ON EXTREMAL MEASURES AND SUBSPACE DENSITY
R. G. Douglas

The purpose of this note is to investigate the relation between a measure’s prop-
erty of being an extreme point of a certain convex set of probability measures and
the denseness of a certain space of functions in the Lj-space of this measure. This
problem is associated with certain questions raised in [2], and the results obtained
were strongly influenced by a classical theorem of M. Riesz on the undetermined
moment problem.

After defining our convex set of measures, we state as Theorem 1 our result on
the relation between extremal measures and subspace density in L;. By an example
we show that the same proposition cannot hold in general when L; is replaced by
LP (p > 1), and we obtain a result for Lp, under an additional hypothesis.

Our problem is also related to a problem studied by Choquet [1]; in particular,
one of Choquet’s questions is answered completely by Theorem 1, another partly by
Theorem 2.

The author acknowledges his indebtedness to J. Ullman for bringing the theorem
of Riesz to his attention, and to Arlen Brown for several helpful conversations and
ideas concerning this paper. The author is also grateful to the referee for many
helpful suggestions.

Let X be a locally compact Hausdorff space, and let MT(X) denote the space of
finite, nonnegative regular Borel measures defined on X. Let F be a linear space
of real-valued (not necessarily bounded) Borel functions defined on X that contains
the constant functions. For each positive measure p € M(X) having the property

that S |f| dp < = for every f € F, set
X

E, = e MH(X), fl dv < o and fdv = f erF}.
, %vlv e, §_ltlav na § tav= § sa

The space of functions F can be identified (in a canonical way) as a subspace
of L(u) (this correspondence need not be one-to-one). The following theorem de-
scribes the relation between the extremality in EH of a measure and the density of
F in L(u).

THEOREM 1. The subspace F is dense in L (1) if and only if p is an extreme
point of EU«'

Proof. Assume that p is not an extreme point of Ey ; then there exist measures
iy and pp in E“ such that p = (uy + ¢,)/2 and p; # g,. This implies 2u > p; > 0,
and by the Radon-Nikodym Theorem there thus exists a function h € L () such that
dyy =hdp and 1 - h # 0. The function 1 - h is orthogonal to F, that is,

S f(1-h)du=5 fdu.-S fhd,u=5 fdp,—S fdpy = 0
X X X X X

for every f € F. Therefore, F is not dense in Ll(u).
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Assume that ¥ is not dense in Lj(p); then it follows from the Hahn-Banach
Theorem and the identification Lj(u) = L (1) that there exists a nonzero function
h € Le(w) that is orthogonal to F Set

V= ‘S‘hdu" U']_=IU'+ v, H2=H' v.

1
Il eo

Then the measures p] and y are positive because 1+ h/ "h"oo_>_ 0. Moreover,
each of p; and p; is in Ey, because

SX fd(p+ v) = ‘SxfduiSX fdy = Sxfdui"—hln—m Sxfhdu = Sxfdu.

Therefore, u is not an extreme point of E,, because p = %(,U.l +up) and Py # Uy.

Naimark proved this theorem [3, Theorem 4, p. 342] for the special case where
X is the space of reals and F the linear space of all polynomials. Our proof of the
“only if” statement is similar to his; but his proof of the “if” statement is based on
a result on the extension of symmetric operators.

The context of Naimark’s theorem is the same as that of the theorem of Riesz.
If for some positive measure p, E; consists of more than p, then the moments

c, S x? du(x) of p constitute an undetermined moment problem [4]. Nevanlinna

proved a remarkable theorem characterizing the solutions of such a moment prob-
lem, and in particular he described a certain class of extremal solutions. The cited
theorem of M. Riesz states that a solution is extremal if and only if the polynomials
are dense in the Lj-space of the measure. A natural question is whether a solution
is extremal if and only if the measure is an extreme point [see 1].

