CONCERNING THE ORDER STRUCTURE OF KÖTHE SEQUENCE SPACES, II

A. L. Peressini

1. INTRODUCTION

This paper investigates the order structure of the space $L(\lambda, \mu)$ of weakly continuous linear mappings of a sequence space λ into another sequence space μ . The weak topologies referred to here are those formed with respect to the respective α -duals of λ and μ , while the order structure of $L(\lambda, \mu)$ is that generated by the positive mappings in $L(\lambda, \mu)$ when λ and μ are equipped with their natural order. We shall use several important results concerning the algebraic structure of $L(\lambda, \mu)$ that are found in the fundamental paper [6] of G. Köthe and O. Toeplitz and in the work of H. S. Allen (see [1] and Chapter 6 of [4]). We shall also use the results and terminology of our earlier work [8].

2. PRELIMINARY MATERIAL

Throughout this paper we shall assume that λ and μ are real sequence spaces containing the space ϕ of sequences with only a finite number of nonzero components. The positive cones of sequences with nonnegative components in λ and μ will be denoted systematically by K_{λ} and K_{μ} , respectively; K_{λ}^{I} and K_{μ}^{I} will denote the corresponding dual cones in the α -duals λ^{*} and μ^{*} of λ and μ , respectively. We shall always assume that λ is a solid; that is, if $|x| \leq |y|$ and $y \in \lambda$, then $x \in \lambda$ (here $|x| = (|x_{i}|)$ denotes the lattice-theoretic absolute value of x in λ). We refer the reader to [5] and [8] for further details concerning the topological and order-theoretic properties of sequence spaces.

A matrix transformation on λ into μ is an infinite matrix $A = (a_{ij})$ with the following properties:

- (M₁) For each $x=(x_j)\in \lambda$, the series $\sum_{j=1}^{\infty}a_{ij}x_j$ converges absolutely for each i.
- (M₂) For each $x = (x_j) \in \lambda$, the equation $y_i = \sum_{j=1}^{\infty} a_{ij} x_j$ defines an element $y = (y_i)$ of μ .

If $A=(a_{ij})$ is a matrix transformation on λ into μ , then the mapping y=Ax defined by (M_2) is clearly a linear mapping of λ into μ . On the other hand, if T is a linear mapping of λ into μ and if there exists a matrix transformation A of λ into μ such that Tx=Ax for all $x\in \lambda$, then T is represented by A. If T is represented by a matrix transformation A, then A is unique, since λ contains the "unit vectors" $e^{(k)}=(\delta_{ik}\colon i=1,\ 2,\ \cdots)$ (δ_{ik} denotes the Kronecker delta). The following result, essentially due to G. Köthe, O. Toeplitz, and H. S. Allen, is stated here in a form convenient for our purposes.

(2.1) PROPOSITION. The following conditions on a linear mapping T of λ into μ are equivalent:

Received February 10, 1964.

This work was supported in part by a National Science Foundation contract.

- a) T is represented by a matrix transformation of λ into μ .
- b) T is sequentially continuous for the weak topologies $\sigma(\lambda, \lambda^*)$ and $\sigma(\mu, \mu^*)$.
- c) T is continuous for $\sigma(\lambda, \lambda^*)$ and $\sigma(\mu, \mu^*)$.

If T is continuous for $\sigma(\lambda, \lambda^*)$ and $\sigma(\mu, \mu^*)$, then the adjoint mapping T' is represented by the transpose A^T of the matrix transformation A representing T.

Proof. a) implies c) by $(6.2, \Pi)$ of [4]. c) obviously implies b), and b) implies a) by Satz 1 of Section 8 in [6]. The last assertion also follows from $(6.2, \Pi)$ of [4].

3. THE SPACES $L^b(\lambda, \mu)$ AND $L(\lambda, \mu)$

In accordance with accepted usage, a linear mapping T of λ into μ is *positive* (respectively, order-bounded) if $Tx \geq \theta$ whenever $x \geq \theta$ (respectively, if T maps every order-bounded set in λ into an order-bounded set in μ). The vector space $L^b(\lambda, \mu)$ of all order-bounded linear mappings of λ into μ is ordered by the cone \Re_b of all positive linear mappings of λ into μ . It is easy to verify that if $\Re=\Re_b\cap L(\lambda,\mu)$, then $T\in\Re$ if and only if T is represented by a matrix A whose entries are all nonnegative. In our discussions of order properties of $L^b(\lambda,\mu)$ and $L(\lambda,\mu)$, the order structure shall be understood to be that generated by \Re_b and \Re , respectively.

