THE MEASURABILITY OF AN INTRINSIC LENGTH
R. E. Lewkowicz

INTRODUCTION

Let X be a compact Hausdorff space. Let f: X — E,, be a continuous mapping.
Let 7 be a real-valued continuous function defined on f(X) c E,. As is well known,
the function ¢(x) = 7[f(x)] (x € X) induces an upper-semicontinuous decomposition of
X into closed disjoint “level sets” or contours. The lower contour Cq‘5(t), respec-
tively, upper contour Ca';(t), is defined as the boundary in X of the open set Dg)(t), re-
spectively, D%(t). While the “level sets” may contain interior points, the lower and
upper contours are closed, nowhere dense subsets of X,

If X is a finitely triangulable m-dimensional space and therefore a space on
which Lebesgue m-area L, (f) for mappings into E, is defined, neither the con-
tours nor the upper or lower contours need inherit the latter property of the space
X. Even in the case where m = 2 and X is a closed, simply-connected Jordan
region J in the plane, the concept of Lebesgue 1-area, or length, is not in general
available for the partial mappings f |C¢(t), although Ly (f) is defined.

It is partly because of the general nature of these upper and lower contours as
sets and partly because of the unavailability of appropriate definitions of k-area
sufficiently general for application to mappings from arbitrary compact spaces, that
in each of the several versions of the Cavalieri inequality

S - Am-1(f, C3(H)AE < KL, (f)

that have been proved [1, 2, 3] the corresponding notion of (m - 1)-area

A1 Cy (t)) depends on concepts involving Dj (t) not only C¢(t) In this sense,
these (m - 1) areas are not infrinsic def1n1t1ons nor are they applications of a
general concept of k-area.

Definitions of Lebesgue k-area of scope sufficient to apply to mappings from the
lower (or upper) contours have recently been introduced by R. F. Williams [6]. With
a view towards possible use of these as intrinsic (m - 1)-areas in a Cavalieri in-
equality, we concern ourselves in this paper with the case m = 2 and prove that the
function L l(f ]C (t)), defined in terms of Williams’s 1-area LP has the basic
property of bemg measurable as a function of t (-0 < t < ),

1. NOTATION AND DEFINITIONS

An open cover for a topological space X is a collection of open subsets of X
whose union is X. A finite open cover a is said to be of order at most m if no
point of X is covered by more than m distinct elements of @. A compact
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Hausdorff space X is said to be of dimension at most m (dim X < m) if every open
cover U has a finite refinement of order at most m + 1.

If X is a topological space and @ is a finite open cover for X, the nerve Xy of
a is any finite simplicial complex K whose vertices are in one-to-one correspond-
ence with the elements of @ and which is such that a set (vg, vy, -+, vk) of its ver-
tices is the set of vertices of a simplex of K if and only if the corresponding ele-
ments Ay, Ay, -, Ay of @ have a nonempty intersection.

We regard the nerves of open covers and in fact all complexes as geometric
complexes situated in some Euclidean space. Simplexes are always open simplexes
unless the word “simplex” is qualified. The dody (or underlying space) ]KI of a
geometric complex K is the union of all the simplexes of K.

In connection with an open cover ¢ of X and a given geometric realization of its
nerve X, , we shall use the following notation. Let V, denote the collection of all
vertices of Xy. The elements of ¢ are indexed in a one-to-one fashion by the ele-
ments of Vy under the correspondence defining the vertices of the nerve. Thus, we
may write o = { A ’ Vv € Va} For each x € X, let V(x) be the collection of all ver-
tices v € V, such that x € A,. Let (V(x)) and [V(x)] denote, respectively, the open
and closed simplexes of Xy spanned by the elements of V(x).

By “mapping” or “map” we shall always mean a “continuous mapping.” A
canonical map g: X — IXa [ is any mapping with the property that g(x) € [V(x)] for
each x.€ X. A star-canonical map g: X — |Xa is any map with the property that
g(x) € (V(x)) for each x € X. (Star-canonical mappings are identical with the
barycentric @-maps of [5].)

