SUFFICIENT CONDITIONS FOR SEMICONTINUOUS
SURFACE INTEGRALS

L. Turner
1. INTRODUCTION

Semicontinuous parametric and nonparametric line integrals were introduced by
L. Tonelli [14] to aid in establishing existence theorems in the calculus of variations.
Following this procedure, McShane [9, 10] proved the first theorems on semicontinu-
ous parametric surface integrals for surfaces having Lipschitzian representations.
Subsequently, T. Rado [12] and L. Cesari [3] proved successively stronger theorems
(slightly later, but independently, P. V. Reichelderfer [13] published an intermediate
result; see also G. M. Ewing [7]). Cesari’s theorems deal with arbitrary surfaces
of finite area defined on the unit square.

A surface (T, Q) defined on the unit square Q is a mapping T of
Q= {(u, V): OSU, v_<__ 1}

into Euclidean three-space E3 = {(x, y, z)}. All mappings will be supposed contin-
uous in this paper. We shall say that (T, Q) is of bounded variation or has BV if it
has finite area.

We shall call a function of six variables f(x, y, z, J;, J;, J3) = f(p, J) a para-
metric integrand if it is continuous and positively homogeneous in J. If a BV sur-
face (T, Q) is absolutely continuous, then generalized Jacobians (see [5]) exist
almost everywhere in Q, and if f(p, J) is a parametric integrand bounded on T(Q),
the Lebesgue-Tonelli integral

(1) I(T, Q) = (Q) jf('r(w), J(w))du dv

exists, where J(w) = (J1, J2, J3) are the generalized Jacobians. This is the integral
used by Cesari. The other authors also used this integral; but they restricted them-
selves to mappings (T, Q) that have sufficiently well behaved Jacobians in the usual
sense.

Bouligand [1] showed that in the study of semicontinuous parametric line inte-
grals 5 f(x, X)dt, the usual conditions on the Weierstrass function can be replaced

by weaker conditions involving the convexity of f(x, X) in X for every x. Later
Aronszain (as reported by Pauc [11]) did the same for nonparametric line integrals.

Here, we shall continue the work of McShane, Rado, Reichelderfer, and Cesari
on surface integrals, generalizing their resulis in the following respects:

(1) The domain A of the surface (T, A) will be an arbitrary admissible set, as
defined by Cesari [5] and given below;

(2) Absolutely continuous representations of the surfaces will not be used. We
shall use the integral defined by Cesari [2], in the extended form given by Cesari
and Turner [6], for which no special representation is necessary;
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(3) All conditions that were imposed by previous authors on the Weierstrass
function and that presuppose the existence of the partial derivatives 2f(x, J)/2J;
will be replaced by weaker hypotheses involving the convexity of f(x, J) with
respect to J.

2. NOTATION

Unless otherwise stated, all results of this section may be found in [5]. We shall
denote the interior of a set A by A°. Let (T, A): A — E3 be a continuous surface
(mapping) of finite area, where A is an admissible set in the sense of Cesari; that
is, where A is either an open set in the plane, or A is a pairwise disjoint union of
sets of the form A=Jg - (Jy +Jp + J3 + ==+ J)° where Jg, *++, J¢ are Jordan re-
gions, J1, *-*, Js are pairwise disjoint and each J;, *=*, J_-is a subset of J§ (if the
boundary curves J* are polygons, we will call such a domam a figure), or A is an
ogen subset of such a set. Let tj, tp, t3 be the functions that orthogonally project

onto the yz-, zx-, and xy-planes, respectively, (we shall call these planes
E;, E;, E;) andlet T =t .T. Let # C A be a simple polygonal region, n* the
oriented boundary of 1r and Chr = T.(7*) the closed oriented projection of 7* in
Er. Let O*(p, Cpr) = (|o| +0)/2, O (p; Crz) = (|O] - ©O)/2. We shall always let S
represent a finite set of simple nonoverlapping polygonal regions # € A. For
p € E;, let

