ANALYTIC CONTINUATION AND SUMMABILITY
OF POWER SERIES

Amnon Jakimovski

Given a domain in which a linear method of summability sums the geometric
series T2_5z"™ to (1 - z)~!, we shall under certain conditions obtain a set in
which the method sums a power series with a positive radius of convergence to one
of its analytic continuations. In order to state our main result, we need the follow-
ing definitions and lemmas.

By T" we denote a family of Jordan arcs ¢ in the complete complex plane, with
endpoints 0, «, directed from 0 to «, and having the following properties: (a) if
v1 and y, are two different elements of T, then they intersect only at 0 and co;

(b) to each complex z (z # 0, ©) corresponds an element y(z) =y € T" passing
through z. We write [0, z] and [z, «] for the subarcs of y(z) with endpoints 0 and
z and with endpoints z and ¢, respectively, and we replace a bracket by a paren-
thesis to indicate that the corresponding endpoint is delated from the subarc.

If A and B are two point sets, we denote by d(A, B) the distance between them,
by AB the set {s| s=2zw, z € A, we B},
by A-! the set {z| z-! € A},
by wA the set {s| s =wz, z € A},
and by A€ the complement of A relative to the complete complex plane.
A family T" will be called continuous provided to each z; # 0, © and each € > 0
there corresponds a & = 6(z;, £€) > 0 such that

sup d(w, [0, z;]) < &

WE [O,Z

for all points z in the disk lz -z 1| < 8. The following example shows that an
arbitrary family I'" is not necessarily continuous. Let y, be the linear ray z > 0.
For n> 1, let v, be the polygonal line composed of the two line segments

[0, 3+3-272"i] and [3+3-272"i, 2+ 3.2-(2nt1)y)
and the ray t+ 3- g-(2nt1) 4 (t > 2). It is easy to see that we can embed the sequence
{vo }5° in(% ialrilily T (not uniquely). Suppose this is done, and choose z; = 2 and

z =24 2"\40T3) i Then

sup d(w, [0, 2]) > d(3+3-27%"4, 2) > 1.

wE 0,2]

Choosing € = 1, we see that T" is not continuous.
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Denote by P = P(z) a power series 3 a,z™ with the partial sums s,(z) and with
a positive radius of convergence. Continue P(z) analytically along each v € T' from
0 to the first singular point w(y) on vy, If there is no finite singular point on vy, we
define w(y) =, By M = M(P; I') we denote the union of all the sets [0, w(y)), and
we call this set the I'-Mittag-Leffler star of P(z). Clearly, © ¢ M. If z; € M, we
denote by P(z(; I') the value at z, of the analytic continuation of P(z) along y(z).
By definition, P(z; I') is a single-valued function in M,

A set D is called a I'-star set provided it is not empty, © ¢ D, and z € D im-
plies [0, z) C D. A TI'-star domain is a I'-star set that is also a domain. Obvious-
ly, a I'-star domain is simply connected, a union of I'-star domains is a I'-star
domain, and an intersection of I'-star sets is a I'-star set.

For a family TI', we define the set D(I") by
D(T) = {s| s=2z/w, 2#0, =, we (0, z]} .

A set D is T'-regular if 0 e D, 1 ¢ D, « ¢ D, and D(T") ¢ D€,

LEMMA 1. If T is continuous, then M(P; T') is a simply connected domain and
P(z; T') is holomovrphic in M(P; T'). If T is not continuous, then M(P; T') is not
necessarily a domain.

Proof. We have to show that if T is continuous, then M(P; I') is a simply con-

nected domain and diz-P(z; I') exists for all points z € M. If z; € M and z, # 0,

then there exists a domain G and a function f, holomorphic in G, such that
[0, zg] € G and £(z) = P(z; T') for z € [0, zy]. The continuity of T" implies the exist-
ence of a 6 > 0 such that [0, z] € G whenever |z - zO| < 6. Therefore

{‘zl |z —zol <6} ¢ M(P; T)

and P(z; T') = f(z) for these values of z. Thus P'(zg; I') exists and M(P; I') is an
open set. The first part of the lemma now follows from the general properties of
I'-star sets.

