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1. INTRODUCTION

This paper concerns a type of extremal problem in the theory of harmonic
mappings first posed by E. Heinz [3]. Heinz considered a class of harmonic map-
pings H, and showed that a particular measure of local.distortion evaluated at the
origin has a positive greatest lower bound p. The value of p has not yet been de-
termined, the latest estimate being in [1]. We first establish an inequality for the
absolute value of a class of integrals with complex-valued integrand, and then apply
it to a problem of this nature. Let H; be the odd mappings of the class H. We con-
sider a different, but related, measure of local distortion applied at the origin and
obtain the value of the greatest lower bound for the class Hj.

The integral inequality is established in Section 2, and is applied to harmonic
mappings in Section 3. Section 4 contains detailed proofs of some needed lemmas
which are also presented in [2], but more sketchily.

2. THE INTEGRAL INEQUALITY

THEOREM 1. Let h(8) be a non-decveasing continuous function on [0, 7] such
that h(0) = 0 and h(m) = 1. Then

T
(2.1) 5 exp (i (h(p) - 6))do| > 2,

0

and 2 cannot be veplaced by any greater number.

Proof. We divide the proof into five sections, (a) to (e), which we first outline.
In (a) we state six lemmas that will be needed at various stages. The proofs of the
first two are put in the appendix, and the others are proved following their state-
ment. These lemmas are all concerned with the properties of the rearrangement of
a function. (b) By Lemmas 1, 2-.and 3 there is a non-decreasing, continuous function
on [0, 7], say g*(6) which is equimeasurable with h(f) - 8, and therefore satisfies

T T
(2.2) S exp (i(h(8) - 0))do = S exp (ig*(6)) db .
0 0

(c) We next make use of the inequality established in Lemma 4, namely

g*(gn) - g*(al) S gn - 9 ,
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where 0< 8'< 6" < 7, to prove that

(2.3)

SW exp (ig*(6))do | > 2.
0

(d) Making use of Lemma 6, we show that equality cannot hold in (2.3). (e) Finally,
for any € > 0, we demonstrate that an h(9) exists such that the left side of (2.1) does
not exceed 2 + €. This completes the demonstration.

(a) LEMMA 1. Let £(8) be a measurable function on [0, 7] with essential lower
bound m, and essential upper bound M, - < m < M < «., There exists a non-
decreasing function £*¥(8) on [0, w] which has the properties:

(2.4) £*(0) = m, f*(n) = M,
(2.5) meas E(£(6) < v) = meas E(f*(0) <v).

Remarks. The notation E( ), where the parentheses contain an equality or in-
equality, refers to the set of points where the equality or inequality holds. The func-
tion f*(9) of Lemma 1 is called a non-decreasing rearrangement of £(9).

We frequently need
(2.6) meas E(a < £(9) < B) = meas E(a < £*(8) < 8),

which follows from (2.5).
Proof. See [2, p. 2'76] and Section 4.

LEMMA 2. Let £(6) be a measurable function on [0, ] with essential lower
bound m, and essential upper bound M, - < m < M <, Let £*(0) be its non-
decreasing vearvangement and let F(X) be any continuous function on [m, M]. Then

i T
2.7) F(f(6)) dg = F(f*(0)) do .
( SO (£0)) 50 (£%(9))

Proof. See [2, p. 277] and Section 4.

LEMMA 3. Let £(0) be a continuous, non-constant function on [0, n]. The non-
decreasing rearvvangement t*(0) of £(8) is a continuous function.

Proof. Since f(8) is not a constant, then m < M (see Lemma 1, hypothesis).
Since f*(0) = m, f*(7) = M and f*(9) is non-decreasing, if it is discontinuous, then
it must omit values in the interval [a, 8], where m < o < 8 < M. Thus

meas E(@ < £*(8) < B8) =0.
By (2.6) this implies that
(2.8) meas E(a < () < B) =0.

