SUFFICIENT CONDITIONS FOR SEMICONTINUOUS SURFACE INTEGRALS

L. Turner

1. INTRODUCTION

Semicontinuous parametric and nonparametric line integrals were introduced by L. Tonelli [14] to aid in establishing existence theorems in the calculus of variations. Following this procedure, McShane [9, 10] proved the first theorems on semicontinuous parametric surface integrals for surfaces having Lipschitzian representations. Subsequently, T. Rado [12] and L. Cesari [3] proved successively stronger theorems (slightly later, but independently, P. V. Reichelderfer [13] published an intermediate result; see also G. M. Ewing [7]). Cesari's theorems deal with arbitrary surfaces of finite area defined on the unit square.

A surface (T, Q) defined on the unit square Q is a mapping T of

$$Q = \{(u, v): 0 \le u, v \le 1\}$$

into Euclidean three-space $E^3 = \{(x, y, z)\}$. All mappings will be supposed continuous in this paper. We shall say that (T, Q) is of bounded variation or has BV if it has finite area.

We shall call a function of six variables $f(x, y, z, J_1, J_2, J_3) = f(p, J)$ a parametric integrand if it is continuous and positively homogeneous in J. If a BV surface (T, Q) is absolutely continuous, then generalized Jacobians (see [5]) exist almost everywhere in Q, and if f(p, J) is a parametric integrand bounded on T(Q), the Lebesgue-Tonelli integral

(1)
$$I(T, Q) = (Q) \int f(T(w), J(w)) du dv$$

exists, where $J(w) = (J_1, J_2, J_3)$ are the generalized Jacobians. This is the integral used by Cesari. The other authors also used this integral; but they restricted themselves to mappings (T, Q) that have sufficiently well behaved Jacobians in the usual sense.

Bouligand [1] showed that in the study of semicontinuous parametric line integrals $\int f(x, \dot{x}) dt$, the usual conditions on the Weierstrass function can be replaced by weaker conditions involving the convexity of $f(x, \dot{x})$ in \dot{x} for every x. Later Aronszain (as reported by Pauc [11]) did the same for nonparametric line integrals.

Here, we shall continue the work of McShane, Rado, Reichelderfer, and Cesari on surface integrals, generalizing their results in the following respects:

- (1) The domain A of the surface (T, A) will be an arbitrary admissible set, as defined by Cesari [5] and given below;
- (2) Absolutely continuous representations of the surfaces will not be used. We shall use the integral defined by Cesari [2], in the extended form given by Cesari and Turner [6], for which no special representation is necessary;

L. TURNER

(3) All conditions that were imposed by previous authors on the Weierstrass function and that presuppose the existence of the partial derivatives $\partial f(x, J)/\partial J_i$ will be replaced by weaker hypotheses involving the convexity of f(x, J) with respect to J.

2. NOTATION

Unless otherwise stated, all results of this section may be found in [5]. We shall denote the interior of a set A by A°. Let (T,A): $A \to E^3$ be a continuous surface (mapping) of finite area, where A is an admissible set in the sense of Cesari; that is, where A is either an open set in the plane, or A is a pairwise disjoint union of sets of the form $A = J_0 - (J_1 + J_2 + J_3 + \cdots + J_s)^\circ$ where J_0, \cdots, J_s are Jordan regions, J_1, \cdots, J_s are pairwise disjoint and each J_1, \cdots, J_s is a subset of J_0° (if the boundary curves J_n^* are polygons, we will call such a domain a figure), or A is an open subset of such a set. Let t_1, t_2, t_3 be the functions that orthogonally project E^3 onto the yz-, zx-, and xy-planes, respectively, (we shall call these planes E_1, E_2, E_3) and let $T_r = t_r T$. Let $\pi \subset A$ be a simple polygonal region, π^* the oriented boundary of π , and $C_{\pi r} = T_r(\pi^*)$ the closed oriented projection of π^* in E_r . Let $O^+(p, C_{\pi r}) = (|O| + O)/2$, $O^-(p; C_{\pi r}) = (|O| - O)/2$. We shall always let S represent a finite set of simple nonoverlapping polygonal regions $\pi \subset A$. For $p \in E_r$, let

$$N(p, T_r) = \sup_{(S)} \sum_{\pi \in S} |O(p; C_{\pi r})|,$$

$$N^+(p, T_r) = \sup_{(S)} \sum_{\pi \in S} O^+(p; C_{\pi r}),$$

$$N^-(p; T_r) = \sup_{(S)} \sum_{\pi \in S} O^-(p; C_{\pi r}),$$

$$u_r(\pi) = (E_r) \int_{(S)} O(p; C_{\pi r}), \quad v_r(\pi) = (E_r) \int_{(S)} |O(p; C_{\pi r})|,$$

$$u(\pi) = (u_1^2 + u_2^2 + u_3^2)^{1/2}, \quad v(\pi) = (v_1^2 + v_2^2 + v_3^2)^{1/2},$$

where the integrations are taken with respect to two dimensional Lebesgue measure. Now $N=N^++N^-$ everywhere in the plane except at a countable number of points, and N^+ and N^- are both finite almost everywhere. Let $n(p:T)=N^+-N^-$, where N^+ and N^- are not simultaneously infinite, let n=0 where $N^+=N^-=\infty$. The area or total variation of the plane mapping (T_r,A) is $W(T_r,A)=(E_r)\int N(p;T_r)$. The positive, negative, and relative variations are defined by

$$W^{+}(T_{r}, A) = (E_{r}) \int N^{+}(p; T_{r});$$

 $W^{-}(T_{r}, A) = (E_{r}) \int N^{-}(p; T_{r});$

$$V(T_r, A) = (E_r) \int n(p; T_r);$$

and $V = W^+ - W^-$. If $W(T_r, A) < +\infty$ (r = 1, 2, 3), we say that (T, A) is a BV surface. The Geocze area of (T, A) is

$$U(T, A) = \sup_{(S)} \sum_{\pi \in S} u(\pi) = \sup_{(S)} \sum_{\pi \in S} v(\pi).$$

We defined the oriented curves $C_{\pi r}$ above. Let $[C_{\pi r}]$ be the set covered by $C_{\pi r}$. Let absolute value signs denote Lebesgue measure. For every system S associated with (T, A) we define three indices d, m, μ as

$$d(S) = \max \{ \text{diam } T(\pi) : \pi \in S \};$$

m(S) = max {
$$|\sum_{\pi} [C_{\pi r}]|$$
; r = 1, 2, 3};

$$\mu(S) = \max \{ U(T, A) - \sum_{\pi} u(\pi), U(T_r, A) - \sum_{\pi} |u_r(\pi)| : r = 1, 2, 3 \}.$$

For every surface (T, A) and each $\epsilon>0$ there exist systems S with indices d, m, $\mu<\epsilon$.

