RELATIONSHIPS AMONG THE SOLUTIONS OF TWO SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

Nelson Onuchic

1. INTRODUCTION

Given two systems of ordinary differential equations,

(1)
$$\dot{x} = A(t)x + g(t, x) \qquad \left(\cdot = \frac{d}{dt} \right),$$

$$\dot{y} = A(t)y,$$

the following problem is posed:

If y(t) $\{x(t)\}$ is a solution of (2) $\{(1)\}$, is there a solution x(t) $\{y(t)\}$ of (1) $\{(2)\}$ such that x(t) - y(t) \to 0 as $t \to \infty$?

In this work we use a topological method of Ważewski to discuss this problem. Reference to the above problem can be found in a book by L. Cesari [1, Section 3.7, p. 41 and Section 3.9.xi, p. 47].

We are going to state here two theorems of Ważewski used in this paper, giving first some definitions and notations.

Hypothesis H. (a) The real-valued functions f_i ($i=1,\cdots,n$) of the real variables $t,\,x_1,\,\cdots,\,x_n$, are continuous in a set $\Omega\subset R^{\,n+1}$.

(b) Through every point of Ω passes only one integral curve of the system

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{t}, \mathbf{x}).$$

where

$$x = \begin{pmatrix} x_1 \\ \cdot \\ \cdot \\ \cdot \\ x_n \end{pmatrix}, \quad f(t, x) = \begin{pmatrix} f_1(t, x_1, \dots, x_n) \\ \cdot \\ \cdot \\ \cdot \\ f_n(t, x_1, \dots, x_n) \end{pmatrix},$$

and $(t, x) \in \Omega$.

Let ω and Ω be open sets of \mathbb{R}^{n+1} with $\omega \subset \Omega$, and denote by $B(\omega, \Omega)$ the boundary of ω in Ω .

Let $P_0 = (t_0, x_0) \in \Omega$. We write $I(t, P_0) = (t, x(t, P_0))$, where $x(t, P_0)$ is the integral curve of the system (3) passing through the point P_0 .

Let $(\alpha(P_0), \beta(P_0))$ be the maximal open interval in which the integral curve passing through P_0 exists. We write

$$I(\triangle, P_0) = \{(t, x(t, P_0)) | t \in \triangle\}$$

Received June 23, 1962.

for every \triangle contained in $(\alpha(P_0), \beta(P_0))$.

The point $P_0=(t_0,\,x_0)\in B(\omega,\,\Omega)$ is a *point of egress* from ω (with respect to the system (3) and the set Ω) if there exists a positive number δ such that $I([t_0-\delta,\,t_0),\,P_0)\subset\omega$; P_0 is a *point of strict egress* from ω if P_0 is a point of egress and if there exists a positive number δ such that $I((t_0,\,t_0+\delta],\,P_0)\subset\Omega-\bar{\omega}$. The set of all points of egress (strict egress) is denoted by $S(S^*)$.

If A and B are any two sets of a topological space with $A \subset B$ and if K: $B \to A$ is a continuous mapping from B onto A such that K(P) = P for every $P \in A$, then K is a *retraction* from B into A, and A is a *retract* of B.

WAZEWSKI'S FIRST THEOREM. Suppose that the system (3) and the open sets $\omega \subset \Omega \subset \mathbb{R}^{n+1}$ satisfy the following hypotheses:

- 1) Hypothesis H
- 2) $S = S^*$.
- 3) There exists a set $Z \subset \omega \cup S$ such that $Z \cap S$ is a retract of S, but it is not a retract of Z.

Then there exists at least one point $P_0 = (t_0, x_0) \in Z - S$ such that $I(t, P_0) \subset \omega$ for every t $(t_0 \le t \le \beta(P_0))$.

Ważewski's theorem [4, Theorem 1, p. 299] is actually more general than the one stated above.

If $f_i(t, x_1, \dots, x_n)$ $(i = 1, \dots, n)$ are complex-valued functions of the real variable t and of the complex variables x_1, \dots, x_n , the n-dimensional complex system (3) can be considered as a 2n-dimensional real system, so that the theorem of Ważewski is also extensible, in a natural way, to complex systems [3, p. 19, Section 1 and p. 21, Section 2].