Next, let I" be the noncontinuous family described earlier. In order to prove our
theorem it is enough to show the existence of a power series P(z) with a positive
radius of convergence such that M(P; I') is not a domain. Choose

a, =5/2+19.2-33); 1 - 243.2°@ )5 (5 ),
For the function Log{(z - a,)/(b, - a,)} (n > 1), choose at z = 0 the branch which,

if continued analytically from O to b, along the linear segment [0, b,], yields at
z = b, the value Log 1 = 27i. The function

P(z) = 22 {n!Log[(z - a,)/(z, - b,)]} !
n=1

is holomorphic in |z| < 5/2. For the Jordan arc yq of our discontinuous family,
w(yy) = 5/2. For the Jordan arcs v,, w(y,) = b, . This means that

{z| 0 < z < 5/2} c M(P; I)

and
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{z]z=t+3-27C2" )5 ¢>2lcmE; D (>1).

Hence each point z (2 <z < 5/2) is not an interior point of M(P; T'), and M(P; I') is
not a domain. This completes the proof of Lemma 1.

LEMMA 2. Let D be a T'-vegular set. Suppose vy is a bounded Jordan curve
whose intevior contains the point 0. If a point set F salisfies the condition

F C ﬂ wD,
wWey

then it lies in the inteviov of +.

Proof. ¥ z is on y or in the exterior of y, then z # 0 and there exists a point
zy such that z; € (0, z], z; € y, and [0, z1) is included in the interior of v. Hence

zz] 1 ¢ D(I') © D°. The last fact and the hypothesis on F imply that z ¢ F.

THEOREM. Let T be continuous. Suppose the infinite matvix ||a,m,||
(n, m =0, 1, 2, --) has the properties

(i) im 27 a . =1 and

n— % m=0

(ii) for a certain open and T -vegulay set D, the relation

-

oo
lim 27 a_ _ zmtl = g
nm

n— ° m=0

holds uniformly in every compact subset of D.

Then, for each power sevies P(z) with a positive vadius of convergence, the rve-
lation

[>e]

(1) lim 2o a,,5m(z) = P(z; T)

n— o m=0

holds uniformly in each compact subset of the set

Q = ﬂ wD.
wd M
W F# o

Remark. 1t is easy to see that the assumptions of our theorem imply that
Q c M(P; I') (so that the right-hand side of (1) is defined), and that the set of finite
points of © is open.

Example 1. The family IT" of all rays emanating from the point 0 is continuous
and has the property that D(I') = {x| x > 1}. In this special case, M(P; I') is the
ordinary Mittag-Leffler star of P(z), and our theorem is a generalization of Okada’s
theorem. Here we have the additional result about the uniform summability in com-
pact subsets, which was proved for special domains D in [2] (see also [1, p. 189]).

Example 2. Let v be a Jordan arc defined (for z = reifi’) by ¢ = ¢(r), where ¢(r)
is continuous for 0 < r < e, The family of all Jordan arcs of the form vy, = ey
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(0 < o < 27) is continuous. In the particular case where y is the polygonal line
composed of the line segment [0, 1] and the ray 1 - iy (0 <y <),

D(T)¢ = {z| %z > 1, Sz < 0}.

To prove the theorem, suppose that F is any compact set in © and that 0 € F.
First we establish the existence of a rectifiable Jordan curve  with the three
properties

(a) yC M(P; '), (b) Tw~1c D, (c) F lies in the interior of 7.
Since M(P; I') is a I'-star set, Lemma 1 and our hypothesis on F imply that

F(MM®) ! cD and & = d(F(MS)-!, D) > 0.

Because the set (Mc)'l is a bounded continuumi there corresponds to each a > 0 a
rectifiable Jordan curve £ that includes (M€)~" in its interior and has the property

sup d(w, (M)!) < 6/4a.
we &
Let v = 3;"1 . Then vy obviously has property (a).

Since F is bounded (say |z| < a for all z € F), there corresponds to each u € vy
a point w = w(u) € M€ such that |u-! - w-1| < 6 /4a, whence |z/u - z/w| < 6/4
for all z € F. Thus ~

d(z/u, D) > d(z/w, D°) - |z u - z/w| > 6/2.

Therefore d(Fy -1, D) > 6/2. In particular, y has property (b).

Since property (b) is equivalent to the assumption that F c ©, Lemma 2 implies
that ¢ has property (c).

Lemma 1, the properties of y, the fact that 1 ¢ D, the assumption (ii) of our
theorem, and the calculus of residues yield the relation

1 -1
. 1 £ PwD) Y [_z_)“““](-z)
P(z; T) = 5 - ) T nlf,noo ngoanm 1 (W 1-—) aw

lim 27 a1 S (2)

n—com=0

for all z € F, and the convergence is uniform in F.
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