The following generalizes a known result concerning linear functionals (see for example [3, pp. 35-36]; the formulas on p. 36 also carry over to this more general context).

(3.1) PROPOSITION. If μ is a solid sequence space, then $L^b(\lambda, \mu)$ is an order-complete vector lattice.

Proof. If $T \in L^b(\lambda, \mu)$ and $x \in K_\lambda$, then $T[\theta, x]$ is majorized in μ . Define $T^+(x) = \sup \{Ty: y \in [\theta, x]\}$; then T^+ is clearly positively homogeneous on K_λ ; moreover, T^+ is additive on K_λ , since λ is a lattice. If we define

$$T^{+}x = T^{+}x^{+} - T^{+}x^{-}$$

for each x ϵ λ , then T^+ is a positive linear mapping of λ into μ , and we can easily verify that T^+ is the supremum of T and 0 in $L^b(\lambda,\mu)$. If $\mathfrak M$ is a directed (\leq) subset (that is, if for all T_1 , T_2 in $\mathfrak M$, there is a T_3 ϵ $\mathfrak M$ such that $T_3 \geq T_1$, $T_3 \geq T_2$) of $\mathfrak M_b$ that is majorized by T_0 ϵ $\mathfrak M_b$, then the mapping T_1 of K_λ into μ defined by

$$T_1 x = \sup \{Tx: T \in \mathfrak{M}\}$$

is additive since $\mathfrak M$ is directed (\leq) , and it is clearly positively homogeneous. Therefore the extension of T_1 to λ is a positive linear map that is the supremum of $\mathfrak M$. We conclude that $L^b(\lambda,\,\mu)$ is an order-complete vector lattice.

Even if λ and μ are perfect, it is not generally true that $L(\lambda, \mu)$ is a lattice. For example, suppose that $\lambda = \mu = \ell^2$ and that $A = (a_{ij})$ is defined by

$$a_{ij} = \begin{cases} \frac{1}{i-j} & \text{if } i \neq j, \\ 0 & \text{if } i = j. \end{cases}$$

Then A satisfies Hilbert's criterion for elements of $L(\ell^2, \ell^2)$, while |A| does not.

(3.2) PROPOSITION. If $L(\lambda, \mu)$ is a lattice, then μ is a lattice and $L(\lambda, \mu)$ coincides with the space of linear mappings on λ into μ that are continuous for $o(\lambda, \lambda^*)$ and $o(\mu, \mu^*)$. Moreover, if μ is solid, then $L(\lambda, \mu)$ is a solid sublattice of $L^b(\lambda, \mu)$.

Proof. By (6.4, I) in [4], the column space of $L(\lambda, \mu)$ is μ ; hence, if $L(\lambda, \mu)$ is a lattice, then μ is a lattice. Suppose $L(\lambda, \mu)$ is a lattice; then, in particular, $L(\lambda, \mu) = \Re - \Re$, that is, \Re is a generating cone in $L(\lambda, \mu)$.

We assert that whenever $\mathfrak R$ is generating, then $L(\lambda,\mu)$ is precisely the class of linear maps on λ into μ that are continuous for $o(\lambda,\lambda^*)$ and $o(\mu,\mu^*)$. For if $T\in L(\lambda,\mu)$, then $T=T_1-T_2$, where T_1 and T_2 are positive, weakly continuous linear maps. It follows that the adjoints T_1' and T_2' are positive mappings that are continuous for $\sigma(\mu^*,\mu)$ and $\sigma(\lambda^*,\lambda)$. By Theorem (4.1) in [7] we conclude that T_1 and T_2 are continuous for $o(\lambda,\lambda^*)$ and $o(\mu,\mu^*)$; hence T is continuous for these topologies. On the other hand, if T is continuous for the normal topologies $o(\lambda,\lambda^*)$ and $o(\mu,\mu^*)$, then T is continuous for $\sigma(\lambda,\lambda^*)$ and $\sigma(\mu,\mu^*)$, since the normal topologies are coarser than the respective Mackey topologies (see Section 30, 2(4) in [5]). It now follows from (2.1) that $L(\lambda,\mu)$ is the space of linear mappings on λ into μ that are continuous for $o(\lambda,\lambda^*)$ and $o(\mu,\mu^*)$.