N(p, T,) = sup 2 |O(p; Cp)],
(S) mesS

N*(p, T,) = sup 2 O*(p; C,),
(S) mes

N~(p; T,) = sup 27 O (p; C,_),

(S) wes
) = E) §oms cp), vem =@ o cpl,

1/2 /z

2

2 2 241
u(m) = (uy + uz + u3) , v(m) = (V]_ + Vz + v3)

where the integrations are taken with respect to two dimensional Lebesgue measure.
Now N=N'+ N~ everywhere in the plane except at a countable number of points,
and Nt and N~ are both finite almost everywhere. Let n(p: T) = NT - N~, where
Nt and N~ are not simultaneously infinite, let n = 0 where N* = N~ = o, The area

or total variation of the plane mapping (T, A) is W(T,, A) = (E,) SN(p; T,.). The

positive, negative, and relative variations are defined by

WHT,, A) = (8,) | Nt T,);

W (T, A) = (B,) | N~(; T,);
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V(T,, &) = (8) {n(;T,);

and V=Wt - W-. If W(T,, A) < +o (r =1, 2, 3), we say that (T, A) is a BV sur-
face. The Geocze area of (T, A) is

U(T, A) = sup 27 u(n) = sup 2o v(n).
(S) mes (S) mes

We defined the oriented curves C,, above. Let [C;.] be the set covered by
C;r. Let absolute value signs denote Lebesgue measure. For every system S as-
sociated with (T, A) we define three indices d, m, ¢ as

d(S) = max{diam T(z): 7 € S} ;

m(S) = max{ | 2[c, l|;r=1, 2, 3};
T

1(S) = max{ U(T, A) - 27 u(n), U(T,, A) - 22 |u.(@)]: r=1, 2, 3}.
i il

For every surface (T, A) and each € > 0 there exist systems S with indices
d, m, p <e.

Let f(p, J) be a parametric integrand bounded on T(A). Cesari defined the fol-
lowing integral by the limit, which he proved exists,

() H(T, A; ©) = lim 25 f(pg, u, (m), u,(m), us(m),
mES

where p; is any point of T(7) and the limit is taken as d, m, p tend to zero. Let
V(m) = (V(Tq, m), V(T,, ), V(T3, m). In[15], it was shown that H(T, A; f) could be
defined by

H(T, A; f) = lim 2 f(pg, V)
mTES

with p. and the limit taken as before. Also, if o = (ozij) is an orthogonal matrix
and T = aT, then

where g(p, J) = fla~! P, a 1),

Let (T, A) be a BV surface. Let I'(A) be the set of all components g © A of
T'l(p) as p varies over all T(A). Let ¥, &, B, be the class of all subsets of A
that, respectively, are unions of the g € I'(A) and open in A, are compact, and are
Borel sets.

Let K be any element of &, and define
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#(K) = inf{U(T, G): GO K, Ge ¢},
¢ (K) = inf{W" (T, GQ): GD K, Ge. G},
© ¢7(K) = inf{W (T, G):GDK,Ge G},
V.(K) = ¢1(K) - ¢7(K) .

In [4, 5] Cesari showed that these are measures if A is compact. This result was
extended to any admissible set A in [16]. It was also shown in [16] that ¢% and ¢
are mutually singular and therefore form a Jordan decomposition of V.. Moreover,
for any K € &,

$(K) = sup{ Z[V3(B) + VZ(B) + V2(B)]'/2},

where the sum is taken over all members B of a decomposition of K into disjoint
sets of #; and the supremum is taken over all such partitions of K. This makes
V. absolutely continuous with respect to ¢, so we may take a Radon-Nikodym de-
rivative 6.(w) = dV,. /d¢. It is shown in [6] that

/2 =1 a.e. (¢).

2 2.1

loll = 63 + 0% + 63)

We may define a surface integral over (T, A) with respect to a bounded parametric
integrand f as

@ KT, A5 9 = (&) | €TW), o(w) dg.

It is shown in [6] that this integral coincides with (1).

We will need more results proved in [6]. Let B C A be an admissible set so that
(T, B) is also a BV surface. Let I'(B) be the collection of maximal components of
constancy for this mapping. Let I'*(B) be the set of all g € I'(B) that are continua
and contained in B® and let B be the set covered by I'*(B). Then I'*(B) c T'(B);
B is open in the plane and V(T, B) = V(T, B). Furthermore there are o-algebras
of Borel sets corresponding to the mappings (T, B) and (T, B) and also measures
defined for these mappings which are analogous to (3). But the o-algebra %; for
(T, B) is a subalgebra of A and also a subalgebra of that for (T, B), and the
similarly defined measures for (T, B), (T, B) and (T, A) are identical on %, ;
hence we will not introduce new notation for these measures or the Radon-Nikodym
derivatives for (T, B). Thus for the bounded parametric integrand f,

i, B; 9 = (9 1Tw), 6(w) dg.