Let f(p, J) be a parametric integrand bounded on T(A). Cesari defined the following integral by the limit, which he proved exists,

(2)
$$H(T, A; f) = \lim_{\pi \in S} \sum_{\pi \in S} f(p_{\pi}, u_{1}(\pi), u_{2}(\pi), u_{3}(\pi)),$$

where p_{π} is any point of $T(\pi)$ and the limit is taken as d, m, μ tend to zero. Let $V(\pi) = (V(T_1, \pi), V(T_2, \pi), V(T_3, \pi))$. In [15], it was shown that H(T, A; f) could be defined by

$$H(T, A; f) = \lim_{\pi \in S} \sum_{\pi \in S} f(p_{\pi}, v(\pi))$$

with p_{\pi} and the limit taken as before. Also, if $\alpha=(\alpha_{ij})$ is an orthogonal matrix and $\widetilde{T}=\alpha T$, then

$$H(\widetilde{T}, A; g) = H(T, A; f)$$
,

where $g(p, J) = f(\alpha^{-1}p, \alpha^{-1}J)$.

Let (T, A) be a BV surface. Let $\Gamma(A)$ be the set of all components $g \subset A$ of $T^{-1}(p)$ as p varies over all T(A). Let \mathscr{G} , \mathscr{F} , \mathscr{B}_0 be the class of all subsets of A that, respectively, are unions of the $g \in \Gamma(A)$ and open in A, are compact, and are Borel sets.

Let K be any element of \mathcal{B}_0 , and define

196 L. TURNER

$$\phi(K) = \inf \{ U(T, G) : G \supset K, G \in \mathscr{G} \},$$

$$\phi_{r}^{+}(K) = \inf \{ W^{+}(T_{r}, G) : G \supset K, G \in \mathscr{G} \},$$

$$\phi_{r}^{-}(K) = \inf \{ W^{-}(T_{r}, G) : G \supset K, G \in \mathscr{G} \},$$

$$V_{r}(K) = \phi_{r}^{+}(K) - \phi_{r}^{-}(K).$$

In [4, 5] Cesari showed that these are measures if A is compact. This result was extended to any admissible set A in [16]. It was also shown in [16] that ϕ_r^+ and ϕ_r^- are mutually singular and therefore form a Jordan decomposition of V_r . Moreover, for any $K \in \mathcal{B}_0$,

$$\phi(K) = \sup \left\{ \sum [V_1^2(B) + V_2^2(B) + V_3^2(B)]^{1/2} \right\},\,$$

where the sum is taken over all members B of a decomposition of K into disjoint sets of \mathcal{B}_0 and the supremum is taken over all such partitions of K. This makes V_r absolutely continuous with respect to ϕ , so we may take a Radon-Nikodym derivative $\theta_r(w) = dV_r/d\phi$. It is shown in $\begin{bmatrix} 6 \end{bmatrix}$ that

$$\|\theta\| = (\theta_1^2 + \theta_2^2 + \theta_3^2)^{1/2} = 1$$
 a.e. (ϕ) .

We may define a surface integral over (T, A) with respect to a bounded parametric integrand f as

(4)
$$I(T, A; f) = (A) \int f(T(w), \theta(w)) d\phi.$$

It is shown in [6] that this integral coincides with (1).

We will need more results proved in [6]. Let $B \subset A$ be an admissible set so that (T, B) is also a BV surface. Let $\Gamma(B)$ be the collection of maximal components of constancy for this mapping. Let $\Gamma^*(B)$ be the set of all $g \in \Gamma(B)$ that are continua and contained in B° , and let \hat{B} be the set covered by $\Gamma^*(B)$. Then $\Gamma^*(B) \subset \Gamma(B)$; B is open in the plane and $V(T, \hat{B}) = V(T, B)$. Furthermore there are σ -algebras of Borel sets corresponding to the mappings (T, B) and (T, \hat{B}) and also measures defined for these mappings which are analogous to (3). But the σ -algebra \mathcal{B}_1 for (T, \hat{B}) is a subalgebra of \mathcal{B}_0 and also a subalgebra of that for (T, B), and the similarly defined measures for (T, \hat{B}) , (T, B) and (T, A) are identical on \mathcal{B}_1 ; hence we will not introduce new notation for these measures or the Radon-Nikodym derivatives for (T, \hat{B}) . Thus for the bounded parametric integrand f,

I(T, B; f) = (
$$\hat{B}$$
) $\int f(T(w), \theta(w)) d\phi$.

An elementary fact which we will need is that if (T, A) is a BV mapping, then for any $\epsilon > 0$ there is a compact admissible set $B \subset A$ such that

$$V(T, A) - V(T, B) < \varepsilon$$
.

In fact B may be chosen to be a figure.

3. SOME LEMMAS

The concepts of normal integrand and regular integrand are old. The terms semi-regular and semi-normal have also been used. We shall employ the following definitions of these concepts already used by W. Fleming and L. C. Young [8].

Definition 1. The integrand f(x, J) is called positive semi-regular at x_0 (on a set $D \subset E^3$) if $f(x_0, J)$ is convex in J (for all $x_0 \in D$).