Let $g(t, x_1, \dots, x_n) = g(t, x)$ be a real-valued function belonging to C^1 on a set $\Omega \subset \mathbb{R}^{n+1}$, that is, suppose all first partial derivatives of g exist and are continuous on Ω .

Let $P_0 = (t_0, x_0) \in \Omega$, and let x(t) be the integral curve of the system (3) passing through the point P_0 . We set $\phi(t) = g(t, x(t))$. The derivative of g(t, x) at the point $P_0 = (t_0, x_0)$, with respect to the system (3) is by definition $\dot{\phi}(t_0)$ and is denoted by $[D_{(3)} g(P)]_{P_0}$.

Regular polyfacial set. Let $\ell^i(t, x)$ and $m^j(t, x)$ ($i = 1, \dots, p$; $j = 1, \dots, q$) be real-valued functions belonging to C^1 on an open set $\Omega \subset \mathbb{R}^{n+1}$.

Let

$$\begin{split} \omega &= \big\{\, P \in \Omega \,\big|\, \textstyle \int^i(P) < 0, \ i = 1, \, \cdots, \, p, \ m^j(P) < 0, \ j = 1, \, \cdots, \, q \big\}\,\,, \\ L^i &= \big\{\, P \in \Omega \,\big|\, \textstyle \int^i(P) = 0, \, \, \textstyle \int^k(P) \le 0, \ m^j(P) \le 0, \quad k = 1, \, \cdots, \, p; \ j = 1, \, \cdots, \, q \big\}\,\,, \\ M^j &= \big\{\, P \in \Omega \,\big|\, m^j(P) = 0, \, \, \textstyle \int^i(P) \le 0, \, \, m^k(P) \le 0, \quad i = 1, \, \cdots, \, p; \, k = 1, \, \cdots, \, q \big\}\,\,. \end{split}$$

Suppose that for all i, j $(1 \le i \le p; 1 \le j \le q)$, $[D_{(3)} \ell^i(P)]_{P \in L^i}$ is positive, and $[D_{(3)} m^j(P)]_{P \in M^j}$ is negative.

Under these hypotheses, the set ω is called a regular polyfacial set. The Lⁱ are called positive faces, and the M^j are called negative faces of ω .

WAŻEWSKI'S SECOND THEOREM. Let Ω be an open set in \mathbb{R}^{n+1} where the system (3) satisfies the hypothesis H.

Let $\omega \subset \Omega$ be a regular polyfacial set.

Then
$$S = S^* = \bigcup_{i=1}^{p} L^i - \bigcup_{j=1}^{q} M^j$$
 [4, Theorem 5, p. 310].

For convenience we shall write the systems (1) and (2) in the following way:

(1)
$$\dot{x}_{i} = \sum_{j=1}^{n} f_{ij}(t)x_{j} + g_{i}(t, x),$$

(2)
$$\dot{y}_{i} = \sum_{j=1}^{n} f_{ij}(t)y_{j}$$
.

2. A THEOREM ON SOLUTIONS DEFINED IN THE FUTURE

In the sequel it is always supposed that the systems (1) and (2) satisfy the hypothesis H in $[T,\infty)\times \Gamma$, where T is a real number and Γ is an open set in $[x] \|x\| < \infty$. We denote the real part of a complex-valued function f(t) by $\Re(f(t))$. If z = z(t) is a complex-valued n-vector, $t_0 \ge T$, and $\varepsilon > 0$, we define

$$W_{\varepsilon,t_0,z} = \bigcup_{t \geq t_0} \{t\} \times V_{\varepsilon(z(t))},$$

where

$$V_{\varepsilon,z(t)} = \{x | \|x - z(t)\| < \varepsilon \}.$$

We say that a solution x(t) is defined in the future if the maximum open interval in which it is defined contains some half-line $[\tau, \infty)$. A solution x(t) defined in the future is said to be bounded in the future if it is defined and bounded in some half-line $[\tau, \infty)$.