An elementary fact which we will need is that if (T, A) is a BV mapping, then
for any € > 0 there is a compact admissible set B ¢ A such that

V(T, A) - V(T, By < ¢.

In fact B may be chosen to be a figure.
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3. SOME LEMMAS

The concepts of normal integrand and regular integrand are old. The terms
semi-regular and semi-normal have also been used. We shall employ the following
definitions of these concepts already used by W. Fleming and L. C. Young [8].

Definition 1. The integrand f(x, J) is called positive semi-regular at xg (on a
set D C E3) if f(xg, J) is convex in J (for all xg € D).

Definition 2. The integrand f(x, J) is called positive semi-normal (henceforth
PSN) at xq (on a set D c EJ) if f(x, J) is positive semi-regular at x and
f(xg, J) + f(xg, -J) > 0 for all J# 0 (and all xg € D).

LEMMA 1. Lef i(x, J) be PSN at x,. Then the set H of all d = (d,, d,, d3)

such that
fxg, H> (A, I =d;IJ;+d,J,+d3J,

for all J is convex, closed and has a nonvoid intevior. Moveovey, if d € H has
distance T from the boundary of H, then f(xy, J) > (d, J) + T”J" for all J,

Proof. Suppose first that f(xy, J) > 0 for all J. Then d =0 € H, so H is non-
void. Moreover, if d!, d2 € H and 0 < @ < 1, then

f(xg, J) - (@d! + (1 - @)d?, J) = a[f(xq, I) - (@, D]+ (1 - @) [f(xg, ) - (@5 H]>0

for all J. Hence H is convex. If H had no interior, then H would be contained in a
2-dimensional manifold of E3 since (0, 0, 0) € H. Then there would be a vector
c € H such that (¢, d) = 0 for all d € H.

Now f(xg, c¢) + f(xg, -c) > 0 so we may suppose that f(xg, ¢) > 0. But, f(xq, J)
being convex in J, there exists a linear function of J, say

(d, J) = lel + d2J2+ d3J3, :

such that f(xg, J)> (d, J) for all J and f(x(, ¢) = (d, ¢). Then d € H so (d, ¢) = 0,
but with J = ¢ it must also be that f(x(, ¢) = (d, ¢) > 0, which is a contradiction.
Thus H has an interior. It is obvious that H is closed.

Now suppose d € H has distance 7 from the boundary of H. Then for any J, let
d*=d+ 73/|J|| € H. Then
f(XO’ J) - (d: J) = f(XO, J) - (d*’ J) + (d* - d’ J) Z T”J”

as desired.

For an arbitrary PSN function f(xg, J), let d' be such that f(xg, J) > (d', J) for
all J, and let f'(xq, J) = f(xq, J) - (d', J), so that f' is PSN at xg and f'(xg, J) > 0
for all J. Let H' and H be the sets defined above for f' and f, respectively. Then

f(xq, J) - (d+ ', J) = £(xg, J) - (d, J)

implies that H= d'+ H', and the desired properties of H follow immediately from
those of H'.

LEMMA 2. Let f(x, J) be PSN at xo. Let ||Jg||= 1. Then for every € > 0
there exist a 6> 0 and a d € E3 such that
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(a) i(x, J)> (d, J) for all I if ”x - xo” < 8; and

(b) £(x, J) < (4, ) + ¢ if |T-JTol|<9, [|I]|=1, and ||x - x0| < o.

Proof. Let z(J) = (d*, J) be a supporting function for f(xq, J) at J = Jg. Thus
f(xg, J) > (d*, J) for all J and f(xg, Jg) = (d*, Jg). Let H be the convex body de-
fined in Lemma 1. Then d* € H is a boundary point of H. Let d be an interior
point of H with ]Id - d* ” < ¢/3. LetT > 0 be the distance from d to the boundary
of H, so 7 < ¢/3. Now by the continuity of f(x, J), there isa 6> 0 with
6<¢g/3 ||d|r—such that

[1(x, J) - £(xq, Jo)| < &/3 if [|x - xq]| <0, |- o<
and
|f(x, J) - f(xg, )| <7 forall [|J] =1 if ||x- xqf< 5.
Thus if ||x - xo]|< 6 and ||J- Jp] <5,
i(x, J) - (d, I) = [{(x, I) - f(xg, Q)] + [£(xg, Tg) - (d*, Jp)]
+ (d* - d, Jo) + (d, JO - J)
<€/3+0+¢/3+¢/3=¢;
and if ||J|| =1 and ||x - x¢|| < 5, then
£(x, J) - (d, J) = [f(x, J) - £(xg, I)] + [f(xg, I) - (d, D] > -7+ 7||J]| = 0.