When we show that the continuity of £(8) implies that (2.8) cannot hold, the proof of
the lemma will be complete.
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To establish that (2.8) cannot hold, we first note that E; = E(f(f) = @) and
E, = E(f(9) = B) are non-empty, disjoint, closed sets. Let 9; be a point of E; and
let 62 be the closest point of E2 to 01. Say it is to the right of 8;. In the other
case the adjustment to the following argument will be obvious. Let 6'1 be the closest
point of Ej, that also lies in [0, 6], to the point §,. By this construction there are
no points of E) or E, on (68}, 6;,). Since £(6]) = a, £(6,) = B, it must follow that
a < f(6) <B

on (0}, 62), and (2.8) is contradicted.

LEMMA 4. Let h(8) be a non-decreasing, continuous function on [0, n] and let
h(0) = 0, h(m) = n. Let g(8) = h(6) - 0, and let g*(0) be the non-decreasing re-
arrangement of g(0). Then
(2.9) gx(e") - g*(6) < o" - 9",

where 0 < 0'< 6" < 7.

Proof. (1) We can assume that g*(8') = g*(6"); otherwise, (2.9) is true. Since
g*(0) is continuous, there is a least value of 8, say 6", such that

g*(@") = g*(o"),
and a greatest value of 6, say 6', such that
g*(8") = g*(8").
These values satisfy the inequalities
6'<8'< 9"5 e".
If we can prove
(2.10) g*(8") - g*(8") < 8" - B,

then the truth of (2.9) will be established.
(2) Since

g*(6") < g*(6) < g*(8")
for 6'< < 8",
meas E(g*(8") < g*(0) < g*(6M) = 6" - §".
By (2.6) it follows that
(2.11) meas E(g*(8") < g(8) < g*(6™) = 6" - §'.
(3) We next want to show that

meas E(g*(6") < g(0) < g*(8") > g*(6") - g*(8").
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Combining this inequality with (2.11) then yields (2.10), completing the proof of the
lemma. Let m = min g(4), M= max g(8), 0< 0 < 7, and let @ = g*(8"), B = g*(@").
Then m < a <8< M. In-this notation we want to prove

(2.12) meas E(a <g(6) <p)>p-«a.
(4) We define a function h1(#) on [0, 27] as follows. Let hj(8) = h(8) on [0, 7]

and let h;(8) = h(6 - ) + 7 on [m, 27]. Since h(0) = 0, we see that h;(9) is con-
tinuous on [0, 27], and we also note that it is non-decreasing on [0, 27].

Let g1(0) = hj(6) - 9. We will use the relationship
(2.13) gi(e+m =g (0<o<m.
By (2.13) we find that
(2.14) meas E(a < g1(0)<B) @<o6<a+m)),
where 0 < o < 7, is the same as
(2.15) meas E(a@ < g;(0) <p) (0oL,
which in turn equals
(2.16) meas E(a < g(6) < B).
Remavrks on the notation of (2.14) arnd (2.15). When 8 has the added restriction

of belonging to a smaller set than the domain of definition of the function involved in
the E() notation, this extra restriction is added to the right.

(5) Let 6; be the smallest value of 6 on [0, 7] at which g;(8) attains the value
B. The value m will be obtained on the interval [}, 61 + 7], so by the intermediate
value property of continuous functions, the value a is obtained in this interval. Let
6, be the smallest value of 6 on [8;, 8; + 7] where this happens. Finally, let 6}
be the largest value of 6 on the interval [8;, 8,] where g;(8) attains the value 8.
By this construction,

a<g(O)<B (81<6<9,),

and so

(2.17) meas E{@ <g,;(0)<p) > 0, - 9'1 (6, <6<6,+m.
Also

(2.18) B -a=gi(8)) - g1(62) = h;(6]) - hy(6,) + (6, - 0)) < 6 - 6).

Combining (2.15) and (2.16) with (2.17) and (2.18) yields (2.12), and so the lemma is
demonstrated.

LEMMA 5. Let g*(09) be as defined in Lemma 4. Then

(2.19) g¥(m) - g¥@) < .
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Proof. This follows as a special case of (2.18) when we chose =M, a = m,
where M is the maximum and m the minimum of g;(6). The value 6, - 6] which
arises in this case must be less than 7 since m is achieved on the interval
[0y, 8y + 7).