If X is a compact Hausdorff space, dim X < m, and E, is Euclidean n-space,
then a triple (o, g, h) is said to be an m-canonical map tviple (m-star canonical
map triple) of X into E,, provided

(a) a is a finite open cover for X of order at most m + 1,
) g: X— IXa [ is a canonical map (star-canonical map) and

() h: X, — E, is simplicial (relative to a triangulation of E,). We write
(o, g, h): X — E,.

If m is a positive integer, K and L are geometric complexes, and h: K — L is
a simplicial map, then the elementary m-area e, (h) is defined to be the number

em(h) = 2a,[h(o)],

where the sum is taken over all m-simplexes ¢ of K, and where a,,[h(c)] denotes
the elementary m-area (computable by determinants) of the simplex h(o)
(a,,[h(o)] = 0 if h(oc) has combinatorial dimension less than m).

If X is a compact metric space of dimension at most m and f: X - E, isa
continuous mapping, then R. F. Williams [6] defines LY, (f) to be the smallest num-
ber r with the property that for every € > 0, there exists an m-canonical map
triple (@, g, h): X — E, such that mesh @ <&, ||f - hg | <e and ep(h) < r +¢.
Here mesh @ = sup { diameter A|A ea}, and [| | is the usual norm defining the
uniform topology for the set of all mappings of X into E,.

It will be convenient to work with the following slight modification of Williams’s
original definition.
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L?n(f) is the smallest number r with the property that for every € > 0, there
exists an m-star canonical map triple (¢, g, h): X — E, such that mesh a < g,
£ - hgl| <€, and e, (h) < r + &.

That this definition is equivalent to the foregoing is not difficult to prove. The
key idea is that the star-canonical maps are uniformly dense in the space of all
canonical maps of X into |Xa i This may be established by arguments based on
those given in [5, p. 72, footnote T].

2. CONVERGENCE PROPERTIES OF LOWER CONTOURS
AND EXTENSION OF COVERS

Let X be a compact, connected, locally connected Hausdorff space. Let ¢ be a
nonconstant, real-valued, continuous function on X. For each t (- <t <), let

Cot) = {x € X[ o) = t},
Dy(t) = {x e X[ox) <t} ,,
Cy(t) = Bdry Dy(t).

In case X is a subset of a larger space, topological operations on subsets of X,
such as closure and boundary, are understood to be relative to the subspace topology
of X.

Since X is a continuum, ¢(X) = {tl tmin <t < tmaxt, where tmin and tmax are
the smallest and largest values assumed by ¢ on X. None of the sets Cy(t) is
empty for t in the range t.,j5 <t < tpax- Unless we state the contrary, we always
assume that t lies in this range.

_LEMMA 1. Ifx € C(Z,(t_) and Ux is any open set containing X, then theve exists
a t such that for each t' (t < t'< t) the rvelation Ca,(t') N Ux #0 holds.

Proof. Let Vyx be a connected open set containing x and such that Vx C Ux.
There exists a y € Vx such that f(y) < t. Let f=f(y), andlet t< t' < t. Since the
function ¢ |V, assumes the values £ and t, Cot) N Vi #@. Let {t,} be a se-
quence of real numbers such that t, <t ;;, t<t, <t', tn — t' as n — «. For
each n, choose a point xp € Cy(tn) N Vx. The sequence {xn} is an infinite set con-
tained in Dg(t') N V., and it has a limit point xq in D¢(t') N Vi with the property
f(xy) = t'. Hence xq € Dy(t") - Dy(t') = Cg(t'), and therefore Cg(t') N Ux # g.

LEMMA 2. If U is an open set such that Cq‘b(t) C U, then there exists a t such
that Cg,(t') Cc U for each t' (t< t' < t).

Proof. Let y =¢ |Dg(), and for each t' (ty,i, < t' < t) let

Cy(t") = Dg® N Cylt").