Definition 2. The integrand f(x, J) is called positive semi-normal (henceforth PSN) at x_0 (on a set $D \subset E^3$) if f(x, J) is positive semi-regular at x_0 and $f(x_0, J) + f(x_0, -J) > 0$ for all $J \neq 0$ (and all $x_0 \in D$).

LEMMA 1. Let f(x, J) be PSN at x_0 . Then the set H of all $d = (d_1, d_2, d_3)$ such that

$$f(x_0, J) \ge (d, J) = d_1J_1 + d_2J_2 + d_3J_3$$

for all J is convex, closed and has a nonvoid interior. Moreover, if $d \in H$ has distance τ from the boundary of H, then $f(x_0, J) \geq (d, J) + \tau ||J||$ for all J.

Proof. Suppose first that $f(x_0, J) \ge 0$ for all J. Then $d = 0 \in H$, so H is non-void. Moreover, if d^1 , $d^2 \in H$ and $0 \le \alpha \le 1$, then

$$f(x_0,\,J)\,-\,(\alpha\,d^1\,+\,(1\,-\,\alpha)d^2,\,J)\,=\,\alpha\,\big[\,f(x_0,\,J)\,-\,(d^1,\,J)\big]\,+\,(1\,-\,\alpha)\,\big[\,f(x_0,\,J)\,-\,(d^2,\,J)\big]\,{\geq}\,0$$

for all J. Hence H is convex. If H had no interior, then H would be contained in a 2-dimensional manifold of E^3 since $(0, 0, 0) \in H$. Then there would be a vector $c \in H$ such that (c, d) = 0 for all $d \in H$.

Now $f(x_0, c) + f(x_0, -c) > 0$ so we may suppose that $f(x_0, c) > 0$. But, $f(x_0, J)$ being convex in J, there exists a linear function of J, say

$$(d, J) = d_1 J_1 + d_2 J_2 + d_3 J_3$$
,

such that $f(x_0, J) \ge (d, J)$ for all J and $f(x_0, c) = (d, c)$. Then $d \in H$ so (d, c) = 0, but with J = c it must also be that $f(x_0, c) = (d, c) > 0$, which is a contradiction. Thus H has an interior. It is obvious that H is closed.

Now suppose $d \in H$ has distance τ from the boundary of H. Then for any J, let $d^* = d + \tau J / \|J\| \in H$. Then

$$f(x_0, J) - (d, J) = f(x_0, J) - (d^*, J) + (d^* - d, J) > \tau ||J||$$

as desired.

For an arbitrary PSN function $f(x_0, J)$, let d' be such that $f(x_0, J) \geq (d', J)$ for all J, and let $f'(x_0, J) = f(x_0, J) - (d', J)$, so that f' is PSN at x_0 and $f'(x_0, J) \geq 0$ for all J. Let H' and H be the sets defined above for f' and f, respectively. Then

$$f(x_0, J) - (d + d', J) = f'(x_0, J) - (d, J)$$

implies that H = d' + H', and the desired properties of H follow immediately from those of H'.

LEMMA 2. Let f(x, J) be PSN at x_0 . Let $\|J_0\| = 1$. Then for every $\epsilon > 0$ there exist a $\delta > 0$ and a $d \in E^3$ such that

(a) f(x, J) > (d, J) for all J if $||x - x_0|| < \delta$; and

(b)
$$f(x, J) < (d, J) + \varepsilon$$
 if $||J - J_0|| < \delta$, $||J|| = 1$, and $||x - x_0|| < \delta$.

Proof. Let $z(J)=(d^*,J)$ be a supporting function for $f(x_0,J)$ at $J=J_0$. Thus $f(x_0,J)\geq (d^*,J)$ for all J and $f(x_0,J_0)=(d^*,J_0)$. Let H be the convex body defined in Lemma 1. Then $d^*\in H$ is a boundary point of H. Let d be an interior point of H with $\|d-d^*\|<\epsilon/3$. Let $\tau>0$ be the distance from d to the boundary of H, so $\tau\leq\epsilon/3$. Now by the continuity of f(x,J), there is a $\delta>0$ with $\delta<\epsilon/3$ $\|d\|$ such that

$$|f(x, J) - f(x_0, J_0)| < \epsilon/3$$
 if $||x - x_0|| < \delta$, $||J - J_0|| < \delta$

and

$$|f(x, J) - f(x_0, J)| < \tau$$
 for all $||J|| = 1$ if $||x - x_0|| < \delta$.

Thus if $\|\mathbf{x} - \mathbf{x}_0\| < \delta$ and $\|\mathbf{J} - \mathbf{J}_0\| < \delta$,

$$\begin{split} f(x,\,J) \,-\, (d,\,J) \,=\, \big[f(x,\,J) \,-\, f(x_0,\,J_0) \big] \,+\, \big[f(x_0,\,J_0) \,-\, (d^*,\,J_0) \big] \\ \\ &+\, (d^*\,-\,d,\,J_0) \,+\, (d,\,J_0\,-\,J) \\ \\ &< \epsilon/3 \,+\, 0 \,+\, \epsilon/3 \,+\, \epsilon/3 \,=\, \epsilon \;; \end{split}$$

and if $\|\mathbf{J}\| = 1$ and $\|\mathbf{x} - \mathbf{x}_0\| < \delta$, then

$$f(x, J) - (d, J) = [f(x, J) - f(x_0, J)] + [f(x_0, J) - (d, J)] > -\tau + \tau ||J|| = 0.$$

LEMMA 3. Let (T_0, A) be a BV plane mapping, $T_0(u, v) = (x(u, v), y(u, v))$. Then for every $\varepsilon > 0$ there exists a $\delta > 0$ with the following property:

If (T, A) is another BV plane mapping into the x - y plane with $\|T(w) - T_0(w)\| < \delta$ for all $w \in A$, then there exists an $\eta > 0$ such that for all systems S with indices d, m, $\mu < \eta$ with respect to (T, A), there exists a subsystem S' with

$$|V(T_0, A) - \sum^{t} V(T, q)| < \varepsilon$$
,

where Σ' denotes a sum over all $q \in S'$.