THEOREM 1. Suppose y=y(t) is a given solution of (2) and there exist an $\epsilon>0$ and a $t_0\geq T$ such that

$$W_{\epsilon,t_0,y}\subset\Omega$$
 = $(T,\infty)\times\Gamma$.

If there exist continuous functions $h_j(t)$ such that $\left|g_j(t,x)\right| \leq h_j(t)$ for all $(t,x) \in W_{\epsilon,t_0,y}$ $(j=1,\cdots,n)$, and if

$$(4) \qquad \int_{t}^{\infty} h_{k}(v) \bigg[\exp \int_{v}^{t} \mathfrak{N}(f_{kk}(s)) \, ds \bigg] dv \to 0 \quad \text{as} \quad t \to \infty \quad (k = 1, \, \cdots, \, n) \,,$$

$$(5) \qquad \int_{t}^{\infty} \left| f_{ij}(v) \right| \left[\exp \int_{v}^{t} \Re(f_{ii}(s)) \, ds \right] \! dv \to 0 \quad \text{as } t \to \infty \quad (i \neq j) \, .$$

Then there exists a solution x(t) of (2) defined in the future such that

$$x(t) - y(t) \rightarrow 0$$
 as $t \rightarrow \infty$.

Proof. We define $\omega = \{ P \in \Omega \mid |x_i - y_i(t)| < \phi_i(t), \ t \ge t_1 \ge t_0 \}$, where the function $\phi_i(t)$ and the constant t_1 will be chosen so that for all $t \ge t_1$ ($i = 1, \dots, n$), $\phi_i(t) > 0$, the ϕ_i are differentiable, $\lim_{t \to \infty} \phi_i(t) = 0$, and ω a regular polyfacial set.

If we put

$$\ell^{i}(P) = |x_{i} - y_{i}(t)|^{2} - \phi_{i}^{2}(t)$$
 (i = 1, ..., n),
 $m^{l}(P) = t_{1} - t$,

then $\omega = \{ P \in \Omega | l^i(P) < 0, i = 1, \dots, n, m^l(P) < 0 \}.$

For all i $(1 \le i \le n)$,

$$L^{i} = \{ P \in \Omega | |x_{i} - y_{i}(t)| = \phi_{i}(t), |x_{j} - y_{j}(t)| \leq \phi_{j}(t), j = 1, \dots, n, t \geq t_{1} \},$$

$$M^{1} = \{ P \in \Omega | |x_{i} - y_{i}(t)| \leq \phi_{i}(t), t = t_{1} \}.$$

An easy computation shows that

$$\begin{split} \frac{1}{2} [D_{(1)} \int_{\mathbf{P} \in \mathbf{L}^{\hat{\mathbf{i}}}} &\geq \| \mathbf{x}_{\hat{\mathbf{i}}} - \mathbf{y}_{\hat{\mathbf{i}}}(t) \|^{2} \Re(f_{\hat{\mathbf{i}}\hat{\mathbf{i}}}(t)) - \sum_{j \neq \hat{\mathbf{i}}} \| f_{\hat{\mathbf{i}}\hat{\mathbf{j}}}(t) \| \cdot \| \mathbf{x}_{\hat{\mathbf{i}}} - \mathbf{y}_{\hat{\mathbf{i}}}(t) \| \cdot \| \mathbf{x}_{\hat{\mathbf{j}}} - \mathbf{y}_{\hat{\mathbf{j}}}(t) \| \\ &- \| g_{\hat{\mathbf{i}}}(t, \mathbf{x}) \| \cdot \| \mathbf{x}_{\hat{\mathbf{i}}} - \mathbf{y}_{\hat{\mathbf{i}}}(t) \| - \phi_{\hat{\mathbf{i}}}(t) \dot{\phi}_{\hat{\mathbf{i}}}(t) \\ &\geq \phi_{\hat{\mathbf{i}}}^{2}(t) \Re(f_{\hat{\mathbf{i}}\hat{\mathbf{i}}}(t)) - \sum_{j \neq \hat{\mathbf{i}}} \| f_{\hat{\mathbf{i}}\hat{\mathbf{j}}}(t) \| \phi_{\hat{\mathbf{i}}}(t) \phi_{\hat{\mathbf{j}}}(t) - \| g_{\hat{\mathbf{i}}}(t, \mathbf{x}) \| \phi_{\hat{\mathbf{i}}}(t) - \phi_{\hat{\mathbf{i}}}(t) \dot{\phi}_{\hat{\mathbf{i}}}(t). \end{split}$$