The collection {C(t")} (tmin < t' < t) is an upper-semicontinuous decomposition of
D¢it) induced by Y. Since Clp(t) = Cg(t) and Ca) cUuN D¢Zt , there exists (by the
characteristic property of upper-semicontinuous decompositions) a set W, open in
X, such that
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and with the property that if C (t') N W N Dy (t) # @, then C Y(t') © UN Dy ). Let
X € C¢(t) By Lemma 1, there ex1sts at such that if t< t' < t, then Cj (t‘) N w=g.
Since Cg (t') c C¢(t') = C,’(,(t ), it follows that Cy/(t) N W N D¢it5 + @. Consequently
C(I)(t') CU

LEMMA 3. Let X be a compact, connected, locally connected metrvic space.
Let f: X — E,. Lel ¢ be any nonconstant, veal-valued, continuous function on X,
and let fg = £ |C (s). Suppose t is some fixed number for which 0 < dim Cg(t) < 1
Then to every € > 0 there corvesponds a &> 0 such that if (a, g, h): C¢(t) — E,

a 1-star canonical map triple for which ” fy - hg ” < 6 and mesh a < 6, then the're
exists a t* such that for each t' (t* < t' < t) there exists a 1-star canomcal map
triple (@', g', h'): Cy(t') — En such that ||ft. h'g'|| < €, mesh a'< ¢, and

€; (h') < el(h)

Proof. Let € > 0 be given. Let 8g be the modulus of continuity of f on X cor-
responding to £/3. Let 8 = min(5p, £¢/5). For brevity, set C = Cg(t), and let
(@, g, h): C — E, be a 1-star canonical map triple for which [|f; - hg|| < 6 and
mesh a < §. We may assume that the elements A of &, each open in C, are in-
dexed in a one-to-one fashion by the vertices v of Cy, and we write

a={A,} = {A/]|vevy}.

Since we regard Cyp as a geometric complex in Ey, the point set [Ca | is a
polyhedron. By two theorems of K. Borsuk [4, p. 30], [Ca | is an absolute neighbor-
hood retract and there exists an open set U D C and a mapping g: U — |Ca | such
that g |C g. Since X is a normal space, we could assume that U is such that g
is also defined on U. However, for our purposes we need only to regard g as de-
fined on U and uniformly continuous on U.

For each vertex v € Cqg, let U, = g1 [St(v)], where St(v) is the open star at v.
Since {St(v)} is a finite open cover for |Cgy | of order at most 2, and since g is
star-canonical with respect to @, the family {U,} is a finite open cover for U, of
order at most 2, none of whose members is empty.

We first prove three assertions.

(a) A, =U,NnC =g [stw)].

The equality C N Uy = C N g-1[St(v)] = g~1[St(v)] is immediate. The equality
= g'l [St(v)] is a characteristic property of star-canonical mappings.

(b) If v and w are distinct vertices of Cgq, thern U, N Uy # @ if and only if
A,N A, # @

It is clear that if v and w are distinct vertices of C, and A, N Ay # §, then
U, N Uy # @. On the other hand, if U, N Uy # @, let z € Uy, N Uy . It follows that
g(z) € St(v) N St(w) = (v, w) € Cy and therefore A, N A, # 0.

A

v

(c) g: U— ICa I is stav-canonical with respect to {Uy}.

If v and w are distinct and z € U, N Uy , then g(z) € (v, w) € Cy. If z € U, for
one and only one vertex v € Cg, then g(z) € St(v) but g(z) is in no 1-simplex of Cgy
of the form (v, w). Since St(v) is the disjoint union of v and the 1-simplexes of
Cq (if any) of the form (v, w), then g(z) = v.

Now let d be a metric for X. Let m = min(d, 0;), where 06; is the modulus of
continuity of hg on U. For each x € C, let r, be a real number such that
0 < r,< m and such that the spherical neighborhood about x,
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Sx, r,) = {x! eXI dix', x) < rx} ,

has the property that if x € A, then S(x, ry) C U,. We remark that this implies
that if v and w are distinct and x € A, N A, then S(x, ry)c U, N U,

We now define a “thinner” open set containing C as well as a related open cover
and a mapping, and we prove five propositions concerning these. Let

- Ulis, r)|xec}, 6, =canu,, g = z|G.
We make two observations.
(1) v =1{G¢} ={Gy|v € Va} is an open cover for G of order at most 2.
@) Ay=A,NG=GNU,NC=G,NC.

The first is clear, and the second follows from (a) and the definition of G. We
also see that Gy # Gy if v and w are distinct.

