SOME NEGATIVE THEOREMS OF APPROXIMATION THEORY
Harold S. Shapiro

Recently there has been some interest in so-called “negative theorems” of ap-
proximation theory, or more precisely, in lower bounds for the degree of approxi-
mation possible to functions of a given class by means of prescribed approximating
functions. The main general tools developed thus far for obtaining lower bounds are
the computation of “widths” (see for example Lorentz [ 3], [4], Tihomirov [12]) and
“entropies” (Kolmogorov and Tihomirov [2], Lorentz [4], VituSkin [14]). Negative
theorems of more special character are also known for special methods of approxi-
mation, for example, Fejér sums (Nikolski [9] ), or for projection maps (theorem of
Lozinski and HarSiladze, see [1, p. 242]).

A particularly simple type of negative theorem is the corollary to Theorem A,
below, due essentially to S. Bernstein. In Section 1 we prove a generalization of this
corollary, using the Baire category theorem. In Section 2 an analogous theorem is
proved for generalized rational functions. In Section 3 a lower bound is established
concerning the degree of approximation by generalized rational functions, and by the
analogous nonlinear class that uses a product instead of a quotient of linear forms.
The technique here is similar to the estimate of widths in [3], but a new idea is re-
quired, namely the use of the combinatory Theorem 5, which seems to be new and
perhaps has independent interest. The tendency of the results of Sections 2 and 3 is
to suggest that, if one wishes to approximate to functions of a rather “thick” class
such as Lip «, then the nonlinear methods considered do not enable one to improve
the order of magnitude of the approximation beyond what is possible by a linear
method (or even by ordinary polynomial approximation) having the same number of
parameters. This is also in accord with the deep investigations of VituSkin [14].
Since it is known on the other hand that rational functions furnish spectacular im-
provement over polynomials, in certain questions of approximation (Newman [5]),
one might surmise that the main strength of rational approximation lies in the ap-
proximation of functions with special analytic properties. Finally, we mention that
an essentially different type of nonlinear approximation is studied in [8].

1. A GENERAL NEGATIVE THEOREM CONCERNING
LINEAR APPROXIMATION

The following theorem (see Timan [12, p. 50]) is in its essential ideas due to
S. N. Bernstein. Here E(x, B) denotes inf, g |[x - y|.

THEOREM A. Let X be a Banach space, and {x,} a linearly independent, total
sequence of elements of X, Let {d } be a nonincreasing sequence of positive num-
bers tending to zevo. Then theve exists an x € X such that E(x, X,) =d,

(n=1, 2, ---). Here X, denotes the linear manifold spanned by x,, -+, X.

The following is an important consequence of this theorem.

COROLLARY. Under the given hypotheses, theve exists an x € X such that the
rvelation E(x, X,) = O(d,) does not hold. In other wovds, there exist elements to
which the approximation by the x; is arvbitvarily poor.
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The purpose of this section is to establish the corollary under weaker hypotheses
under which the X, need not be finite-dimensional. Our method of proof, which
seems very natural in such problems, is to apply the Baire Category Theorem.

THEOREM 1. Let X be a Banach space, and {X,} a sequence of proper
closed subspaces, Let {d,} be a sequence of positive numbers that tends to zevo.
Then therve exists an x € X such that the velation E(x, X,) = C(d,) does not hold.

Proof. With m denoting a positive integer, let
Y., = {x: E(x, X,) < md, for all n}, -
Y = {x E(x, X,,) = O(d,)}.

(=]
Clearly Y = Um=1 Y., ; to prove the theorem it therefore suffices, in view of the
Baire category theorem, to show that, for each m, Y., is nowhere dense. Suppose
the contrary, and let Ymo be dense in the ball with center at x; and radius r > 0.

Then Y  , being closed, contains this ball, that is, the set of all elements of the

form x5+ ry with "y “ < 1. Thus, for every y of norm 1, the elements x,+ ry,
Xy - ry, and -x, +ry lie in Ymo (the latter because Ymo is symmetric about 0).