Proof. Let $\tau(\tau > 0, \tau < \varepsilon/8)$ be such that

(G)
$$\int N(p; T_0, A) < \epsilon/8$$

for every measurable set $G \subset E_2$ with $|G| < \tau$. Let S^* be a system of polygonal regions $t \subset A$ with indices d, m, $\mu < \tau$. Then, if Σ^* denotes a sum over all $t \in S^*$ and C_{0t} is the closed curve $T_0(t^*)$ which is oriented as t^* is,

$$0 \le U(T_0, A) - \sum^* v(t, T_0) \le U(T_0, A) - \sum^* |u(t, T_0)| \le \tau$$
.

Hence

$$0 \leq$$
 (E_2) \int N(p; T_0, A) - \sum^* (E_2) $\int \left| \, O(p; \, C_{0\,t}) \, \right| < \tau$,

and the set $H_0^* \subset E_2$ where $N(p; T_0, A) > \Sigma^* |O(p; C_{0t})|$ has measure $|H_0^*| < \tau$. Thus

$$n(p; T_0, A) = \sum^* O(p; C_{0t})$$
 for all $p \in E_2 - H_0^* - D_0 = E_2 - H_0$,

where $H_0 = H_0^* + D_0$ and D_0 is the set of measure zero where

$$n(p; T_0, A) \neq N^+(p; T_0, A) - N^-(p; T_0, A)$$
.

Moreover, n(p; T₀, t) = O(p; C_{0t}) except in [C_{0t}]. Thus if B = Σ *[C_{0t}], then |B| < τ , and

$$\begin{split} \left| V(T_0, A) - \sum^* V(T_0, t) \right| &= \left| (E_2) \int n(p; T_0, A) - \sum^* (E_2) \int n(p; T_0, t) \right| \\ &= \left| (B + H_0) \int [n(p; T_0, A) - \sum^* n(p; T_0, t)] \right| \\ &\leq (B + H_0) \int [N^+(p; T_0, A) - \sum^* N^+(p; T_0, t)] \\ &+ (B + H_0) \int [N^-(p; T_0, A) - \sum^* N^-(p; T_0, t)] \\ &= (B + H_0) \int [N(p; T_0, A) - \sum^* N(p; T_0, t)] < \frac{2\epsilon}{8}. \end{split}$$

Let B_{ρ} be the closed ρ neighborhood of B. Then $\lim_{\rho \to 0} |B_{\rho}| = |B| < \tau$ as $\rho \to 0$. Therefore for some $\delta > 0$, $|B_{\rho}| < \tau$ for all ρ satisfying the condition $0 < \rho < 2\delta$.

Let (T, A) be any BV plane mapping into E_2 such that $|T(w) - T_0(w)| < \delta$ for all $w \in A$. Let $\lambda > 0$ be such that $(G) \int N(p; T, A) < \epsilon/8$ for $G \subset E_2$, $|G| < \lambda$. Since $\lim_{N \to \infty} |B_{\gamma} - B_{\delta}| = 0$ as $\gamma \to \delta^+$, there is a γ satisfying the conditions $0 < \delta < \gamma < 2\delta$ and $|B_{\gamma} - B_{\delta}| < \lambda$.

Let $\eta = \min(\lambda, \gamma - \delta, \tau)$, and let S be any system of polygonal regions $\pi \subset A$ with indices d, m, $\mu < \eta$ with respect to (T, A). Let S_t denote the set of those $\pi \in S$ such that $\pi t \neq 0$, and let $t' = t^o + \Sigma_t \pi^o$, where Σ_t denotes a sum over all $\pi \in S_t$. Then $t' \supset t^o$, and

$$N(p;\;T,\;t^{\scriptscriptstyle 1}) \geq \,N(p;\;T,\;t^{\scriptscriptstyle O}) \,=\, N(p;\;T,\;t) \quad \, {\rm for\; all} \;\; p \,\in\, E_2$$
 .

Let Σ_t^* denote a sum over all $\pi \notin S_t$ and Σ denote a sum over all $\pi \in S_*$. Now

$$0 \leq W(T, A) - \sum |v(\pi, T)| = (E_2) \int [N(p, T, A) - \sum |O(p; C_{\pi})|] < \eta \leq \tau < \frac{\epsilon}{8}.$$

Thus the set H* where N(p; T, A) - $\Sigma |O(p; C_{\pi})| > 0$ has measure $|H^*| < \epsilon/8$. But

$$\begin{split} N(p; \ T, \ A) \ - \ & \sum \big| \, O(p; \ C_{\pi}) \, \big| \, \geq \, \big[\, N(p; \ T, \ t^{\, \prime}) \ - \ & \sum_{t} \, \big| \, O(p, \ C_{\pi}) \, \big| \big] \\ + \ & \sum_{t}^{*} \big[\, N(p; \ T, \ \pi) \ - \ \big| \, O(p; \ C_{\pi}) \, \big| \big] \, \geq \, 0 \end{split}$$

everywhere in E2. (Note that N(p; T, A) is super-additive as a function of A.) Thus if H_t^* is the set where N(p; T, t') $> \Sigma_t \mid O(p; C_\pi) \mid$, then $H_t^* \subset H^*$. Let $S_t^! \subset S_t$ be the set of all $\pi \in S_t$ such that $T(\pi)B_\delta = 0$. If $\pi t^* \neq 0$, then $T(\pi)B_\delta \neq 0$ since, for some point $w \in \pi t^*$, $\left\|T(w) - T_0(w)\right\| < \delta$ and $T(w) \in B_\delta$ since $T_0(w) \in B$. Thus $\pi \subset t^o$ for every $\pi \in S_t^!$. Also if $\pi \in S_t - S_t^!$, then $T(\pi)B_\delta \neq 0$ and $T(\pi) \subset B_\gamma$ since diam $[T(\pi)] < \eta \leq \gamma$ - δ ; thus $O(p; C_\pi) = 0$ for all $p \in E_2$ - B_γ . Therefore

$$N(p; T, t') = \sum_{t}' |O(p; C_{\pi})| \text{ for all } p \in E_2 - B_{\gamma} - H_t^*,$$

where $\Sigma_t^!$ denotes a sum over all $\pi \in S_t^!$. But

$$N(p; T, t') \ge N(p, T, t) \ge \sum_{t=1}^{t} |O(p; C_{\pi})|$$

everywhere in E 2, so N(p; T, t) = $\Sigma_t^! |O(p; C_\pi)|$ for all $p \in E_2 - B_\gamma - H_t^*$. Hence n(p; T, t) = $\Sigma_t^! O(p; C_\pi)$ for all $p \in E_2^! - B_\gamma - H_t$; here $H_t = H_t^* + D_t$, and D_t is the set of measure zero where

$$n(p; T, t) \neq N^{+}(p; T, t) - N^{-}(p; T, t)$$
.