As we want $\phi_i(t)$ to be positive and $\lim_{t\to\infty}\phi_i(t)=0$, we choose t_i so that $\Sigma_{i=1}^n \phi_i(t)<\epsilon<1$ for all $t\geq t_i$. Then

$$\begin{split} \frac{1}{2} [D_{(1)} \not \ell^i(P)]_{P \in L^i} & \geq \phi_i(t) \Big[\phi_i(t) \Re(f_{ii}(t)) - \sum_{j \neq i} \big| f_{ij}(t) \big| \\ & - \big| g_i(t, \, x) \big| - \dot{\phi}_i(t) \Big] \geq \phi_i(t) \big[\phi_i(t) \Re(f_{ii}(t)) - \dot{\phi}_i(t) - \gamma(t) \big], \end{split}$$

where $\gamma(t) = h_i(t) + \sum_{j \neq i} |f_{ij}(t)|$.

In order to have $[D_{(1)} \ell^i(P)]_{P \in L^i} > 0$ (i = 1, ..., n) it is sufficient to choose $\phi_i(t)$ such that

$$-\dot{\phi}_{i}(t) + \Re(f_{ii}(t))\phi_{i}(t) - \gamma(t) > 0$$
.

The problem is then to look for a solution z(t) of $\dot{z} < \sigma(t)z - \gamma(t)$ satisfying the conditions z(t) > 0 $(t \ge t_1)$, $\lim_{t \to \infty} z(t) = 0$, knowing that

$$\int_t^\infty \gamma(v) \bigg[\exp \, \int_v^t \! \sigma(s) \, ds \, \bigg] dv \, \to \, 0 \ as \ t \, \to \infty \; .$$

If w(t) satisfies $\dot{\mathbf{w}}(t) = \sigma(t)\mathbf{w}(t) - \gamma(t)$, it follows that $\mathbf{z}(t) = 2\mathbf{w}(t)$ satisfies the differential inequality $\dot{\mathbf{z}}(t) < \sigma(t)\mathbf{z}(t) - \gamma(t)$. It is then sufficient to find a solution w(t) for which $\mathbf{w}(t) > 0$ ($t \ge t_1$) and $\lim_{t \to \infty} \mathbf{w}(t) = 0$. The solution

$$w(t) = \exp\left(\int_{t_1}^t \sigma(s) \, ds\right) \cdot \int_{t}^{\infty} \gamma(v) \left[\exp\left(-\int_{t_1}^v \sigma(s) \, ds\right)\right] dv = \int_{t}^{\infty} \gamma(v) \left[\exp\left(\int_{t}^t \sigma(s) \, ds\right)\right] dv$$

exists and $w(t) \rightarrow 0$ as $t \rightarrow \infty$.

Since $[D_{(1)}m^1(P)]_{P \in M^1} = -1$, it follows from Ważewski's Second Theorem that ω is a regular polyfacial set and $S = S^* = \left[\bigcup_{i=1}^n L^i \right] - M^1$.

If we choose

$$Z = \{(t, x) | t = \tau > t_1, |x_j - y_j(\tau)| \le \phi_j(\tau), j = 1, \dots, n \},$$

it follows that

$$S \cap Z = \bigcup_{i=1}^{n} L^{i} \cap Z - M^{1},$$

$$L^{i} \cap Z = \{(t, x) \mid t = \tau, |x_{i} - y_{i}(\tau)| = \phi_{i}(\tau), |x_{j} - y_{j}(\tau)| \leq \phi_{j}(\tau), j = 1, \dots, n\}.$$

