INCOMPLETE ORTHOGONAL FAMILIES AND A RELATED
QUESTION ON ORTHOGONAL MATRICES

H. S. Shapiro
1. A QUESTION POSED BY W. KAPLAN

Wilfred Kaplan has asked the author the following question: If we are given an
incomplete orthogonal family of confinuous functions on some interval, is there
necessarily a nonnull confinuous function orthogonal to all the given functions?

In this note we shall show that the answer is negative, even when restrictions
stronger than continuity are imposed on the given functions. For definiteness we
shall construct our counterexample on the circle group I', that is, on the real num-
bers modulo 27; however, our method of construction is perfectly general.
(Throughout the paper, all functions and numbers are assumed to be real-valued;
but our results are also valid in the complex case.)

THEOREM 1. Corresponding to any { € LZ(I‘) of norm 1, theve exists a com-
plete orthonormal basis in L2(T") that contains f and whose vemaining elements are
trigonometric polynomials. If moreovey the Fourier coefficients of { (with vespect
to the usual trigonometric system) ave O(n-1/2), then the yremaining basis functions
are also uniformly bounded.

The following generalization of the first statement in Theorem 1 is also true:

THEOREM 2. Corresponding to any finite ovthonormal set of functions in L%T),
theve exists a complete ovthonormal basis in L2(T) that contains the given functions
and whose remaining elements are tvigonometric polynomials.

These theorems are consequences of a simple theorem concerning infinite
matrices. We shall say that the infinite matrix A = " ajj || (i,j=1, 2, --+) of real
numbers is orthogonal if its rows form an orthonormal basis for the Hilbert space
¢2. If A is orthogonal, so is AT. We denote by A, and A,; the ith row and jth
column, respectively, of A.

THEOREM 3. Let there be given n orthogonal unit vectors in 02, which we
wvite as row vectors

A ={a;} (A<i<e, 1<i<n).

Suppose the square matrix ”ai-ll (1 <i, j < n) is nonsingular. Then there exists an

infinite orthogonal matrix A = 1[ ajj|| with the given vectors as its first n rows and
with aj; =0 for j> i> n. _These conditions uniquely deteymine A. Movreover, in
the case n=1,i a; = O(\/_) the sums EJ 1 laij| (i=2, 3, ) are uniformly

bounded.

To see that Theorems 1 and 2 follow from this, let ¢n(x) (n =1, 2, ---) denote
the ntR function in the sequence 1, 2V2 cos x, 2V 2 sin x, 2V 2 cos 2x 2\/- 2 sin 2x,
Since {<¢>n(X)} is an orthonormal ba51s for LZ(I‘), the same is true of the system
Yox) = =7 anj¢;(x) whenever ||a.nJ | is an orthogonal matrix. Thus, to prove
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Theorem 1, one simply applies Theorem 3 to the row-vector A;, = {alj} , Where

ay; = (f, ¢;); Theorem 2 follows similarly. The only difficulty occurs if a;; = 0 (or,
in the case of Theorem 2, if the n X n matrix in question is singular). Since we can
however always find some a;;#* 0 (respectively, some nonvanishing n-rowed minor),
we have in this case only to renumber finitely many of the é; and then proceed in

the same way.

Proof of Theorem 3. We wish to adjoin rows so as to obtain an orthogonal ma-
trix subject to the restriction aj;= 0 for j> i> n. We verify first that this is pos-
sible in at most one way. Indeed, since the matrix ”aij” (1<i<n 1<j<n+1)
has by hypothesis rank n, A(n+1)* is uniquely determined by orthogonality and
normality. Once A ,;), has been determined, the matrix ||aij” 1<i<n+ 1,
1<j<n+2) has rank n + 1 and thus, by orthogonality and normality, A nt2)x 18
uniquely determined; and so forth. It remains only to show that the totality of the
A;, is complete in 22, For this, observe first that a&nm # 0 for m> n. Otherwise
it would follow that

-1

> a

i=1

ijamj =0 (1 = 1, eee, I - 1),

and this would contradict the nonvanishing of the (m - 1)-rowed principal minor of
A. Suppose now b is a vector orthogonal to all A;,. We can write b =Db' + b",
where b' is spanned by A, ***, A, and b}, =0 for m < n (subscripts denote the
components of b"). Since a,,,,, # 0, the orthogonality relations show in turn that
bpsi = bpsz = -+ = 0. Hence b" = 0. Since b' = b is orthogonal to A, **+, Ay, and
the matrix- ” ajj ” (1 <i, j <n) is nonsingular, we see also that b' = 0 and the
theorem is proved, except for the extra details in the case n = 1. For this one has
only to carry out the orthogonalization explicitly; since the calculation is routine,
we state only the result. (For the sake of easy notation we gave the matrix without
normalization.)

