5]. Therefore, if we can
show that F(Mm) is a Cauchy filter for o(r, u*), it would follow from Proposition 6
on p. 26 of [3] that F(M) converges to H. Corresponding to an o(u**, p*)-neigh-
borhood [-ug, ug]® (ug € Kj;) of 6 and a section S in F( M), define

@, = inf{ {y, u0->: y € S}.

Choose y, € S so that {y, u0> -ag <1/2 forall y € M with y<yq. If y; <yp,
v, <¥y,and v € [-u,, ug], then

1<v, y1 - v22| < K9, yo -y D]+ [<v, v - v
< g, ¥o - ¥1 2+ <K ug, ¥o - V2D
< <ug, yo> -ap +<ug, yo0 -@y < 1.
Therefore, the section S, = {y € M: y <y } satisfies the relation
So - So € [-ug, ugl®,

that is, §(M) is a Cauchy filter.
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Recall that a solid subspace B of an order-complete vector lattice E is a band
in E if B contains the supremum of every subset of B that is majorized in E (see
[3], Chapter 2, Section 1, No. 5). Also, a vector lattice E is locally ovdey-complete
for a locally convex topology & on E if there exists a ¥ -neighborhood basis of 6
consisting of convex, solid, order-complete sets.

(3.8) PROPOSITION. If it is a solid sequence space and L. is a sublattice of
Lb(h, 1) that is ovder-complete, then L is locally ovdev-complete for the induced
& ,-topology. B is a band in L if and only if B is an S ,- closed solid subspace of
L.

Proof. Suppose M is a majorized directed (<) subset of £, N L, and define

T, K =sup M. Let

0]

N, = {T € L: T[-xy, x,] < [-ug, 1,1t (x¢ € Ky, ug € K})
be any & ,-neighborhood of 6 in L. Since Tgyxg = sup {TxO: T € EJJE}, it follows
from Lemma (3.7) that there exists a T; € 2 such that (T, - T} )(xq) € [-ug, ul®.
Thus, if x € [-xy, Xx9], T> T;, and T € M, then

I(TO = T)(X)I S (T() - T)(Xo) S_ (TO - Tl)(XO);
hence, since [-ug, uo]o is solid, we conclude that

(T, - T) [-—xo, XO] - [—uO, u.]9,

0

that is, T € Ty+ N for all T € M such that T > T;. Therefore the filter F(M)
of sections of 9 converges to sup M for the induced G, -topology on L. It follows
that there exists a neighborhood basis of 6 in L for the induced S,-topology con-
sisting of solid, order-complete sets; that is, L. is locally order-complete for this
topology.

Suppose B is an &-closed solid sublattice of L, and let 2 be a directed <
subset of L that is majorized in L; then sup M € B = B, by the first part of the
proof; that is, B is a band in L.

Conversely, suppose B is a band in L; then B is certainly a solid subspace of
L, and L is the order-direct sum of B and the BL of elements disjoint from B
see [3, p. 25, Theorem 1]). If P denotes the projection of L. onto B, then
ﬁPz‘ = P(izl) < iz[; hence P is continuous for the induced S,-topology by Proposi-
tions (3.4) and (3.5). Since B = (I - P)-1(9), where I denotes the identity map on L,
it follows that B is closed for the induced G ,-topology.
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