Therefore $Z = \prod_{j=1}^{n} B_{j}^{2}$, where B_{j}^{2} is a disc in R^{2} , and

$$Z \cap S = \bigcup_{j=1}^{n} B_1^2 \times \cdots \times B_{j-1}^2 \times S_j^1 \times B_{j+1}^2 \times \cdots \times B_n^2,$$

where S_j^1 is the boundary of B_j^2 in R^2 . Also, modulo homeomorphisms, $Z=B^{2n}$ (a solid sphere in R^{2n}) and $Z\cap S=S^{2n-1}$, the boundary of B^{2n} in R^{2n} . So $Z\cap S$ is not a retract of Z. However the function

$$\Phi: S \to S \cap Z$$

given by $\Phi(P) = P^*$, with

$$t^* = \tau$$
, $x_i^* = y_i(\tau) + [x_i - y_i(\tau)] \frac{\phi_i(\tau)}{\phi_i(t)}$,

is a retraction.

Using Ważewski's First Theorem, we can conclude the existence of at least one point $P_0 = (\tau, x_0) \in Z$ - S such that

$$(t, x(t, P_0)) = I(t, P_0) \subset \omega$$
 for all $t > \tau$.

It must be that $\beta(P_0) = \infty$ because otherwise

$$\{I(t, P_0) | \tau \leq t < \beta(P_0)\} \cap [\Omega - \omega] \neq \emptyset$$
,

which is not possible.

Consequently, $x(t, P_0)$ is defined in the future, and $\lim_{t\to\infty} [x(t, P_0) - y(t)] = 0$. The proof of the theorem is complete.

In the sequel U(t) will denote a fundamental matrix of (2) and for an $n \times n$ matrix $Z = (z_1, \dots, z_n), \|Z\|$ is defined by $\sum_{j=1}^n \|z_j\|$.

3. COROLLARIES

COROLLARY 1. Suppose the following conditions hold:

- (i) All solutions of (2) are bounded in the future.
- (ii) In the system (1), g(t, x) is defined on $[T, \infty) \times \Gamma$, where T is a real number and $\Gamma = \{x \mid ||x|| < \infty\}$.
- (iii) For every constant M>0 and some $t_0>T,$ there exists a continuous real-valued function $h_M(t)$ such that $\int_0^\infty h_M(t) \left\| U^{-1}(t) \right\| \, dt < \infty \ \text{ and } \left\| g(t,\,x) \right\| \leq h_M(t) \ \text{for all } (t,\,x) \text{ with } t>t_0, \ \left\| x \right\| \leq M.$

Then for every solution y(t) of (2) { bounded solution x(t) of (1)}, there exists a solution x(t) of (1) defined in the future {solution y(t) of (2)} such that $x(t) - y(t) \rightarrow 0$ as $t \rightarrow \infty$.

Proof. If we make the transformations x(t) = U(t)z(t), y(t) = U(t)v(t) in the systems (1) and (2), then

(6)
$$\dot{z}(t) = U^{-1}(t)g(t, U(t)z(t)) = f(t, z),$$

$$\dot{\mathbf{v}}(\mathbf{t}) = 0.$$

To prove that for every solution y(t) of (2), there exists a solution x(t) of (1) defined in the future such that x(t) - y(t) \rightarrow 0 as $t \rightarrow \infty$, it is enough to prove that for every constant $n \times 1$ matrix c there is a solution z(t) of (6) defined in the future with $z(t) \rightarrow c$ as $t \rightarrow \infty$.

There exists a constant K such that $\|U(t)\| \le K$ for $t \ge t_0$. Therefore

$$\|f(t,\,z)\| \leq \, \|\,U^{-1}(t)\,\|\,\cdot\,\|\,g(t,\,U(t)z)\,\| \leq \, \|\,U^{-1}(t)\,\|\,h_{\,\widetilde{M}}(t) \quad (t\geq t_0)\,,$$

for
$$\|z\| \le M$$
, where $\widetilde{M} = KM$; and by hypothesis, $\int_{-\infty}^{\infty} \|U^{-1}(t)\| h_{\widetilde{M}}(t) dt < \infty$.

Now the existence of a solution z(t) of (6) with the required property follows from Theorem 1 applied to the systems (6) and (7).