A fundamental theorem concerning the topological index states that if C_0 , C are two closed curves with Frechet distance $\|C_0$, $C_1\| < \delta$ and $p \in E_2$ has distance at least δ from C_0 , then $O(p;\,C_0) = O(p;\,C_1)$. Thus, since $\|C_t,\,C_{0t}\| < \delta$,

$$n(p; T, t) = O(p; C_t) = O(p; C_{0t}) = n(p; T_0, t)$$
 for all $p \in E_2 - B_\delta$.

Therefore $n(p; T_0, t) = \Sigma_t' O(p; C_{\pi})$ for all $p \in E_2 - B_{\gamma} - H_t$.

Let $K = \Sigma^* H_t$. Then $\Sigma^* N(p; T, t) = \Sigma^* \Sigma_t^! |O(p; C_{\pi})|$ for all $p \in E_2 - B_{\gamma} - K$. Moreover, $|K| < \eta \le \tau$ and $|K| < \eta \le \lambda$, since

$$K = \sum^* (D_t + H_t^*) \subset \sum^* D_t + H^*$$
 and $|K| < |\sum^* D_t| + |H^*| = |H^*| < \eta$.

Therefore

$$\sum_{t=0}^{\infty} n(p; T_0, t) = \sum_{t=0}^{\infty} \sum_{t=0}^{\infty} n(p; T, \pi)$$

for all $p \in E_2$ - B_γ - F - K, where $F = \Sigma[C_\pi]$ and $|F| < \eta \le \tau$, $|F| < \eta \le \lambda$. Let $S' = \Sigma^* S_t'$, and let Σ' denote a sum over S'. Then

$$\begin{split} \left| \mathbf{V}(\mathbf{T}_{0}, \mathbf{A}) - \sum^{\mathsf{T}} \mathbf{V}(\mathbf{T}, \pi) \right| &\leq \left| \mathbf{V}(\mathbf{T}_{0}, \mathbf{A}) - \sum^{*} \mathbf{V}(\mathbf{T}_{0}, \mathbf{t}) \right| + \left| \sum^{*} \mathbf{V}(\mathbf{T}_{0}, \mathbf{t}) - \sum^{\mathsf{T}} (\mathbf{T}, \pi) \right| \\ &\leq \frac{2\varepsilon}{8} + \left| (\mathbf{E}_{2}) \int_{0}^{\mathsf{T}} \left[\sum^{*} \mathbf{n}(\mathbf{p}; \mathbf{T}_{0}, \mathbf{t}) - \sum^{\mathsf{T}} \mathbf{n}(\mathbf{p}; \mathbf{T}, \pi) \right] \right| \\ &= \frac{\varepsilon}{4} + \left| (\mathbf{B}_{\gamma} + \mathbf{K} + \mathbf{F}) \int_{0}^{\mathsf{T}} \left[\sum^{*} \mathbf{n}(\mathbf{p}; \mathbf{T}_{0}, \mathbf{t}) - \sum^{\mathsf{T}} \mathbf{n}(\mathbf{p}; \mathbf{T}, \pi) \right] \right| \\ &\leq \frac{\varepsilon}{4} + (\mathbf{B}_{\gamma} + \mathbf{K} + \mathbf{F}) \int_{0}^{\mathsf{T}} \mathbf{N}(\mathbf{p}; \mathbf{T}_{0}, \mathbf{A}) + (\mathbf{B}_{\gamma} + \mathbf{K} + \mathbf{F}) \int_{0}^{\mathsf{T}} \mathbf{N}(\mathbf{p}; \mathbf{T}, \pi) \\ &\leq \frac{5\varepsilon}{8} + (\mathbf{K} + \mathbf{F}) \int_{0}^{\mathsf{T}} \mathbf{N}(\mathbf{p}; \mathbf{T}, \mathbf{A}) + (\mathbf{B}_{\gamma} - \mathbf{B}_{\delta}) \int_{0}^{\mathsf{T}} \mathbf{N}(\mathbf{p}; \mathbf{T}, \mathbf{A}) \\ &\leq \frac{5\varepsilon}{8} + 2\frac{\varepsilon}{8} + \frac{\varepsilon}{8} = \varepsilon. \end{split}$$

4. SEMICONTINUITY THEOREMS

Let (T_0, A_0) and (T, A) be two surfaces. Let us recall the definition of (Fréchet) distance between these surfaces. This is defined if and only if there is a sense preserving homeomorphism σ from A_0 to A. In this case the distance is defined to be

$$\inf_{\{\sigma\}} \sup_{\mathbf{w} \in A_0} \|\mathbf{T}_0(\mathbf{w}) - \mathbf{T}(\sigma(\mathbf{w}))\|.$$

The infimum is taken over all such homeomorphisms σ . If this distance is zero, we regard (T_0,A_0) and (T,A) as representing the same Fréchet surface. This is reasonable since they have the same area (see [5]), and the integral (4) over each is the same (see [6]). Then with σ , (T_0,A_0) , and (T,A) as above, the second surface has a representation $(T\sigma,A_0)$ with A_0 as domain. Thus any surface whose distance from (T_0,A_0) is defined may be regarded as having domain A_0 . Moreover, it is obviously true that the class of all surfaces whose distance from (T_0,A_0) is less than δ consists of all surfaces with a representation (T,A_0) such that $\|T_0(w)-T(w)\|<\delta$ for all $w\in A_0$.