Suppose that μ is solid, that $A \in L^b(\lambda, \mu)$, and that $|A| \leq |B|$ for some $B \in L(\lambda, \mu)$. If $x_{\alpha} \to \theta$ in λ for $o(\lambda, \lambda^*)$, then $|x_{\alpha}| \to \theta$ for $o(\lambda, \lambda^*)$, since λ is a locally convex lattice for this topology. Since $|B| \in L(\lambda, \mu)$, we conclude that $|B| |x_{\alpha}| \to \theta$ for $o(\mu, \mu^*)$; hence $|A| |x_{\alpha}| \to \theta$ for $o(\mu, \mu^*)$, since K_{μ} is a normal cone for $o(\mu, \mu^*)$. Because $|Ax_{\alpha}| \leq |A| |x_{\alpha}|$, it follows that $Ax_{\alpha} \to \theta$ for $o(\mu, \mu^*)$, since μ is a locally convex lattice for this topology. Therefore $A \in L(\lambda, \mu)$, that is, $L(\lambda, \mu)$ is a solid sublattice of $L^b(\lambda, \mu)$.

The method employed to prove the last part of Proposition (3.2) can easily be modified to establish the following result: $L(\lambda, \mu)$ is a lattice if μ is solid and \Re is generating.

The next result gives a number of sufficient conditions for $L(\lambda, \mu)$ to be a lattice.

- (3.3) PROPOSITION. Each of the following conditions implies that $L(\lambda, \mu)$ is a lattice:
- a) λ is perfect and μ is either the space (c) of convergent sequences or the space (c₀) of null-sequences.
 - b) λ is perfect and μ is the space (m) of bounded sequences.
 - c) μ is perfect and $\lambda = \ell^1$.
 - d) $\lambda = \phi$ and μ is perfect.

Proof. a) Suppose that $A=(a_{ij})\in L(\lambda,(c))$, and define $\phi^{(i)}=(a_{ij};\ j=1,\ 2,\ \cdots)$. Then $\phi^{(i)}\in\lambda^*$ by (M_1) , and if $x\in\lambda$, then $\{\langle x,\phi^{(i)}\rangle :\ i=1,\ 2,\ \cdots\}$ is an element of (c) by (M_2) . Therefore $\{\phi^{(i)}\}$ is a Cauchy sequence for $\sigma(\lambda^*,\lambda)$, hence $\{\phi^{(i)}\}$ is convergent since λ is perfect. The lattice operations in λ^* are $\sigma(\lambda^*,\lambda)$ -sequentially continuous by Proposition 2 of [8], hence $\{|\phi^{(i)}|\}$ is $\sigma(\lambda^*,\lambda)$ -convergent. For a given $x\in\lambda$, define $y=(y_i)$ by

$$y_i = \sum_{j=1}^{\infty} |a_{ij}| x_j = \langle x, |\phi^{(i)}| \rangle;$$

then $y \in (c)$, and since $|\phi^{(i)}| \in \lambda^*$, the series is absolutely convergent for each i. It follows that $|A| \in L(\lambda, (c))$. A similar proof shows that $L(\lambda, (c_0))$ is a lattice.

b) Suppose that $A \in L(\lambda, (m))$, and define $\{\phi^{(i)}\}$ as in a); then $\phi^{(i)} \in \lambda^*$ for each i, and the sequence $\{\langle x, \phi^{(i)} \rangle : i = 1, 2, \cdots \}$ is in (m) for each $x \in \lambda$. Therefore $\{\phi^{(i)}\}$ is $\sigma(\lambda^*, \lambda)$ -bounded. It follows from Section 30, 5(6) in [5] that $\{|\phi^{(i)}|\}$ is $\sigma(\lambda^*, \lambda)$ -bounded, since λ is perfect. Thus $\langle x, |\phi^{(i)}| \rangle = \sum_{j=1}^{\infty} |a_{ij}| x_j$ is absolutely convergent for each i and each $x \in \lambda$; moreover, the sequence $y = (y_i)$ defined by

$$y_i = \sum_{j=1}^{\infty} |a_{ij}| x_j = \langle x, |\phi^{(i)}| \rangle$$

is in (m) for each $x \in \lambda$. Therefore $|A| \in L(\lambda, (m))$.