LEMMA 3. Let (Tg, A) be a BV plane mapping, Tg(u, v) = (x(u, v), y(u, v)).
Then fov every € > 0 theve exists a &> 0 with the following propevty:

If (T, A) is another BV plane mapping into the x - y plane with
”T(W) - To(w) ” < 6 for all w € A, then theve exists an 1> 0 such that for all
systems S with indices d, m, p < n with respect to (T, A), theve exists a subsys-
tem S' with
!
|V(Ty, A) - 22 V(T, @) < e,

wheve Z' denotes a sum over all q € S'.

Proof. Let v(r> 0, 7< €/8) be such that

(@ | N(; T, &) <e/8
for every measurable set G C E; with |G| < 1. Let S* be a system of polygonal
regions t ¢ A with indices d, m, u < 7. Then, if Z* denotes a sum over all t € S*
and C,; is the closed curve T (t*) which is oriented as t* is,

0 < U(Ty, A) - 27 v(t, Ty) < U(Ty, A) - 2 |ult, Tg)| < 7.

Hence

0 < @) { N@; T, &) - T7@,) (o copl <7,
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axllld the set H§ c E, where N(p; T, A) > Z* |O(p; Cy,)| has measure |H§|< 7.
Thus .

sk
n(p; Ty, A) = 27 O(p; Co¢) forall p€E, - Hf - Dy = E, - Hy,
where Hy = H( + Dy and Dy is the set of measure zero where
n(p; Ty, A) # N¥(p; Ty, A) - N~ (p; Tp, A).

Moreover, n(p; Tq, t) = O(p; Cgp except in [Co¢]. Thus if B = Z*[Cq.], then
|B| < 7, and

|V(Ty, A) - Z)*V(To, t) |

@) s To, &) - T (®)  ntos Ty, 1)

B+ 1) (ne; Ty, 4) - Z7n; Ty, 0]
< B+ 1) [ IN'0; To, &) - TN s T, 0]
+ (B + Hy) ([ [N°(03 To, &) - T7N-(0; Ty, 0]

- B+ 1) § NG Ty, 8) - TN T, 0] < 2

Let By be the closed p neighborhood of B. Then lim ]Bpl = IBI <7 as p—0.
Therefore for some 6> 0, |Bp| < 7 for all p satisfying the condition 0 < p < 24.

Let (T, A) be any BV plane mapping into E, such that fT(w) - To (W)l < & for
all we A, Let A> 0 be such that (G)SN(p; T, A) <¢/8 for GC E,, fo < A

Since lim [By - Bg| =0 as vy — &%, there is a y satisfying the conditions
0<6<y<26and B, - Bs| <A

Let 7 = min(x, v - 6, 7), and let S be any system of polygonal regions 7 C A
with indices d, m, yu < n with respect to (T, A). Let S; denote the set of those
7 € S such that #t # 0, and let t' = t° + Z,7°, where Z; denotes a sum over all
7 € S;. Then t'D t°, and

N(p; T, t') > N(p; T, t°) = N(p; T, t) forall p € E,.

Let E{" denote a sum over all 7 ¢ S¢ and 2 denote a sum over all 7 € S. Now
0<W(T, 8) - Z|vir, D = &) { (NG, T, &) - T |ow; Coll<n<7<.