(3) If v and w are distinct, then Gy N Gy # g if and only if Ay, N Ay # g,

This is a consequence of (b) and the fact that G, N G, # § implies that
U, N Uy, # P, as well as of (2).

(4) g*: G — |Cq4 | is star-canonical with respect to ¥ = {Gy }.

Suppose v and w are distinct and that z € Gy N Gy . Then z € Uy, N Uy, and it
follows that g*(z) € (v, w) € Cq. If we suppose that z € Gy and that, for each vertex
u distinct from v, z £ Gy, then since Gy = G N Uy it is certainly true that z € U,,.
Now suppose that w is distinct from v and that z € Uy . Then since z € G, it fol-
lows that z € Gy, and w and v can not be distinct. Hence z cannot lie in any ele-
ment of the collection {U,} other than U, . It follows that z € g~ (v). It is now
clear that g*(z) = v.

(5) mesh y < 5m.

If y and y' are any two points in Gy, then there exist vertices u and w of C,
and points x € Ay, and X' € Ay, such that y € S(x, rx) € Gy and y' € S(x', rx1) C Gy .
Since Gy, N Gy # @ and since Gy N Gy # F, it follows that A, N A, # § and
Ay, NA, #0. Let x" e Ay, N A, and x™ € Ay N Ay . Since

d(y, y') < d(y, x) + d(x, x") + d(x", x™) + d(x", x') + dx', y",

it follows that d(y, y') < 5m.

The collection y will induce an open cover on a lower contour sufficiently close
to C. Since C C G, there exists by Lemma 2 a t such that for each t" < t" < t)
we are assured that C3z(t") € G. Furthermore, for each pair of distinct vertices
u, v € Vg for which Gy n Gy # @, there exists a number t,,, such that if t' satisfies
the inequality t < t, < t' < t, then C¢(t )N Gy N Gy # 0. "This is guaranteed by
Lemma 1 and the property (3). If t* is the largest of the numbers ty,v among all
pairs of vertices for which G, N Gy # #, u# v, then t < t* < t, and if t' is such
that t* < t'< t, then for each pair of distinct vert1ces u, v € Va for which
Gy N Gy # @, we are assured that Cg(t') meets G, N G,
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Suppose that t' is some fixed number satisfying the inequality t* <t'<t. We
set C' = Ca,(t') for brevity, and we define an open cover for C' in the following way.
For each vertex v € Cy, let A, =Gy N C' andlet o' = {A,}. The cover «' has
the property

(6) if u and v are distinct vertices of Cqy, then AyN A, # @ if and only if
1 1
Aun A, # 0.

The collection @' = {A!} is not in general in one-to-one correspondence with
the collection o = {Av}, since there may exist distinct vertices v and w for which
A}, = A},. Should this happen for some pair of vertices v and w, then Ay meets no
element of o' distinct from itself, To show this, we observe that if v and w are
distinct and A}, = A}, then Ay =Gy NG NC'= A} I AyN Au# g, then

Ay NAL=GyNGyw NGyuNC 0.

Since {G,} has order at most 2, this is impossible if u, v, and w are all distinct.
Hence u=v, or u =w. This argument also shows that for a given vertex v, there
is at most one vertex u distinct from v for which A!, = A{,. In what follows, we
shall not regard A}, = A, as distinct elements of the cover a', should such a
phenomenon occur.

We construct a realization of the nerve C41 of @' in the body of the complex
Cuo in the following way. For each Aj, € o', let the vertex associated with A}, be v,
unless there is a vertex w, distinct from v (necessarily at most one), such that
Al, = A,,. In this case, since Ay N Ay # @, let p(v, w) = g(yo) for some
Vo €Ay N A,. Since g is star-canonical, p(v, w) is a point in the 1-simplex
(v, w) € Ca. We consider it a (new) vertex and associate it with A;,. The vertices
v and w together with the 1-simplex they span are discarded; we retain only the
point p(v, w). To define Cg: completely, we must specify the vertices and declare
which pairs of vertices are endpoints of 1-simplexes. The vertices of Cg: are the
vertices v and the points p(v, w), selected as above, that remain after possible dis-
cards. The 1l-simplexes of C('y. are the 1-simplexes of C, "that remain (if any).
Accordingly, a pair of vertices of C&: are the vertices of a 1-simplex of Cq: if
they are the vertices of a 1-simplex of C, that has not been discarded.