LEMMA 6. Let g*(0) be as defined in Lemma 4. Then either

(2.20) g*(%) - g*(0) <-g
or
(2.21) g*(m) - g* (%) < g

By Lemma 4 we know that (2.20) and (2.21) are true when < is replaced by <.
Hence if the conclusion is contradicted, equality holds in both (2.20) and (2.21).
Addition of these equations, however, leads to a contradiction of (2.19).

(b) The equality (2.2) follows now from Lemmas 1, 2 and 3.
(¢) We now consider the right-hand side of (2.2). First note that

il
S exp (ig*(6)) do
0

_ T
(2.22) % exp (-ig*( %) S) exp (ig*(6)) do <

The left member of (2.22) is equal to

- ,
S cos(g*(e) - g¥ (%) ) de
0
(2.23)
T
2 T T T
= S cos(g*(-é-) - g*(B)) de + S cos(g*(e) - g*(-i) )d@.
0 T
2
Lemma 4 implies the following inequalities
* [T\ _ o . T ( E)
(2.24) 0<ex(F) -exo<F-0<3 (0<o<T),
and
*(0) - ox [ I r.n (E )
(2.25) 0<exo) -e*(3) <o-3<F (E<o<n).
Hence we find that the right member (2.23) is not less than
T
2 T T T
(2.26) S cos(—z-—e) do + S cos(e-i)d9=2.
0 T

z
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(d) By Lemma 6, we can actually deduce that (2.23) is greater than (2.26).

(e) Let £ be a positive number, and let

1y = o7
h§(0) = 35, 0<06<5,

hs(®) =< 5, 6<0o<m-5,
2 T
hs(0) =5+ (0 - (- )55, 7-6<6<m,

where 0 < 6 < 7/2. Replace h{(6) by hg(9) in the left member of (2.1). Then

Snexp(i(ha(e) _ 6))do
0

(2.27)

IN

+

-0 -
S exp i(-?:— 9) de

6 1
X exp i (h3(6) - 6) do
5

0

+ Sﬁ exp(i(haz(e) - 9))do

<26+ 2sin(F-90).
7-0

2

For sufficiently small 6, the last term of (2.27) is less than 2 + €, and this com-
pletes the demonstration of Theorem 1.

3. APPLICATION TO HARMONIC MAPPINGS

Let H be the class of mappings

H(Xa Y) = u(x, Y) + iV(X, Y) ’
where

(a) u(x, y) and v(x, y) are harmonic functions for x%+ y2 < 1 and continuous
for x2 + y2 <1,

(b) 11(0, 0) = V(Oy 0) = 0,

(c) the values of H(x, y) cover the circle {u? + v¥ < 1} in a one-to-one, sense-
preserving manner and

(d) H(1) = 1.

Let H; be the subclass of H for which the condition
(e) H(-x, -y) = -H(x, y)

is also satisfied.

It was shown by Heinz [3] that

M= u(0, 0) + ui(0, 0) + vZ(0, 0) + v (0, 0)
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has a positive greatest lower bound p for the class of mappings H, and also that
p> .358 --- . This inequality is discussed and improved upon in [1] and [4].

Let
J = u,(0, 0) vy(O, 0) - uy(O, 0) v,(0, 0),

let A be the greatest lower bound of M + 2J for the class H, and let A; be the
greatest lower bound for the class Hj.

THEOREM 2. The equality

holds. Furthermove, this bound is not attained by M + 2J in the class H;.

Remarks. The quantity A has an elementary geometric interpretation in terms
of the distortion of H(x, y) at the origin which supports its investigation. We con-
jecture that

and that the bound is not attained by M + 2J in the class H.
Proof. Let H(x, y) = u(x, y) + iv(x, y) be an element of H, and let

(3.1) w(z) = u(x, y) + iu¥(x, y) + i(v(x, y) + iv¥(x, y)),

where u*(x, y) and v*(x, y) are the harmonic conjugates of u(x, y) and v(x, y), re-
spectively, chosen so that w(0) = 0. A computation yields the equality

(3.2) |w'(0)[* = M+ 2J.