c) Since both ℓ^1 and μ are perfect, we know that

$$L(\ell^1, \mu)^T = \{A^T: A \in L(\ell^1, \mu)\} = L(\mu^*, (m))$$

(see (6.4, III) in [4]). Therefore, if $A \in L(\ell^1, \mu)$, then $A^T \in L(\mu^*, (m))$. By b), $|A|^T = |A^T| \in L(\mu^*, (m))$, hence $|A| \in L(\ell^1, \mu)$, that is, $L(\ell^1, \mu)$ is a lattice.

d) Obviously, if $\mu = \omega$, then $L(\lambda, \mu)$ is a lattice. But since μ is perfect, we see that $L(\phi, \mu) = L(\mu^*, \omega)^T$ by (6.4, II) in [4], and hence $L(\phi, \mu)$ is a lattice.

Since λ is solid, the cone K_{λ} in λ is generating, that is, $\lambda = K_{\lambda} - K_{\lambda}$. Hence the class $\mathfrak{S} = \{[-x, \, x]: \, x \in K_{\lambda}\}$ is a fundamental system of order-bounded sets in λ . Each order interval in a sequence space is bounded for the weak topology formed with respect to the α -dual of the space, since the dual cone is generating. It follows easily from this that the \mathfrak{S} -topology on $L^b(\lambda, \, \mu)$ or $L(\lambda, \, \mu)$ (that is, the topology of uniform convergence on order-bounded sets) is locally convex whenever μ is equipped with any locally convex topology \mathfrak{T} such that $\mu(\mathfrak{T})' = \mu^*$. In particular, if $\mathfrak{T} = \sigma(\mu, \, \mu^*)$ (respectively, $\mathfrak{T} = o(\mu, \, \mu^*)$), we shall refer to the corresponding \mathfrak{S} -topology on $L^b(\lambda, \, \mu)$ or $L(\lambda, \, \mu)$ as the \mathfrak{S}_{σ} -topology (respectively, the \mathfrak{S}_{σ} -topology).

(3.4) PROPOSITION. The cones \mathfrak{R}_b and \mathfrak{R} are closed and normal in $L^b(\lambda, \mu)$ and $L(\lambda, \mu)$, respectively, for the \mathfrak{S}_{σ} -topology and the \mathfrak{S}_{σ} -topology.

Proof. The fact that \Re and \Re_b are closed cones follows as in (8.1) of [9]. If $x \in K_{\lambda}$, then $[-x, x] = [\theta, x] - [\theta, x]$, hence the class $\{[\theta, x] - [\theta, x]: x \in K_{\lambda}\}$ is a fundamental system of order-bounded subsets of λ . Therefore \Re_b and \Re are normal for the \Im_σ -topology and the \Im_σ -topology since K_{μ} is normal for $o(\mu, \mu^*)$ and $\sigma(\mu, \mu^*)$.

(3.5) PROPOSITION. If μ is solid, then the \mathfrak{S}_0 -topology on $L^b(\lambda, \mu)$ (respectively, on $L(\lambda, \mu)$ if $L(\lambda, \mu)$ is a lattice) is the coarsest topology $\mathfrak T$ finer than the topology of simple convergence for which the lattice operations are $\mathfrak T$ -continuous.

Proof. Let $N_0 = \{T: T([-x_0, x_0]) \subset [-v_0, v_0]^0\}$ be an \mathfrak{S}_o -neighborhood of θ , where $x_0 \in K_\lambda$ and $v_0 \in K_\mu$. Then $N_s = \{T: T(x_0) \in [-v_0, v_0]^0\}$ is a θ -neighborhood for \mathfrak{T} . If the lattice operations are \mathfrak{T} -continuous, there exists a \mathfrak{T} -neighborhood V of θ such that $|T| \in N_s$ whenever $T \in V$. Then, if $x \in [-x_0, x_0]$, $T \in V$, and $v \in [-v_0, v_0]$, we see that

$$\begin{split} \langle {\rm Tx},\,{\rm v}\rangle &= \langle {\rm T}^+{\rm x}^+,\,{\rm v}\rangle - \langle {\rm T}^+{\rm x}^-,\,{\rm v}\rangle - \langle {\rm T}^-{\rm x}^+,\,{\rm v}\rangle + \langle {\rm T}^-{\rm x}^-,\,{\rm v}\rangle \\ &\leq \langle {\rm T}^+{\rm x}^+,\,{\rm v}_0\rangle + \langle {\rm T}^+{\rm x}^-,\,{\rm v}_0\rangle + \langle {\rm T}^-{\rm x}^+,\,{\rm v}_0\rangle + \langle {\rm T}^-{\rm x}^-,\,{\rm v}_0\rangle \\ &= \langle {\rm T}^+|{\rm x}|,\,{\rm v}_0\rangle + \langle {\rm T}^-|{\rm x}|,\,{\rm v}_0\rangle = \langle |{\rm T}|\,|{\rm x}|,\,{\rm v}_0\rangle \leq \langle |{\rm T}|{\rm x}_0,\,{\rm v}_0\rangle \leq 1\,. \end{split}$$