The process above will be completely defined when we have shown that no dis-
carded vertex of Cy can be the vertex of a 1-simplex of C, whose other vertex is
not also discarded. Indeed, if u and v are distinct vertices of Cy such that
AyNAy#g, then Gy N Gy # @. Since C' N (Gy N Gy) # @, it follows that
(C'NGy) N (C' N Gy) # P; in other words, A, N A}, # §. If v has been discarded,
then v must be the endpoint of a 1-simplex (v, w) € C, which has been discarded
along with the endpoint w. Hence A} = A,. Since there is at most one vertex u
distinct from v for which A} = A}, it follows that u = w. This argument also shows
that A, and Ay must be an isolated pair in the cover a for C, in the sense that
A, and A meet but neither meets an element of o distinct from both. There is no
1-simplex in Cy with either of the vertices v or w except (v, w). Our construction
may be viewed as the replacement of certain isolated 1-simplexes by points.

We define a map g': C' — |C('1'| and show that g' is star-canonical with respect
to @'. Let x € C'. If x € A}, and there is no vertex w distinct from v such that
Ay, = Ay, let g'(x) = g*(x). If there is such a vertex w, let g'(x) = p(v, w). That g
is star-canonical with respect to &' is a consequence of the fact that g* is star-
canonical with respect to { G} and of the fact that Ay = A, is regarded as a single

element of a'. That g' is continuous is a consequence of the continuity of g* and



THE MEASURABILITY OF AN INTRINSIC LENGTH 173

of the fact that whenever Al = Ay, then AJ is isolated from the other elements of
a'.

We now define the mapping h': C4: — E_ by the equation h' = h | [C4.|. Since
|c4t| € [Cql, the equation has meaning, and clearly h' is simplicial (relative to a
subdivision of h(|Cgy l)). Since g*(C') C lCa l and g'(C') IC:':!' | , the composition
h' g' also has meaning.

Next we show that ||fyr - h'g'|| <& and that mesh o' < €. Suppose that x € A},
and that there is no vertex w distinct from v for which Ay = Aj,. Since
g'(x) = g¥(x) and x € Gy, there exists a y € C such that x € S(y, ry) € G ¢ U. Now

|h'g' ) - £x)]| = |hg*(x) - f(x)| < |hg*x) - hg*(y) |+ |hg*(@y) - £¥) ]|+ |£y) - £x)],

and since d(x, y) < ry <m < min (5, &), it follows that
1) - 1) <5,  |be*(®) - he*(y)| < 5, and |hg*@) - 3] < .

If there is a vertex w distinct from v for which A;, = A, then

g'(x) = plv, w) = g*(yg),

where yp is our preselected point in A, N Ay,. Since x € G, N Gy, there exists a
y € C such that x € S(y, ry) and y € A, U A. Indeed, since S(y, ry) C U, for some
vertex u € Cg and since y € C N Uy, it follows that y € A,. Since x € S(y, ry), it
follows that x € G, N C' = A;;,. Hence A, N A} # @, and therefore u=v or u=w.

In either case, y € A, U Ay. For definiteness, suppose that y € A,. Then y and

Yo are both in A, and d(y, yp) < mesh @ < 8, which implies that [f(y) - f(y0)| < &g/3.
Now

Ih'g'(x) - £(x)] = |hg(yg) - £x)| < |helyg) + £lyg)| + |£(yy) - £(3) ] + |£(¥) - £#(x)].

Since |hglyo) - f(yo)| < 6 < /3, and since d(y, x) <1, < m < 8, implies that
|£(y) - f(x)| < £/3, we conclude (on combining these estimates) that

|n'g' (x) - £(x)] < €.

It is evident that mesh o' < mesh{G,} <.

Finally, if o' is a 1-simplex of Cg:, then o' is also a 1-simplex o of C, and
h(o') = h(g). Consequently, each nonzero term in e;(h') = Z aj [h'(c')], where the
summation is taken over all 1-simplexes of Ci,, is equal to some nonzero term in
e; (h) = Z ay[h(0)], where the summation is over all 1-simplexes of C,. It follows
that e;(h') < e(h).