Since Ymo is convex, it contains %[(xo 4+ ry) + (-xg + ry)] = ry, that is, the ball
with the center at 0 and radius r. Now choose n; so large that mg dno <r. We
then deduce that every x € X of norm r is at a distance at most m,, dno < r from
the proper closed subspace Xno' This contradicts a well-known theorem of F. Riesz

([1, p. 61]), and the theorem is proved.

2. A NEGATIVE THEOREM ON GENERALIZED
RATIONAL APPROXIMATION

By a similar argument we may deduce an analogous theorem concerning approxi-
mation by generalized rational functions (see [6] for further background on this sub-
ject).

Let T denote a compact Hausdorif space, and C = C(T) the Banach space of
real-valued continuous functions on T with “f“ = maX,e T |f(t)| . For f € C we
denote by G(f) the set {t: f(t) # 0}. If two functions f, g € C have the properties
that (i) G(g) is dense in T, and (ii) f(t)/g(t) is uniformly continuous on the set
G(g), we denote by h = £f/g the unique element of C(T) that coincides with f(t)/g(t)
for t € G(g). By this convention, division of functions in C gives a function in C in
certain cases where the denominator vanishes at some points.

THEOREM 2. Let {X_}, {Y,} be two sequences of finite-dimensional linear
subspaces of C(T), and let R ,denote the set of h € C(T) of the form £/g with
feX,, geY,. Suppose moreover that T contains infinitely many points, and let
{dn} be a sequence of positive numbers tending to zevo. Then there exists a func-
tion k € C(T) such that the velation E(k, R,) = O(d,,) does not hold.

Proof, With m denoting a positive integer, let
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= {k: E(k, R)) < md, forall n},
= {k: E(kx, R,) = O(d,)} .
As in the proof above, it suffices to show that for each m, S,, contains no ball. Sup-
pose then, on the contrary, that SmO contains the ball with center at h, and radius

r > 0.

We remark next that there is no loss of generality in assuming X, = Y, for if
the theorem were known to be true for X, = Y,, the (apparently) more general case
would follow if we replace both X,, and Y,, by X, ® Y,,. We therefore assume

.= Y,. Since the set of functions in C of the form f/g with f and g in X, con-
tains h + a for each constant a, if it contains h, it follows that R, (and hence also
each S,,) is invariant under the transformation h(t) — h(t) + a.

Since T is compact and not finite, it contains a point ty that is not isolated.
Hence, Smo contains a ball of radius r about p, where p(t) = hy(t) - hy(ty). Choose

n, so large that mg dno < r/2, and let s denote the dimension of Xno. Let N denote
a neighborhood of t;, such that |p(t)| <r/2 for t € N. Every h € R“o has the form
i(t)/g(t), where f and g are in Xn Let f;(t) (i=1, ---, 8) be a basis for Xno’ and
I'IiEef iifenote the space spanned by the s? functions {f; (t)f ®} G i=1, -, s).

_ i) _ () g(t)
h(t) - g(t) - g(t)z ’

the relation sgn h(t) = sgn[£(t) g(t)] holds for t € G(g). Choose any q = s + 1
d1st1nct points t, tp, ***, tq in N N G(g). Since f(t)g(t) € Z and Z has dimension

, there exist real numbers aj, not all zero, such that E 1 3; £(t;) g(t;) = 0 for all
f and g in Xn . Writing

b, =

1

{sgn a; (a;#0),
1 (a, = 0},

we see that there exists no function h € Rn such that sgn h(t;) =b; for i=1, <+, q.

(This type of argument is well-known; see for example [3, p. 26]) Now, there exists
a function u(t) € C(T) such that |[u" =r and u(t;) =b;r (i=1, ---, q). By assump-
tion p(t) + u(t) lies in S o’ and at t; it has the sign bi and absolute value at least

r/2. Therefore some h € Rno differs from p + u by less than r/2 at every point.

For this h, sgn h(t;) = b; , and this contradiction proves the theorem.