Therefore $T \in N_0$, that is, \mathfrak{T} is finer than the \mathfrak{S}_0 -topology.

To complete the proof, it is enough to prove the continuity of the lattice operations at θ for the \mathfrak{S}_o -topology, since \mathfrak{R}_b and \mathfrak{R} are normal for this topology by Proposition (3.4). Given a θ -neighborhood N_0 (defined as in the first part of the proof), $x \in [-x_0, x_0]$, and $T \in N_0$, we note that

$$|T|x \le |T|x_0 = \sup \{Tz: z \in [-x_0, x_0]\}.$$

Now Tz \in $[-v_0, v_0]^0$ for each z \in $[-x_0, x_0]$, since T \in N₀; hence, since o(μ , μ *) is locally order-complete by Proposition (3.2) in [7], we conclude that

$$|\mathbf{T}|\mathbf{x} \in [-\mathbf{v}_0, \mathbf{v}_0]^0,$$

that is, $|T| \in N_0$. Therefore the lattice operations are continuous at θ for the \mathfrak{S}_0 -topology.

(3.6) PROPOSITION. If λ and μ^* have order units, the \mathfrak{S}_{o} -topology is normable. If the \mathfrak{S}_{o} -topology is normable, then λ has an order unit.

Proof. If x_0 and v_0 are order units in λ and μ^* , respectively, then the class $\{n \ [-x_0, x_0]: n = 1, 2, \cdots\}$ is a fundamental system of order-bounded sets in λ , the family $\left\{\frac{1}{n}[-v_0, v_0]^0: n = 1, 2, \cdots\right\}$ is a neighborhood basis in μ for $o(\mu, \mu^*)$, and hence the positive multiples of the set

$$N_0 = \{T: T([-x_0, x_0]) \subset [-v_0, v_0]^0\}$$

form a neighborhood basis of $\,\theta\,$ for the $\,\varpi_{\,{\rm o}}$ -topology. Therefore the $\,\varpi_{\,{\rm o}}$ -topology is normable.

Suppose that the \mathfrak{S}_o -topology is normable and that U is the unit ball for this topology. Then for some $x_0 \in K_\lambda$ and $v_0 \in K_\mu$, the neighborhood N_0 defined in the first part of the proof is contained in U. Therefore, if $x \in K_\lambda$, there exists a $\lambda_0 > 0$ such that $\frac{1}{\lambda_0} T([-x_0, x_0]) \subset [-v_0, v_0]^0$ implies that $Tx \in [-v_0, v_0]^0$, since $\{x\}$ is order-bounded. If $x \notin \left[-\frac{1}{\lambda_0}x_0, \frac{1}{\lambda_0}x_0\right]$, there exists a $\sigma(\lambda, \lambda^*)$ -continuous linear functional f_0 on λ such that

$$f_0(x) > 1 > \sup \left\{ f_0(y) : y \in \left[-\frac{1}{\lambda_0} x_0, \frac{1}{\lambda_0} x_0 \right] \right\}.$$

Choose $w_0 \in [-v_0, v_0]^0$ so that $|\langle w_0, v_1 \rangle| = 1$ for some $v_1 \in [-v_0, v_0]$. The linear mapping T_0 of λ into μ defined by

$$T_0 z = f_0(z) w_0 \qquad (z \in \lambda)$$

is obviously continuous for $\sigma(\lambda, \lambda^*)$ and $\sigma(\mu, \mu^*)$. Therefore

$$\left|\left\langle T_{0}\;y,\;v\right\rangle \right|\;=\;\left|f_{0}(y)\right|\left|\left\langle w_{0}\;,\;v\right\rangle \right|\;\leq1$$

for all $y \in \left[-\frac{1}{\lambda_0}x_0, \frac{1}{\lambda_0}x_0\right]$ and for all $v \in [-v_0, v_0]$; hence, by virtue of the choice of λ_0 , we conclude that $Tx \in [-v_0, v_0]^0$. However, by the definition of T_0 ,

$$|\langle T_0 | x, v_1 \rangle| = |f_0(x)| |\langle w_0, v_1 \rangle| > 1,$$

and hence $T_0 \times \notin [-v_0, v_0]^0$. This contradiction proves that $x \in \left[-\frac{1}{\lambda_0}x_0, \frac{1}{\lambda_0}x_0\right]$, that is, x_0 is an order unit of λ .