Thus the set H* where N(p; T, A) - Z|O(p; Cq)| > 0 has measure |H*|<&/8. But
N(p; T, A) - 22 |0(; Cp)| > [N(p; T, t") - 23, |O(p, Cp) ]

+ E:[N(p; T, m) -~ |O(p; Cp 1 > 0
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everywhere in E;. (Note that N(p; T, A) is super-additive as a function of A.)
Thus if Hf is the set where N(p; T, t') > Z,|O(p; Cp)|, then Hf ¢ H*. Let Sl c S;
be the set of all 7 € S; such that T(m)Bg = 0. If #t* # 0, then T(n)Bs # 0 since, for
some point w € nt*, IrT(W) - To(w) ” < 6 and T(w) € Bs since Ty(w) € B. Thus
m C t° for every 7 € S{. Also if 7 € S; - S, then T(n)Bg # 0 and T(r) C B, since
diam[T(m)] < n <y - 8; thus O(p; C;) =0 for all pe E, - B.,. Therefore
t
N(p; T, t') = Eth(p; Cﬂ)l for all p € E, - By - H::,
where Z[ denotes a sum over all 7 € S}. But
]
N(p; T, t') > N(p, T, t) > 27, |O(p; C)|
everywhere in Ej, so N(p; T, t) = 2t |O(p; C,)| for all p € Ez - B, - H{. Hence

n(p; T, t) = Z{O(p; Cy) for all p € E} - B, - H;; here H; = H + Dy, and D; is the
set of measure zero where

n(p; T, t) # N*(p; T, t) - N"(p; T, t).

A fundamental theorem concerning the topological index states that if Cy, C are two
closed curves with Frechet distance " Co, G || < 8 and p € E, has distance at least

6 from Cg, then O(p; Cp) = O(p; C;). Thus, since || Cis Cot ” <9,
n(p; T, t) = O(p; C;) = O(p; Cpyy) = n(p; Ty, t) for all p € E, - Bp.

Therefore n(p; Ty, t) = Z{O(p; C;) for all p e E, - B, - H,.

Let K= Z*H;. Then Z*N(p; T, t) = Z*Z,|O(p; C;)| for all p € E, - B, - K.
Moreover, |K|<n< 71 and |K|< 5 < A, since

K=2" D+ H)c L' Dy+ H* and |K|< |2 Dy + [B*| = |B*| < 9.
Therefore
Z* n(p; Tg, ) = 2 Tinlp; T, m)

for all pe E, - B, - F - K, where F = Z[Cy] and |F|<5 <7, |F|<n< A Let
S' = Z*S!, and let Z' denote a sum over S'. Then

|V(Tg, A) - ' V(T, M| < |V(Tq, A) - Z*V(To, O]+ | Z*V(Ty, t) - 2 (T, m|

< 1w §[ B0 B, 0]

=i @y +k+ B § [ZFnm; T, 0 - Do T, M | |

< %+ (B, + K+ F) SN(p; Tg, A) + (By + K+ F) SZ)'N(p; T, m)
< %EJF (K + F) SN(p; T, A) + (By - Bp) SN(p; T, A)
S -5£+2§+8
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4, SEMICONTINUITY THEOREMS

Let (Ty, Ag) and (T, A) be two surfaces. Let us recall the definition of
(Fréchet) distance between these surfaces. This is defined if and only if there is a
sense preserving homeomorphism ¢ from A, to A. In this case the distance is
defined to be

inf sup ”To(w) - T(o(w)) "
{0‘} W€ Ay

The infimum is taken over all such homeomorphisms o. H this distance is zero, we
regard (T, Ag) and (T, A) as representing the same Fréchet surface. This is rea-
sonable since they have the same area (see [5]), and the integral (4) over each is the
same (see [6]). Then with o, (T, Ag), and (T, A) as above, the second surface has
a representation (To, Ag) with Ay as domain. Thus any surface whose distance
from (T, Ap) is defined may be regarded as having domain Ay. Moreover, it is
obviously true that the class of all surfaces whose distance from (Ty, Ag) is less
than 6 consists of all surfaces with a representation (T, Ay) such that

| Tow) - T(w)|| < 6 for all w € A.

Thus we may, in discussions of semicontinuous integrals, regard all surfaces as
having the same domain.

THEOREM 1. Suppose f(p, J) is a parametric integrand defined on E®. Suppose
(T, A) is a BV surface. Suppose that for some p > 0, the set

U = {p: dist (Ty(4), p) < p}

is such that f(p, J) > 0 for all J if p € U. Suppose f(p, J) is uniformly continuous
and uniformly bounded on Z = {(p, N): p € U, ||J]| = 1}. Suppose that almost every
(po)wWo € A has the property that, for each € > 0, theve exist a 0> 0 and a linear
Junction Yo(J) = (bg, J) such that if [|p - To(Wo)" < po,

(a) f(p, J) P \DO(J) Sfor all J, and
®) £p, I < o +e|I| i Ilﬁ- 6o (wo) || < o,

wheve ¢ is the measuve induced on A by (T, A) and 6g = (0g1, 092, 0939 are the
associated Radon- Nikodym dervivatives. Then I(T, A) = (A) Sf(p, J)d¢ is lower

semi-continuous at (T, A) in the class of all surfaces (T, A) comparable to
(TO, A).