The function w(z) is analytic, and w'(0) indicates its derivative at the origin.
We next seek an integral representation for w(0). By the hypothesis
H(cos6, sinf) = exp ih(9),
where h(f) is a continuous, increasing function on [0, 27], and h(0) = 0, h(27) = 2.
This follows because H(x, y) performs a one-to-one, sense-preserving homeo-

morphism of x2 + y2 =1 onto {u2+ v2=1}, taking (1, 0) into (1, 0). For the
class H;, to which we now restrict ourselves, the equality

(3.3) h(@ + m) = h(8) + =, 0<o<m,

also holds.

The Poisson representation for harmonic functions yields the representation

2T .
H(x, ¥) = 3= S exp(ih(6)) mg—i_’—%—:—%de
0
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where { = expif. From this we obtain the equality

2m
w(z) = ziﬂ ‘S‘ exp(1h(9))-€%}%d9
0

and find that

w'(0) =—17; SZﬂ exp(i(h(d) - 0))do.
0

Because of (3.3) this can be written as
9 AT
w'(0) = = S expi((h(6) - 0))do.
0

The hypotheses for Theorem 1 are satisfied, and hence
4
] —
| w!(0) | > pe

By (3.2), We then obtain the fact that x; > 16/ 7“. The following example shows that
= 16/72
Ay

A specific example shows that the constant is the best. Let r = s + it = f_(z) be
the analytic function which maps |z| < 1 onto the interior of the ellipse
(s/c)? + t% = 1, taking zero into zero and having positive derivative at the origin.
Let h(r) = it + s/c, where c is a positive constant. The mapping h_(f, (z)) is in
class H for all values of c.

Let M+ 2J . be the value of M + 2J for a fixed value of c. We will now show
that M, + ZJ has the limit 16/7% as ¢ tends to infinity. Let w_(z) be the function
defmed by (3. 1) In our example,

we(2) = £ (2) (%+ i) .
Thus

(3.4) M, + 2, = |£.(0)]?

1

CZ
As c tends to infinity, f(z) will tend uniformly in |z| < p <1 to the function which
maps |z| < 1 onto the domain -1 < 3w < 1, taking 0 into 0 with positive deriva-
tive at the origin. One way to see this is to observe that -1 < $w < 1 is the kernal
of the sequence of ellipses (%iw/c)? + (I w)2 < 1, where ¢ assumes a sequence of
values tending to infinity [1, p. 76]. The quantlty lfc(O)l thus converges to the de-
rivative of the limit function at z = 0, and a computation shows this to be 4/#. This
enables us to compute the limit of MC + 2J. from (3.4) to complete the demonstra-
tion.
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4. APPENDIX ON REARRANGEMENTS

Proof of Lemmal. Let
(4.1) P(y) = meas E({(6) <y) (m<y< M.

This is called the measure function of f(6). P(y) is a non-decreasing function on
[m, M], since if y*' >y

(4.2) P(y') - P(y) = meas E(y < £(6) <y') > 0.

It also follows from (4.2) that P(y) is continuous from the right. We observe at this
point that .

P(m) > 0
and that
(4.3) P(M) =7.

The function P(y) has a denumerable number of discontinuities, say at aj, with
an interval of values Aj; omitted at each point. The intervals A; have the form
[a;, a}) or (aj; al). The least upper bound of the interval is assumed because P(y)
is continuous from the right. Let R denote the range of P(y). It is the subset of
[0, 7] obtained by deleting the intervals A;, and the interval [0, £) in the case
P(m) =¢ > 0.

Let 0 < B < n. If P(y) =8 has more than one solution, the solutions form an in-
terval B. The value 8 will be called a value of constancy if more than one solution
exists, and B will be called an interval of constancy. P(y) has at most a denumer-
able number of values of constancy, say Bi, with corresponding intervals B;

(i=1, 2, ). The interval B;j has the form [b;, bj) or [b;, b!]. These intervals are
closed on the left because P(y) is continuous from the right. We note that zero
cannot be a value of constancy, because this would imply that for some & > 0,

P(m + 0) = 0, which contradicts the fact that m is the essential lower bound of £(9).

A single-valued function has an inverse if it is univalent. Delete from [m, M]
each interval of constancy, with the exceptions of the left hand end point of each in-
terval, and let D designate the resulting set. Let P(y) be the restriction of P(y) to
D. It will be univalent on D and its range is still the set R. Let P*(8) be the in-
verse of P(y). Its domain of definition is R and its range of values is D.