Thus we may, in discussions of semicontinuous integrals, regard all surfaces as having the same domain.

THEOREM 1. Suppose f(p, J) is a parametric integrand defined on E^6 . Suppose (T_0, A) is a BV surface. Suppose that for some $\rho > 0$, the set

$$U = \{p: dist (T_0(A), p) < \rho\}$$

is such that $f(p,J) \geq 0$ for all J if $p \in U$. Suppose f(p,J) is uniformly continuous and uniformly bounded on $Z = \{(p,J) \colon p \in U, \|J\| = 1\}$. Suppose that almost every $(\phi_0)w_0 \in A$ has the property that, for each $\epsilon > 0$, there exist a $\sigma > 0$ and a linear function $\psi_0(J) = (b_0,J)$ such that if $\|p - T_0(w_0)\| < \rho_0$,

(a)
$$f(p, J) \ge \psi_0(J)$$
 for all J , and

$$\text{(b)} \ \ f(p,\,J) \leq \psi_0(J) \, + \, \epsilon \, \big\| \, J \big\| \quad \text{if} \ \ \big\| \, \frac{J}{\|J\|} \, - \, \, \theta_0(w_0) \, \big\| < \sigma \, ,$$

where φ_0 is the measure induced on A by (T_0,A) and θ_0 = $(\theta_{01},\theta_{02},\theta_{03})$ are the associated Radon-Nikodym derivatives. Then I(T, A) = (A) $\int f(p,J)\,d\varphi$ is lower semi-continuous at (T_0,A) in the class of all surfaces (T, A) comparable to (T_0,A) .

Proof. Let M be such that $M \geq \sup \big\{ f(p,J) \colon (p,J) \in Z \big\}$ and $M \geq U(T_0,A)$. Let $\epsilon > 0$ be given. By Lusin's theorem, there is a compact set $F \subset \hat{A}$ with $F \in \mathcal{B}_0$, where \mathcal{B}_0 is the class of Borel subsets corresponding to (T_0,A) , such that $\phi_0(A-F) < \epsilon/(6M)$, $\theta_0(w)$ is continuous on F, $\|\theta(w)\| = 1$ on F, and every continuum $g \subset F$ with $g \in \Gamma$ has the property that there exist a $\rho' > 0$ and a function $\psi(J) = (b,J)$ such that if $\|p-T_0(g)\| < \rho'$,

(5)
$$f(p, J) \ge \psi(J) \quad \text{for all J and}$$

$$f(p, J) \le \psi(J) + \frac{\varepsilon}{6M} \|J\| \quad \text{if } \|\frac{J}{\|J\|} - \theta_0(g)\| < \rho'.$$

Given $g \subset F$ with $g \in \Gamma$, let ρ' and $\psi(J) = (b, J)$ be the constant and function defined relative to g above. For every $w' \in g$, there is a $\delta' > 0$ such that

$$\begin{split} & \| \, \mathbf{T}_0(\mathbf{w}) = \mathbf{T}_0(\mathbf{w}') \, \| \, = \, \| \, \mathbf{T}_0(\mathbf{w}) - \mathbf{T}_0(\mathbf{g}) \, \| < \rho'/2 \quad \text{if } \| \, \mathbf{w} - \mathbf{w}' \, \| < \delta', \quad \text{and} \\ & \| \, \theta_0(\mathbf{w}) - \theta_0(\mathbf{w}') \, \| \, = \, \| \, \theta_0(\mathbf{w}) - \theta_0(\mathbf{g}) \, \| < \rho' \quad \text{if } \| \, \mathbf{w} - \mathbf{w}' \, \| < \delta', \quad \mathbf{w} \in \mathbf{F}. \end{split}$$

The circles $\{w: \|w-w'\| < \delta'\}$ cover g as w' varies in g. Since g is compact, a finite number cover g. Let the union of the members of such a cover be G(g), and let H(g) be the open set consisting of all continua of constancy contained in G(g). Thus $H(g) \in \mathcal{G}$. Therefore, if dist(p, $T_0H(g)$) $< \rho'/_2$, there is a w' $\in H(g)$ such that $\|T_0(w') - p\| < \rho'/_2$. Thus

$$\| p - T_0(g) \| \le \| p - T_0(w') \| + \| T_0(w') - T_0(g) \| < \rho'/_2 + \rho'/_2 = \rho';$$

hence, from (5),

(6)
$$f(p,\,J)\geq\psi(J)\quad\text{for all }J,\text{ and}$$

$$f(p,\,\theta_0\,(w))\leq\psi(\theta_0\,(w))+\frac{\epsilon}{6M}\quad\text{if }w\in H(g)F\,.$$

The open sets H(g) cover F. Therefore, there are a finite number that cover F since F is compact. Let the members of such a cover be $H_j = H(g_j)$ $(j = 1, \dots, \nu)$, and let the associated constants and functions be ρ_j and $\psi_j(J) = (b_j, J)$. Then the inequality $\|b_j\| \leq M$ follows from the inequalities

$$M \ge f\left(T_0(g_j), \frac{b_j}{\|b_i\|}\right) \ge \left(b_j, \frac{b_j}{\|b_j\|}\right) = \|b_j\|.$$