Proof. Let M be such that M > sup{f(p, J): (p, J) € Z} and M > U(Ty, A). Let
€ > 0 be given. By Lusin’s theorem, there is a compact set F Cc A with F € &,
where &g is the class of Borel subsets corresponding to (T g, A), such that
po(A - F) <eg/(6M), 9g(w) is continuous on F, ” ] (w)” =1 on F, and every con-
tinnum g C F with g € I' has the property that there exist a p' > 0 and a function
¥(J) = (b, J) such that if ||p - Ty(g) | < p',

f(p, J) > ¥(J) for all J and
(5)

o, N < W@ + 52z 3] it ”T}IT - 00| <o
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Given g C F with g € T", let p' and ¥(J) = (b, J) be the constant and function de-
fined relative to g above. For every w' € g, there is a 6' > 0 such that

[ Tow) = Towh | = || To(w) - To) ]| <p¥/2 if |w-w'|< 8 and
006 - 00| = 660w - 60@ [ <p 1f - wi <8, weF.

The circles {w: |w - w'|| < 6'} cover g as w' varies in g. Since g is compact, a
finite number cover g. Let the union of the members of such a cover be G(g), and
let H(g) be the open set consisting of all continua of constancy contained in G(g).
Thus H(g) € 9. Therefore, if dist(p, ToH(g)) < p'/,, there is a w' € H(g) such that
| Tow') - p|| < p'/,. Thus

Ip - To@| < llp- Tow) |+ [[Tow) - To@| < 0/ + 0¥ 2= 0"
hence, from (5),

f(p, J) > Y(J) for all J, and
(6)

£(p, 6o (W)) < W(6y(W) + g3z if w € H@)F .

The open sets H(g) cover F. Therefore, there are a finite number that cover F
since F is compact. Let the members of such a cover be Hj = H(g;) (j=1, ---, ),
and let the associated constants and functions be p j and ¥ J-(J) = (bJ-, J). Then the
inequality ”b J” < M follows from the inequalities

bj L R
z o(mep ) = (i) - Il

The sets H; are open and therefore admissible. Let K; be a figure, K; C H;j,
such that ¢o(H}) - U(Tp, Ky) <e/(6Mv). Let K; be the compact set that is the union
of all continua g € ' which intersect Kj. Thus Kj; € #p and K; < K1 Hj. Then
H; - K; is open in E;; hence it is admissible. Similarly, for i= 2, 3, «--, v, let Kj
be a figure K;c H; - (Kq+ - + K;_7) such that

¢0[Hi - (ﬁl + e + Ki—l)] - U(Toy Ki) < £/(6Mv) i=2,--,v),
and let Ri be the union of all continua g € I" that intersect K;. Then the figures

K; =1, -+, v) are disjoint, and

14
0 < U(T,, A) - 22 U(T,, K;)

j=1
14
(7) < $o(F) + 537 - 20 U(Ty, K)
j=1
1%
< Go(H) + - + HyY) - 21 U(Ty, K;) + Esiﬁ

j=1
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S ¢O(H1) + (bo(HZ - Hl) + e + ¢0[HV - (Hl + Hz‘l' e + HV—-I)]

€ 2e

- EU(TO, Kj + o™ < M-

j=1
Let Pj= = FK;, so Pj€ B, Let D= zJ?’zl (1?;j -P)C A - F, so ¢o(D) < £/(6M).
Also

14 14 v
d)O(A - Z;], f{_]) ¢O(A) - Z; ¢0(KJ) = U(TO’ A) - E U(TO, K) <
J= j=1

from (7). Therefore, using (6), we see that

14
(Tg, A) = > &) {trow), 096w apg + (A -z Kj) { #row), 0o(w)) dgo
J=

i=1

< T @) § o, ooty + ©) § i(To), o) a + /3
j=1

OD]C"I

® _<_JEI(P>S[b 90 W) + 557 | s + 5

14
2 & 1oy 00 1dsg + ) § by 00w adg + 5
J=

v
2 5¢
< 20 (by; Vo(Ky) + 5,
J:
If b;# 0, let A; be the normal plane to bj, and let it be the plane z =0 if b; = 0.