Let 61, 02 be any two points in R. Then there are unique, distinct values of y
in D, say yy, ¥, such that P(y;) = 8;, P(y,) = 6, and £*(8;) = y;, £%(6,) = y,.
Since, from (4.2),

P - P
(v3) (vy) >0,
Y2 - ¥
it follows that
02 - 61

™0, - oy

so that f*(#) is an increasing function on R.
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We next define a function f*(§) which extends the definition of f*(6) to the in-
terval [0, 7]. For 0 € R, let £*(9) = P*(8). If 0 # R but does lie in [0, 7], it
either lies in [0, €) or in an interval A;. In the first case we let £*(9) = f*(¢) = m;
in the second case we let f*(9) = P*(aj). The resulting function f*(9) is a non-
decreasing function on [0, 7]. We now note that

(4.4) *(0) =m (f*(m) = M).
The second follows from.(4.3). The first follows from the above construction, with

the added observation already made that zero is not a value of constancy.

Since f*(9) is non-decreasing on [0, 7],
meas E(f*(6) <y) = 8(y) (m<y<M),

where 0(y) is the least upper bound of the values of 6 which satisfy *(8) <y. We
now plan to show that 8(y) = P(y), thus showing that f*(9) is equimeasurable with
£(9).

Let y be a value assumed by f*(6). It is also assumed by *(9), and P(y) is the
unique solution of P*(9) = y. If £*(9) = y has other solutions, they are all less than
P(y), so 8(y) = P(y).

Suppose y is not assumed by f*(6). It then belongs to one of the intervals B;j.
Thus

(4.5) P(y) = P(b;)
and
(4.6) E(f%(0) <y) = E(f*06) < b;).

The value b; is on the range of f*(9) and so by the considerations of the previous
paragraph

(4.7) meas (£%(6) < b;) = P(b;).
Combining (4.5), (4.6) and (4.7) then yields
meas E(f*(6) <y) = P(y).

This completes the proof.
Proof of Lemma 2. We will actually show that

M
(4.8) Soﬂ F(£(0)) dO = 5 F(t) dP(t),

where P(t) is the measure function defined in (4.1). Since f*(8) has the same
measure function as f(9), the result (2.7) then follows.

First assume that 0 < m < M < ., The integral



AN INTEGRAL INEQUALITY 191

T

(4.9) SO (o) dg,
with k a positive integer, is defined as a limit of sums

n
(4.10) 20 Yi,n meas E(Yi-l,n < ££(9) <Vin>

i=1
where

mk = yO,n < yl,n <ee < yn,n = Mk

and

lim  max {|Yi,n-Y1-1,n|} =0.

n—oo i=l,see.n

Display (4.10) can also be written

(4.11) E t;gfn(P(ti) - P(ti—l)) ’

i=1
where
1/k .
=il (=1, n).

In the limit (4.11) has the value
M

(4.12) S t<dP(t) .
m

Given any € > 0, and any continuous function F(x) defined on [m, M], there are
polynomials P;(x), P,(x) which satisfy

(4.13) Fx) - < Py(x) < Fx) < Pp(x) < F(x) + &

on the interval [m, M]. We then obtain a chain of inequalities, using the fact that
(4.9) equals (4.12) and using (4.13); namely,

Sﬁ F(£(6)) df - & < Sﬂp (£(6)) d6 = SMP (t) dP(t)
0 T F 0 1 - m !

M M M
< Fwarw < ( p,mar® - (oo a0

m

o
< j; F(£(60)) d6 + ¢ .
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Since this is true for all ¢ > 0, we find (4.8) to be true if m > 0.

Next, suppose m < 0. The function £(9) + lml is non-negative, has measure
function P;(y) = P(y - |m]|), and has range [0, M + |m|]. If F(x) is a continuous
function on [m, M], then

(4.14) GEx) = F(x + m)

is continuous on [0, M + |m|]. Hence
m M+m
{Tet@+ mhao= (" cwar,®.
0 0
Using (4.14) and the definition of P, (y), we find
T M+m M
S F(£(0)) d6 = S F(t + m)dP(t - |m|) = S F(t) dP(t) .
0 0 m
This completes the proof.
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