THEOREM 4. Let a,> 0, Z7a2 < . Then the vows of the matrix

B a, a, as a, ]
-a;a, aj 0 0
-a;a; -a,a, a%+a§ 0
-a;a, -a,a, -aza, aj+a,+az; -
-8 a5 -aa; -azag -d,384
L |

are mutually orthogonal, and complete in 0%, If the first row is multiplied by
=T a2)-1/2, and the mt? vow (m > 2) is multiplied by

m-1 m "1/;
(Fa)E2)]
1 1

the resullting matrix is ovthogonal.
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For m > 2, the elements of the mth row in the above array are

m-1

-a;a ., -aa ., ", -a, 2, Zl: aTZI, 0,0, .

Once we have arrived at the above matrix, it is of course a simple matter to prove
directly that it is orthogonal. Note that the sum of the absolute values of the ele-
ments in the mt? row (m> 2) is

m-1 m-1

2l T Jagls 2 2 < alafm - 020

where M? = E‘T a . Since the normalization constants remain between fixed positive
limits, the proof of Theorem 3 is complete,.

2. A REMARK CONCERNING BESSEL’S INEQUALITY

If {g, (x)} is an orthonormal set of functions in L2(T), then by Bessel’s in-
equality X (f, gn)2 < (£, f) for every f € LZ(I"). One may ask whether, in case both f
and the g have very high smoothness, it is possible to assert anything more of the
Fourier coefficients of f than that they be square-summable. The results of the
preceding section provide a negative answer to this question.

THEOREM 5. Corresponding to any numbers c,, with =¥ c3 < 1, there exists
an ovthonormal set {gn} of trigonometric polynomials such that (1, g,) = c,. If
c, = O(n*l/ 2), theve exist uniformly bounded g, with this property.

Proof. In the matrix of Theorem 4, choose as the first row a; =1, and for
n> 1,

2.1 a_,,=-@1- cf ceeem 2 V21 c‘.i‘ - e - crzl)'l/2 c (cy = 0).

n n-1 n

By an easy calculation, we get from (2.1)

m-1 m -1/2
(2.2) (-a, am)[ 27 azi> (E azi):l = C 1 (m> 2).
1 1
2 < w and also that

Note that (2.1) and the inequality 27" ¢ < 1 imply that Z7° a2
a, = O(n"l/z). The orthogonal matrix of Theorem 4 therefore has as its first
column (by (2.2))

oo 1/2
t, cy, €y, C3, -oe, where t = (1 -2 ci) .
1

Taking for g, the trigonometric polynomial determined by the (n + 1)St row of this
matrix (see the preceding section), we obtain the result.

The above construction has incidentally demonstrated the following proposition.
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THEOREM 6. Corresponding to any unit vector A, with a;; + 0 theve exists
an orvthogonal matrix A with A, as its first column, and with a;; = 0 for j> 1> 2.
The matrix A is uniquely determined.

3. SOME OPEN QUESTIONS

a) Theorem 5 is, in a way, not convincing, because the set {gn} is not complete;
indeed, it has deficiency one, and to complete it we must adjoin a function that has in
general no smoothness properties., One can therefore ask: given Z7 c% = 1, can we
find a complete orthonormal set {gn} and a function f of norm 1, such that f and
all g arein C*(T) and (f, g,) = c,? The approach used in Section 2 leads then to
the question: given a unit vector A,;, does there exist a row-finite orthogonal ma-
trix A, [that is, a matrix with aj;= 0 for j> J(i)] having A, as its first column?
We have not been able to answer this.

b) In Theorem 2, can we complete the given set of functions by adjoining uni-
formly bounded functions, say, of class C*? Even in Theorem 1, can we do this
without imposing any restriction on the Fourier coefficients of f?

¢) Can we find a complete orthonormal basis {g,} for L?(T'), and an f € L%(T"),
such that all functions are C* and the Fourier series of f with respect to the sys-
tem {gn} diverges at a point?
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