Let a; be any linear orthogonal transformation of E3 into itself:

o;(x, 5, 2) = (§n, §),
E=aj1x+a,y+0a;32,
N=0Q,1X+ 0,y +0,3%,
§=031X+0Q32y +0332,
with ¢ = 0 the plane Aj. Then (31, @32, ®@33) is a positive multiple of bj, and

aJ(bJ) = (0, O, ”b_] ”) Let (To, Kj) = (@;jTo, Kj), and consider the plane mapping
(T03, K) of the 5 into the planes Aje

Use ¢/(6Mv) in Lemma 3 with these mappings, and obtain constants 65. Let
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fie]
c_mm{5M,p, 5 tji=1, "-,V} .

Let (T, A) be any surface defined on A such that "T(w) - To(w) ” < o for all w € A,
Let (T', X;j) = (2; T, Kj), and let (T3, K; j) be the corresponding mappings of K; into
E3 and A, 5 respectlvely Then by Lemma 3, there exist constants n;j such that to
every f1n1te system S; of qC H with 1nd1ces d, m, p < Mj» there corresponds a sub-
system S such that

© lv(r: Z) (TS, )| < oo,

03’

where Z} denotes the sum over all q € S}.

Notice that T(K;) is contained in the p;j /2-neighborhood of the set To(H;), so that
inequality (5) holds for all p € T(K; ). Let ¢> denote the measure corresponding to
(T, A) and let 9(w) be the assoc1ated Radon-Nikodym derivative. Then, since
f(b, J) > 0,

14
I(T, A) > EZ;I(T, q)
j=1

L t
- L2 @ | (v, o) de

vV
T

2 Z; @ § 5, 0m a9

M«

[b 235 V(q)]

II
-

J

where V(§) = (V1(4), V,(d), V3(4)).
From (8),

v ]
KT, 4) - [To, &) > 2 by (T, vi@) - vo(&y) -
j=1

The inner products b;- [273 V(§) - Vy (f{j)] can be evaluated in the (£, n, £) coordi-
nate systems. Hence

| b; (E; v(4) - Vo(f{j))l = o]l 1235 v(TS, @ - V(Ths, Ky < 38;

from (9). Therefore

KT, A) - I(To, A) > -X_ %= ¢,

and I(T, A) is lower semicontinuous at (Tg, A) as desired.



SEMICONTINUOUS SURFACE INTEGRALS 205

The statement of Theorem 1 can be simplified if slightly stronger hypotheses and
the definition of a PSN integrand are used. Thus the following theorem is an imme-
diate consequence of Theorem 1 and Lemma 2.

THEOREM 2. Let f(p, J) be a paramelric integrand that is PSN for all p € E3
and £(p, J) > 0 for all (p, J) € E®, Let (Tg, A) be a BV surface, and let f(p, J) for
”J ” = 1 be bounded in a neighbovhood of Ty (A). Then the integral I(Tq, A) is lowey
semicontinuous at (T, A).

Weaker lower semicontinuity theorems can be proved if f(p, J) is only semi-
regular.

THEOREM 3. Let {(p, J) be a positive semiregulay integrand. Let (T, A) be
a BV suvface such that for ||J ” =1, {(p, J) is bounded in some neighborhood of
To(A). Then I(Tq, A) is lower semicontinuous in every class of suvfaces with uni-
Jormly bounded avea.

Proof. Let o be a class of surfaces with areas less than L for some fixed
constant L. Given € > 0, let f*(p, J) = f(p, J) + € || J[|[/(2L). Then f* satisfies the
hypotheses of Theorem 2. Thus there is a 6 such that if (T, A) is a surface whose
distance from (T, A) is less than 0,

I(T, A; %) - I(Ty, A; £*) > -g/2.
Thus
(T, A; f) - I(Ty, A; £) = T, A; £*) - (T, A; £%) - eU(T, A)/(2L) + e U(Tg, A)/(2L)

> -g/2-¢/2 = -¢, if (T, A) € .
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