It is not generally true that the supremum of a directed (\leq) subset of an ordered, locally convex space is in the closure of the subset. (For example, the set

$$\left\{ u^{(k)} = \sum_{n=1}^{k} e^{(n)} : k = 1, 2, \dots \right\}$$

has the supremum $e = (1, 1, 1, \cdots)$ in the space (m) of bounded real sequences, yet the sphere of radius 1/2 centered at e does not contain $u^{(k)}$ for any k.) However, we can prove the following result.

(3.7) LEMMA. If \mathfrak{M} is a directed (\leq) (respectively, directed (\geq)) subset of a solid sequence space μ that has a supremum a (respectively, infimum a), then the filter $\mathfrak{F}(\mathfrak{M})$ of sections of \mathfrak{M} converges to a for $o(\mu, \mu^*)$.

Proof. Since μ is a solid sequence space, μ is an order-complete sublattice of μ^{**} , hence a is also the supremum (respectively, infimum) of $\mathfrak M$ in μ^{**} . Without loss in generality, we can assume that $a = \theta$ and that $\mathfrak M$ is directed (\geq) .

In view of the fact that $o(\mu^{**}, \mu^{*})$ induces $o(\mu, \mu^{*})$ on μ , it would suffice to show that the filter base $\mathfrak{F}(\mathfrak{M})$ converges to θ for $o(\mu^{**}, \mu^{*})$. Since μ^{**} is perfect, it is complete for $o(\mu^{**}, \mu^{*})$ by Section 30, 5(7) in [5]. Therefore, if we can show that $\mathfrak{F}(\mathfrak{M})$ is a Cauchy filter for $o(\mu, \mu^{*})$, it would follow from Proposition 6 on p. 26 of [3] that $\mathfrak{F}(\mathfrak{M})$ converges to θ . Corresponding to an $o(\mu^{**}, \mu^{*})$ -neighborhood $[-u_0, u_0]^0$ ($u_0 \in K_{\mu}^{\mathsf{L}}$) of θ and a section S in $\mathfrak{F}(\mathfrak{M})$, define

$$\alpha_0 = \inf\{\langle y, u_0 \rangle : y \in S\}.$$

Choose y₀ ϵ S so that \langle y, u₀ \rangle - $\alpha_0 \leq 1/2$ for all y ϵ M with y \leq y₀. If y₁ \leq y₀, y₂ \leq y₀, and v ϵ [-u₀, u₀], then

$$\begin{split} |\langle \mathbf{v}, \, \mathbf{y}_1 - \mathbf{y}_2 \rangle| &\leq |\langle \mathbf{v}, \, \mathbf{y}_0 - \mathbf{y}_1 \rangle| + |\langle \mathbf{v}, \, \mathbf{y}_0 - \mathbf{y}_2 \rangle| \\ &\leq \langle \mathbf{u}_0, \, \mathbf{y}_0 - \mathbf{y}_1 \rangle + \langle \mathbf{u}_0, \, \mathbf{y}_0 - \mathbf{y}_2 \rangle \\ &\leq \langle \mathbf{u}_0, \, \mathbf{y}_0 \rangle - \alpha_0 + \langle \mathbf{u}_0, \, \mathbf{y}_0 \rangle - \alpha_0 \leq 1. \end{split}$$

Therefore, the section $S_0 = \{ y \in \mathfrak{M} \colon y \leq y_0 \}$ satisfies the relation

$$S_0 - S_0 \subset [-u_0, u_0]^0$$

that is, $\mathfrak{F}(\mathfrak{M})$ is a Cauchy filter.

Recall that a solid subspace B of an order-complete vector lattice E is a band in E if B contains the supremum of every subset of B that is majorized in E (see [3], Chapter 2, Section 1, No. 5). Also, a vector lattice E is locally order-complete for a locally convex topology $\mathfrak T$ on E if there exists a $\mathfrak T$ -neighborhood basis of θ consisting of convex, solid, order-complete sets.