The sets H_j are open and therefore admissible. Let K_1 be a figure, $K_1 \subset H_1$, such that $\phi_0(H_1)$ - $U(T_0,K_1)<\epsilon/(6M\nu)$. Let \widetilde{K}_1 be the compact set that is the union of all continua $g\in \Gamma$ which intersect K_1 . Thus $\widetilde{K}_1\in \mathscr{B}_0$ and $K_1\subset \widetilde{K}_1\subset H_1$. Then H_2 - \widetilde{K}_1 is open in E_2 ; hence it is admissible. Similarly, for $i=2,3,\cdots,\nu$, let K_i be a figure $K_i\subset H_i$ - $(\widetilde{K}_1+\cdots+\widetilde{K}_{i-1})$ such that

$$\phi_0[H_i - (\tilde{K}_1 + \cdots + \tilde{K}_{i-1})] - U(T_0, K_i) < \epsilon/(6M\nu) \qquad (i = 2, \cdots, \nu),$$

and let K_i be the union of all continua $g \in \Gamma$ that intersect K_i . Then the figures K_i ($i = 1, \dots, \nu$) are disjoint, and

$$0 \leq U(T_0, A) - \sum_{j=1}^{\nu} U(T_0, K_j)$$

$$\leq \phi_0(F) + \frac{\varepsilon}{6M} - \sum_{j=1}^{\nu} U(T_0, K_j)$$

$$\leq \phi_0(H_1 + \cdots + H_{\nu}) - \sum_{j=1}^{\nu} U(T_0, K_j) + \frac{\varepsilon}{6M}$$

$$\leq \phi_0(H_1) + \phi_0(H_2 - H_1) + \dots + \phi_0[H_{\nu} - (H_1 + H_2 + \dots + H_{\nu-1})]$$

$$- \sum_{j=1}^{\nu} U(T_0, K_j) + \frac{\varepsilon}{6M} < \frac{2\varepsilon}{6M}.$$

Let $P_j = F \hat{K}_j$, so $P_j \in \mathcal{B}_0$. Let $D = \sum_{j=1}^{\nu} (\hat{K}_j - P_j) \subset A - F$, so $\phi_0(D) < \epsilon/(6M)$. Also

$$\phi_0\left(A - \sum_{j=1}^{\nu} \hat{K}_j\right) = \phi_0(A) - \sum_{j=1}^{\nu} \phi_0(\hat{K}_j) = U(T_0, A) - \sum_{j=1}^{\nu} U(T_0, \hat{K}_j) < \frac{2\varepsilon}{6M}$$

from (7). Therefore, using (6), we see that

$$\begin{split} I(T_{0}, A) &= \sum_{j=1}^{\nu} (\hat{K}_{j}) \int f(T_{0}(w), \, \theta_{0}(w)) \, d\phi_{0} + \left(A - \sum_{j=1}^{\nu} K_{j} \right) \int f(T_{0}(w), \, \theta_{0}(w)) \, d\phi_{0} \\ &\leq \sum_{j=1}^{\nu} (P_{j}) \int f(T_{0}(w), \, \theta_{0}(w)) \, d\phi_{0} + (D) \int f(T_{0}(w), \, \theta_{0}(w)) \, d\phi_{0} + \epsilon/3 \\ &\leq \sum_{j=1}^{\nu} (P_{j}) \int \left[b_{j} \cdot \theta_{0}(w) + \frac{\epsilon}{6M} \right] d\phi_{0} + \frac{\epsilon}{6} + \frac{\epsilon}{3} \\ &= \sum_{j=1}^{\nu} (\hat{K}_{j}) \int [b_{j} \cdot \theta_{0}(w)] \, d\phi_{0} + (D) \int [b_{j} \cdot \theta_{0}(w)] \, d\phi_{0} + \frac{2\epsilon}{3} \\ &\leq \sum_{j=1}^{\nu} (b_{j}; \, V_{0}(\hat{K}_{j})) + \frac{5\epsilon}{6}, \end{split}$$

where $V_0(\hat{K}_i) = [V_{01}(\hat{K}_j), V_{02}(\hat{K}_j), V_{03}(\hat{K}_j)].$

If $b_j \neq 0$, let λ_j be the normal plane to b_j , and let it be the plane z=0 if $b_j=0$. Let α_j be any linear orthogonal transformation of E_3 into itself:

$$\alpha_{j}(x, y, z) = (\xi, \eta, \xi),$$

$$\xi = \alpha_{11} x + \alpha_{12} y + \alpha_{13} z,$$

$$\eta = \alpha_{21} x + \alpha_{22} y + \alpha_{23} z,$$

$$\xi = \alpha_{31} x + \alpha_{32} y + \alpha_{33} z,$$

with $\zeta=0$ the plane λ_j . Then $(\alpha_{31},\,\alpha_{32},\,\alpha_{33})$ is a positive multiple of b_j , and $\alpha_j(b_j)=(0,\,0,\,\|b_j\|)$. Let $(T_0^i,\,K_j)=(\alpha_j\,T_0,\,K_j)$, and consider the plane mapping $(T_0^i,\,K_j)$ of the K_j into the planes λ_j .

Use $\varepsilon/(6M\nu)$ in Lemma 3 with these mappings, and obtain constants δ_i . Let

$$\sigma = \min \left\{ \frac{\varepsilon}{5M}, \rho, \frac{\rho_{j}}{2} : j = 1, \dots, \nu \right\}$$

Let (T,A) be any surface defined on A such that $\|T(w) - T_0(w)\| < \sigma$ for all $w \in A$. Let $(T',K_j) = (\alpha_j T,K_j)$, and let (T_3',K_j) be the corresponding mappings of K_j into E_3 and λ_j , respectively. Then by Lemma 3, there exist constants η_j such that to every finite system S_j of $q \subset H_j$ with indices d, m, $\mu < \eta_j$, there corresponds a subsystem S_j' such that

(9)
$$|V(T'_{03}, K_j) - \sum_i' V(T'_3, q)| < \frac{\epsilon}{6M\nu},$$

where $\Sigma_{j}^{!}$ denotes the sum over all $q \in S_{j}^{!}$.