In one direction the answer is clear; if y is an extremal solution, then F is
dense in L,(u) (by the theorem of Riesz), and hence in Lj(y). Thus p is an extreme
point of E!JL by Theorem 1, Therefore an extremal measure (in the sense of Nevan-
linna) is necessarily an extreme point of E,,. (This also follows from properties of
I(z; ) established in [4].) The converse is not true, however; D. Greenstein has in-
formed the author that he has recently shown that for some measures there exist
extreme points of Ey_ that are not extremal solutions.

Assume now that X, F, and p satisfy the original hypothesis as well as the addi-
tional hypothesis that S |£[P dp. < e for f € F, where p is some number greater
X

than 1, Further, set
EP) = {u eEu|S lfPdv < Vie F}

It is easy to see that a measure v € Eup) is an extreme point of E(!f) if and only if it
is an extreme point of E“.

The relation between extremality of a measure in E(P) and denseness of the sub-
space F in Lp is more complex, in case p > 1. Consider the following example.

If p is a measure that does not consist of a finite number of atoms, then there

exists an unbounded function f € Lq(p.), where %'—l— % =1, Let F be the space of
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Borel functions such that SX |n|P dp < ~ and thf dyu = 0. Then the only sum-

mable Borel function on X that is orthogonal to F is unbounded, and hence
(0) = Flc Lo(i). Therefore F is dense in L;(u), and thus p is an extreme point
of E,, but F is not dense in Lio(w).

A result such as appears in Theorem 1 thus does not hold for p > 1 without
some further hypothesis. One adequate additional hypothesis is that F be a vector
lattice.

THEOREM 2. If F is also a vector lattice, then F is dense in Lp(u) if and only
if L is an extreme point of E‘(LP).

Proof. It is clear that if p is not an extreme point of E{P), then F is not dense

in Lp(u). Suppose L is an extreme point of E’SP); then p is also an extreme point of
E,,, and therefore F is dense in Lj(p), by Theorem 1. If h is a bounded function in

(1), then there exists a sequence of functions {f,, }n=1 in F such that

lim _, Hh - fn” 1 = 0. But, because F is a vector lattice and 1 € F, the functions

h, = (fn N "h"oo'l) v(_“h”w'l)

are also in F, and lim _, lh -h, “P = 0. Therefore F is dense in L (u), and the
theorem is proved.

COROLLARY. If A is a subalgebra of bounded veal-valued Bovel functions on X
that contains the constants, and 1 <p < «, then A is dense in Ly(1) if and only if
is an extreme point of E.

Proof. Since the uniform closure of A is a vector lattice, Theorem 2 yields the
result.

In [1] Choquet considers a subspace F consisting of continuous (not necessarily
bounded) functions defined on an X, where F is assumed to have certain additional
properties. (More precisely, F is assumed to be adapté in his terminology.) Dis-
cussing a uniqueness question, in his concluding paragraph, Choquet observes that a
necessary condition for F to be dense in Lj(up) is that p be an extreme point of EU-’
and he asks under what circumstances this is also sufficient. Theorem 1 provides a
complete answer. Choquet also raises the analogous question for Lp (p > 1), and
Theorem 2 provides an answer in the case where F is a vector lattice.

Finally, observe that nowhere in the statement of either Theorems 1 or 2 is any
hint given as to whether a particular E;, has an extreme point. If F consists of
continuous functions that vanish at infinity, then the Riesz-Kakutani Representation
Theorem enables us to show that E;; is an w*-compact and convex subset of MH(X).
Thus it follows from the Krein-Mil'man Theorem that the w*-closed convex hull of
the set of extreme points of E;; is equal to Ey . Alternately, if F is a subspace of
continuous functions that is adapté in the sense of Choquet, then the same conclusion
holds [1, Proposition 4]. Although other hypotheses also imply the existence of ex-
treme points in E;, the problem of deciding their existence in general seems to be
difficult.

I F is a space of complex-valued functions, then the conclusion of Theorem 1 is
valid when denseness of F is replaced by that of F + F,
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