(3.8) PROPOSITION. If μ is a solid sequence space and L is a sublattice of $L^b(\lambda,\mu)$ that is order-complete, then L is locally order-complete for the induced \mathfrak{S}_o -topology. B is a band in L if and only if B is an \mathfrak{S}_o -closed solid subspace of L.

Proof. Suppose $\mathfrak M$ is a majorized directed (\leq) subset of $\mathfrak R_b \cap L$, and define $T_0 = \sup \mathfrak M$. Let

$$N_0 \ = \ \big\{ \, T \ \in \ L; \ T \big[\, -x_0 \, , \, x_0 \big] \subset \big[\, -u_0 \, , \, u_0 \big]^0 \, \big\} \qquad (x_0 \ \in \ K_\lambda \, , \, u_0 \ \in \ K'_\mu)$$

be any \mathfrak{S}_0 -neighborhood of θ in L. Since $T_0 x_0 = \sup \{Tx_0: T \in \mathfrak{M}\}$, it follows from Lemma (3.7) that there exists a $T_1 \in \mathfrak{M}$ such that $(T_0 - T_1)(x_0) \in [-u_0, u_0]^0$. Thus, if $x \in [-x_0, x_0]$, $T \geq T_1$, and $T \in \mathfrak{M}$, then

$$|(T_0 - T)(x)| \le (T_0 - T)(x_0) \le (T_0 - T_1)(x_0);$$

hence, since $[-u_0, u_0]^0$ is solid, we conclude that

$$(T_0 - T)[-x_0, x_0] \subset [-u_0, u_0]^0,$$

that is, $T \in T_0 + N_0$ for all $T \in \mathfrak{M}$ such that $T \geq T_1$. Therefore the filter $\mathfrak{F}(\mathfrak{M})$ of sections of \mathfrak{M} converges to sup \mathfrak{M} for the induced \mathfrak{S}_o -topology on L. It follows that there exists a neighborhood basis of θ in L for the induced \mathfrak{S}_o -topology consisting of solid, order-complete sets; that is, L is locally order-complete for this topology.

Suppose B is an \mathfrak{S}_o -closed solid sublattice of <u>L</u>, and let \mathfrak{M} be a directed (\leq) subset of L that is majorized in L; then sup $\mathfrak{M} \in \overline{B} = B$, by the first part of the proof; that is, B is a band in L.

Conversely, suppose B is a band in L; then B is certainly a solid subspace of L, and L is the order-direct sum of B and the B^{\perp} of elements disjoint from B (see [3, p. 25, Theorem 1]). If P denotes the projection of L onto B, then $|Pz| = P(|z|) \le |z|$; hence P is continuous for the induced \mathfrak{S}_o -topology by Propositions (3.4) and (3.5). Since B = (I - P)⁻¹(θ), where I denotes the identity map on L, it follows that B is closed for the induced \mathfrak{S}_o -topology.

REFERENCES

- 1. H. S. Allen, Maximum matrix rings, J. London Math. Soc. 18 (1943), 142-147.
- 2. G. Birkhoff, *Lattice theory*, Amer. Math. Soc. Colloquium Publications, Vol. 25, revised edition, Amer. Math. Soc., New York, 1948.
- 3. N. Bourbaki, *Eléments de mathématique*, *Livre VI*, *Intégration*, Actualités Sci. Ind., no. 1175, Hermann et Cie, Paris, 1952.
- 4. R. G. Cooke, Linear Operators. Spectral theory and some other applications. Macmillan, London, 1953.

- 5. G. Köthe, *Topologische lineare Räume*, *I*, Die Grundlehren der mathematischen Wissenschaften, Bd. 107, Springer-Verlag, Berlin, 1960.
- 6. G. Köthe and O. Toeplitz, Lineare Räume mit unendlichvielen Koordinaten und Ringe unendlicher Matrizen, J. Reine Angew. Math. 171 (1934), 193-226.
- 7. A. L. Peressini, On topologies in ordered vector spaces, Math. Ann. 144 (1961), 199-223.
- 8. ———, Concerning the order structure of Köthe sequence spaces, Michigan Math. J. 10 (1963), 409-415.
- 9. H. Schaefer, Halbgeordnete lokalkonvexe Vektorräume, II, Math. Ann. 138 (1959), 259-286.

University of Illinois