Notice that $T(K_j)$ is contained in the $\rho_j/2$ -neighborhood of the set $T_0(H_j)$, so that inequality (5) holds for all $p \in T(K_j)$. Let ϕ denote the measure corresponding to (T,A) and let $\theta(w)$ be the associated Radon-Nikodym derivative. Then, since f(b,J)>0,

$$\begin{split} \mathbf{I}(\mathbf{T}, \mathbf{A}) &\geq \sum_{j=1}^{\nu} \sum_{j}^{'} \mathbf{I}(\mathbf{T}, \mathbf{q}) \\ &= \sum_{j=1}^{\nu} \sum_{j}^{'} (\mathbf{\hat{q}}) \int f(\mathbf{T}(\mathbf{w}), \theta(\mathbf{w})) d\phi \\ &\geq \sum_{j=1}^{\nu} \sum_{j}^{'} (\mathbf{\hat{q}}) \int (\mathbf{b}_{j}, \theta(\mathbf{w})) d\phi \\ &= \sum_{j=1}^{\nu} \left[\mathbf{b}_{j} \cdot \sum_{j}^{'} \mathbf{V}(\mathbf{\hat{q}}) \right], \end{split}$$

where $V(\hat{q}) = (V_1(\hat{q}), V_2(\hat{q}), V_3(\hat{q})).$

From (8),

$$I(T, A) - I(T_0, A) \ge \sum_{j=1}^{\nu} b_j \cdot \left(\sum_{j}' V(\hat{q}) - V_0(\hat{K}_j) \right) - \frac{5\epsilon}{6}.$$

The inner products $b_j \cdot [\Sigma_j^! V(\hat{q}) - V_0(\hat{K}_j)]$ can be evaluated in the (ξ, η, ζ) coordinate systems. Hence

$$\left| b_{j} \cdot \left(\sum_{j}' V(\hat{q}) - V_{0}(\hat{K}_{j}) \right) \right| = \| b_{j} \| \cdot \| \sum_{j}' V(T_{3}', \hat{q}) - V(T_{03}', K_{j}) \| < \frac{\epsilon}{6\nu}$$

from (9). Therefore

$$I(T, A) - I(T_0, A) > -\frac{5\varepsilon}{6} - \frac{\varepsilon}{6} = -\varepsilon$$

and I(T, A) is lower semicontinuous at (T_0, A) as desired.

The statement of Theorem 1 can be simplified if slightly stronger hypotheses and the definition of a PSN integrand are used. Thus the following theorem is an immediate consequence of Theorem 1 and Lemma 2.

THEOREM 2. Let f(p, J) be a parametric integrand that is PSN for all $p \in E_3$ and $f(p, J) \ge 0$ for all $(p, J) \in E^6$. Let (T_0, A) be a BV surface, and let f(p, J) for $\|J\| = 1$ be bounded in a neighborhood of $T_0(A)$. Then the integral $I(T_0, A)$ is lower semicontinuous at (T_0, A) .

Weaker lower semicontinuity theorems can be proved if f(p, J) is only semiregular.

THEOREM 3. Let f(p, J) be a positive semiregular integrand. Let (T_0, A) be a BV surface such that for $\|J\| = 1$, f(p, J) is bounded in some neighborhood of $T_0(A)$. Then $I(T_0, A)$ is lower semicontinuous in every class of surfaces with uniformly bounded area.

Proof. Let \mathscr{K} be a class of surfaces with areas less than L for some fixed constant L. Given $\epsilon > 0$, let $f^*(p, J) = f(p, J) + \epsilon \|J\|/(2L)$. Then f^* satisfies the hypotheses of Theorem 2. Thus there is a δ such that if (T, A) is a surface whose distance from (T_0, A) is less than δ ,

$$I(T, A; f^*) - I(T_0, A; f^*) > -\epsilon/2$$
.

Thus

$$I(T, A; f) - I(T_0, A; f) = I(T, A; f^*) - I(T_0, A; f^*) - \varepsilon U(T, A)/(2L) + \varepsilon U(T_0, A)/(2L)$$

$$> -\varepsilon/2 - \varepsilon/2 = -\varepsilon, \quad \text{if } (T, A) \in \mathcal{H}.$$

REFERENCES

- 1. G. Bouligand, Essai sur l'unité des methodes directes, Mém. Soc. Roy. Sci. Liège, (3) 19 (1943), 88 pp.
- 2. L. Cesari, La nozione di integrale sopra una superficie in forma parametrica, Ann. Scuola Norm. Super. Pisa (2) 13 (1944) 78-117 (1948).
- 3. ——, Condizioni sufficienti per la semicontinuità degli integrali sopra una superficie in forma parametrica, Ann. Scuola Norm. Super. Pisa (2) 14 (1945), 47-79 (1948).
- 4. ——, L'area di Lebesgue come una misura, Rend. Mat. e Appl. (5) 14 (1955) 655-673.
- 5. ——, Surface Area, Annals of Math. Studies, no. 35, Princeton University Press, Princeton, 1956.
- 6. L. Cesari and L. Turner, Surface integral and Radon-Nikodym derivatives, Rend. Circ. Mat. Palermo, (2)7 (1958), 143-154.
- 7. G. M. Ewing, Surface integrals of the Weierstrass type, Duke Math. J. 18 (1951), 275-286.
- 8. W. Fleming and L. C. Young, *A generalized notion of boundary*, Trans. Amer. Math. Soc. 76 (1954), 457-484.
- 9. E. J. McShane, On the semicontinuity of double integrals of the calculus of variations, Ann. of Math. (2) 33 (1932), 460-484.

- 10. E. J. McShane, Integrals over surfaces in parametric form, Ann. of Math. (2) 34 (1933), 815-838.
- 11. Ch. Y. Pauc, Les méthodes directes en calcul des variations et en géométrie differentielle, Thèse, Université de Paris, 1941. ix + 139 pp.
- 12. T. Radó, On the semi-continuity of double integrals in parametric form, Trans. Amer. Math. Soc. 51 (1942), 336-361.
- 13. P. V. Reichelderfer, On the semi-continuity of double integrals, Trans. Amer. Math. Soc. 67 (1949), 275-285.
- 14. L. Tonelli, Fondamenti di calcolo delle variazioni, vols. 1 and 2, N. Zanichelli, Bologna, 1921-23.
- 15. L. Turner, An invariant property of Cesari's surface integral, Proc. Amer. Math. Soc. 9 (1958), 920-925.
- 16. ——, Measures induced on a σ -algebra by a surface, Duke Math. J. 26 (1959), 501-509.

The University of Minnesota