3. MEASURABILITY OF LY(f|C3(t))
Let X be a compact metric space, and let C be a compact subspace of X

(-1 <dim C<1). Let f: X — E,. If dim C = -1, that is, if C = @, define
LY(f|C) = 0. If dim C> 0, let
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Llf(f ]C) = inf{r I for every € > 0, there exists a 1-star
canonical map triple (o, g, h): C — E, such that
|Ihg - £ <€, mesha <€, and ej(h) <r +¢&}.

THEOREM. Let X be a compact, connected, locally connected metvic space,
and ¢ a nonconstant, veal-valued continuous function on X. Suppose that
0 < dim Cg(t) < 1 for every t in the interval (tmin, tmax). Then for any continuous
mapping £: X — En, LE(E|C3(t) is a measurable function of t (~o < t < o).

Proof. For each t € I = (tmin, tmax) and each € > 0, let H[fi](e) denote the
collection of all 1-star-canonical map triples (o, g¢, hy): Cq‘s(t) — E, for which
[h g, - £]| <€ and mesh @, <e&. Let

e(t, €) = inf{e (hy) | (o, g, hy) € H[E]E)} .
It is not difficult to show that for each t € I,

1) L2 |Ca®) = Lim et ),
€—0
and we omit the proof.

We first show that for each t € I and each € > 0, there existsa 6 (0 < 8 <€)
such that if 6' < 6, then e(t', €) < e(t, 8) + 6 for each t' € [t - &', t]. Indeed, given
t €I and € > 0, then, by Lemma 3, let & > 0 be such that if (o, g, he) € H[£](8¢),
then there exists a t* such that for each t' (t* <t' < t) there is a triple
(41, g¢1, hyp) € H[fp1](€) for which ej(hy) < ej(hy). Let 6 = min(t - t*, 9, €), and
suppose that ' < 6 and t' € [t - 6", t]. By definition of e(t, 6), there exists a
triple (¢, g¢, hy) € H[£:](6) such that ej(hy < e(t, 8) + 6. Since H[f](6) c H[£¢](50),
there exists a triple {(ay, gy, hy) € H[f¢r](€) such that ej(hy) < e(he). Hence
e(t', €) < e(t, 6) + 0.

Let

e(t,e) = inf sup{e(t,e)|t' e [t- o, t]}.
5'< b

We shall show, for each t € I and each € > 0, that
(8) e(t, &) < &(t, &) < LiE|Cs®) + €.
Since e(t', £) < e(t, 6) + 6 for all ' < 6 and all t' € [t - &', t], the inequality
sup{e(t', &) |t e [t-06",t]} < el 6)+35,
holds, and therefore

e(t,e) = inf sup{e(t,e)|t' e [t-0",t]} < elt,d)+05 < L’;’(f lcg,(t)) +E.
6'< 6

Since

e(t, €) < sup {e(t', e)| t' € [t - &', t]}
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for each & < 6, it follows that e(t, €) < e(t, €).

We now show that for each fixed € > 0, the function e(t, €) is upper-semicontin-
uous from the left, that is,

lim sup e(t', €) < elt, €).
t'—t-0

Let E. = {t|e(t, €) < r}. Suppose t € E;.. There existsa 6'< & such that
supfe(t', )|t e [t-08",t]} <r.
Let t satisfy the inequality t - 6' < t < t, and let 83 be such that
[t - ag,ﬂ clt-2o',1t].
Then, for all &" < 6y,
sup{e(t", e)|t" € [t - 6", ]} < r.
Consequently,

inf sup{e(t",&)]t" e[t-05", &} < r.
5" < o

Thus, for each r, we have shown that if t € E, then there exists a 6'< 6 such that
ift-8"<t<Lt, thentekE,.

To complete the proof of the theorem, we observe that by a theorem proved in
[2, p. 325] a function upper-semicontinuous from the left is measurable. Since
e(t, €) is measurable for each € > 0, we conclude from (7) and (8) that Lrl’(f ICJ,(t))
is measurable on I.
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