17

Remarks. One can modify the above argument so that it applies to the case
where the functions are complex-valued. Also, one can prove analogous results for
other nonlinear combinations of functions such as fg, fgh, --- or, indeed, any quo-
tient of polynomials in f, g, h, ---, instead of f/g.
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3. DEGREE OF APPROXIMATION BY GENERALIZED
RATIONAL FUNCTIONS

In this section we establish an analogue of a theorem of Lorentz and Tihomirov
(see [3, p. 28]); after some preliminary definitions we shall state the latter theorem,
for purposes of reference, as Theorem B. Let T be a compact metric space with
distance function d(t, t;), and let w(u) be a function defined for u > 0, bounded,
nondecreasing, continuous, subadditive, and vanishing at 0 (a so-called “modulus-
of-continuity function”)., Let A% denote the set of f € C(T) such that for all u > 0
the condition d(t;, t2) <u implies lf(tl) - f(tz)l < w(u). For any sets A and B we
write E(A, B) = sup E(x, B).

XEA

THEOREM B. Suppose T contains n+ 1 points at mutual distance at least 2a.
Let X denote any n-dimensional subspace of C(T). Then E(A®, X) > %w(a).

The proof of our next theorem is based on certain combinatorial-geometric
properties of Euclidean space. Since the material has independent interest, we state
these properties in formal theorems.

THEOREM 3. Let X and Y denote subspaces of C(T), of dimension m and n
respectively, and let R be the set of h € C(T) of the form /g with f ¢ X, g € Y.
Suppose that T contains N points at mutual distance at least 2a, where N satisfies
the inequality

@ 4 [ () (W) ] G (Ye) e ] <

(heve the sums extend to (lf) or to (ET) according to the parity of m, n). Then
E(A%, R) _>_-;—w(a). In particular, (1) holds if N = 8(m + n).

THEOREM 4, Let the maximum number of connected components into which
Euclidean k-space may be pavtitioned by means of n hyperplanes be denoted by
G(k, n). Then for n > 1,

(2) G(k,n):Z[(kI_ll)+(\k1_13)+...].

(By “hyperplane” we mean as usual a (k - 1)-dimensional linear manifold; in par-
ticular, it contains the origin, As will be seen from the proof below, any n hyper-
planes in “general position” partition k-space into precisely G(k, n) components;

note also that the sum in (2) terminates with (g ) or (II‘ ) , according as k is odd

or even.) In principle, Theorem 4 is certainly known; the problem of the partitioning
of 2-and 3-dimensional space by lines and planes, respectively, that do not neces-
sarily contain the origin, is discussed in [15, p. 176] and [10, p. 43]. The discussion
in these books is based on the memoir [11] of Jakob Steiner, from which the method
of proof used below is also adapted. The author is indebted to G. P6lya and I. J.
Schoenberg for this reference.

Proof of Theorvem 4. The result follows by induction from the recurrence
relation
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(3) Gk, n) =Gk, n-1)+Gk-1,n-1) k>2 n>1)
together with the evident formulas
(4) G(1, 0) = 1, G(1,n) = 2 for n>1,
(5) Gk, 0) = 1 for k>1.

To prove (3), consider a partition of k-space into G(k, n) components by n hyper-
planes “in general position,” by which we mean that for each r < min (k, n), the in-
tersection of r of these hyperplanes is a linear manifold of dimension k - r. Let 7
denote one of these hyperplanes. The remaining n - 1 hyperplanes each intersect =
in a (k - 2)-dimensional subspace, and these subspaces partition 7 (considered as a
(k - 1)-dimensional space in its own right) into G(k - 1, n - 1) components. Imagine
now the configuration that arises from the suppression of 7. The remaining n - 1
hyperplanes divide the k-space into G(k, n - 1) components K;. Since 7 is parti-
tioned into G(k - 1, n - 1) components by these hyperplanes, it follows that 7 inter-
sects precisely G(k - 1, n - 1) of the K;, each of which it subdivides into two com-
ponents. This proves (3), and by an elementary induction we deduce (2).

THEOREM 5. Let E, denote Euclidean n-Space (conceived as n-tuples
x = (X1, *°°, Xp) in the usual way), and let K be a k-dimensional subspace. The
maximal number of open orvthants that K can intersect is the number G(k, n) defined
by (2). (An orthant is one of the 2™ components of E, determined by the sequence
of signs of the coordinates.)

Proof. Let A= ||aijﬂ (i=1, ««-; n; j=1, «--, k) denote any n X k matrix of rank
k, and consider the map x= Ay from E, into E, defined by

k
X; = Z’; a;;¥; (i=1, ---, n).
J=

The range of this mapping is a k-dimensional subspace K of E,, and any k-dimen-
sional subspace of E,, may be so obtained. The n hyperplanes E}‘:l a;;y;=0
divide Ejy into G(k, n) components; the component to which any point y € Ey be-
longs is uniquely determined by the sequence of signs of the numbers 2?1-21 a;jy;j-
Thus, there are precisely G(k, n) sequences of signs possible for the coordinates
(x1, =+, X,) of a point in K, and this proves the theorem.

We can now easily prove Theorem 3. By the argument used to prove Theorem B,
it is enough to show that if N satisfies (1) and t;, -+, t)y are distinct points of T,
then there exists a sequence by, *°*, by, with bj=+4 1, such that for every h € R
the relations sgn h(t;) =b; (i=1, 2, ---, N) are impossible. Now, the sequences
[£(ty), <=+, f(ty)] with £ € X form a linear manifold of N-tuples of dimension at most
m, and hence by Theorem 5 the maximum possible number of sign sequences is
G(m, N). Similarly, the maximum possible number of sign sequences for
[g(ty), +--, g(ty)] is G(n, N). Thus, the maximum possible number of sign sequences
for [h(t,), ---, h(tN)], where h = {f/g, is at most G(m, N)G(n, N). If this is less than
2N, some sign sequence cannot be attained. This proves the theorem, except for the
last statement.

Suppose now that N = (m + n)A, where m < n. Then, since G(k, r) < r¥/(k - 1)1,
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m-+ +: +
n mn em n(m + n)m+n Arn n

< .

m™ n”

mnN
m!n!

G(m, N)G(n, N) <

With the notation R = n/m, we can write

(m+n)m+n_( 1)n n/R n_n
m oA T 1+5 (1+R) < 277,

and therefore
G(m, N)G(n, N) < mn(2Ae%)™? < (44e2)™17

The last member is less than 2N = 2(mtn)A , provided 4Ae% < 24, The latter in-
equality holds for A > 8, and therefore the proof of Theorem 3 is complete.

Remarks. The theorem clearly remains true if instead of quotients we consider
functions of the form f£(t)g(t) with f € X, g € Y. We remark also that the main
point of our theorem is that we do not assume g(t) to be of constant sign: if
g(t) > 0, the present argument is unnecessary, since sgn[f(t)/g(t)] = sgn £(t), and one
obtains a stronger result by the argument in [3]. Note also that the analogous theo-
rem with (1) replaced by N > mn is also true, by a quite trivial argument, but that
this theorem is much weaker than Theorem 3.

To illustrate possible applications of Theorem 3, we state the following result;
it can also be obtained from the theorems of Vituskin [14] (which, however, are
much less elementary).

THEOREM 6. Let T =[0, 1], let X, Y be subspaces of C(T) of dimension n,
and let R denole the set of h € C(T) of the form f/g with f € X, g € Y. Then
E(A%, R) > Aw(1/n), where A is a positive absolute constant. Movreover, the same
results hold if R denotes the set of h € C(T) of the form 1(t)g(t).

Remark. This theorem shows that insofar as approximation of the whole class
A% is concerned, the nonlinearity made possible by the passage to generalized ra-
tional functions yields no essential improvement over linear approximation, or even
(in view of Jackson’s theorem) over approximation by ordinary polynomials.
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