If x(t) is a given bounded solution of (1), we consider the solution $\tilde{y}(t)$ of (2) defined by the integral equation

$$x(t) = \tilde{y}(t) + \int_{t_1}^{t} U(t)U^{-1}(s)g(s, x(s)) ds \quad (t_1 \ge t_0),$$

such that ||x(t)|| is less than some constant M for all $t \ge t_1$. Clearly,

$$\| \mathbf{U}^{-1}(\mathbf{s}) \mathbf{g}(\mathbf{s}, \mathbf{x}(\mathbf{s})) \| \le \| \mathbf{U}^{-1}(\mathbf{s}) \| \mathbf{h}_{\mathbf{M}}(\mathbf{s})$$
 $(\mathbf{s} \ge \mathbf{t}_1)$.

Therefore,

$$\int_{-\infty}^{\infty} \| U^{-1}(s)g(s, x(s)) \| ds < \infty, \text{ and}$$

$$x(t) = \tilde{y}(t) + U(t) \int_{t_1}^{\infty} U^{-1}(s)g(s, x(s)) ds + U(t) \int_{\infty}^{t} U^{-1}(s)g(s, x(s)) ds$$

$$= y(t) + U(t) \int_{-\infty}^{t} U^{-1}(s)g(s, x(s)) ds,$$

where y(t) is a solution of (2).

It follows that x(t) - y(t) \to 0 as $t \to \infty$. The proof of the Corollary 1 is complete.

We notice that under the hypotheses of Corollary 1 there are systems (1) for which one can find unbounded solutions. For instance $x = \exp t$ is a solution of $\dot{x} = [\exp(-t)]x^2$.

COROLLARY 1'. Suppose assumptions (i) and (iii) of Corollary 1 hold and further, suppose that:

(iii') For every constant M>0 and some $t_0>T$ there exists a continuous real-valued function $\,h_M(t)\,$ such that

$$\int_{-\infty}^{\infty} h_{M}(t) \left[\exp \int_{t}^{t_{0}} \sum_{j=1}^{n} \Re(f_{jj}(s)) ds \right] dt dt < \infty$$

and $\|g(t,\,x)\| \leq h_{\,M}\!(t)$ for all $(t,\,x)$ with $t \geq t_0, \ \|x\| \leq M.$

Then the conclusions of Corollary 1 hold.

Proof. From the Jacobi-Liouville formula,

$$\det U(t) = \det U(t_0) \left[\exp \int_{t_0}^{t} \sum_{j=1}^{n} f_{jj}(s) ds \right],$$

it follows that

$$| [\det U(t)]^{-1} | = | [\det U(t_0)]^{-1} | [\exp \int_t^{t_0} \sum_{j=1}^n \Re(f_{jj}(s)) ds].$$

Since $U^{-1}(t) = [\det U(t)]^{-1} \operatorname{adj} U(t)$ and hypothesis (i) implies adj U(t) is bounded, it is clear that

$$\begin{split} \left\| \, U^{-1}(t) \, \right\| \, &= \, \left| \, \left[\det \, U(t) \right]^{-1} \, \middle| \cdot \left\| \, \operatorname{adj} \, U(t) \, \right\| \\ &= \, \left| \, \left[\det \, U(t_0) \right]^{-1} \, \middle| \cdot \left\| \, \operatorname{adj} \, U(t) \, \right\| \cdot \, \left[\, \exp \, \, \int_t^{t_0} \sum_{j=1}^n \, \Re (f_{jj}(s)) \, \, \mathrm{d}s \, \right] \\ &\leq \, K \left[\, \exp \, \, \int_t^{t_0} \sum_{j=1}^n \, \Re (f_{jj}(s)) \, \, \mathrm{d}s \, \right] \, , \end{split}$$

for some constant K. Therefore, $\int_{-\infty}^{\infty} h_M(t) \| U^{-1}(t) \| dt < \infty$ and Corollary 1' now follows immediately from Corollary 1.

In the system (1) suppose now

$$g_{i}(t, x) = \sum_{j=1}^{m_{i}} g_{ij}(t, x), |g_{ij}(t, x)| \leq F_{i}(t) ||x||^{\alpha_{ij}}, \alpha_{ij} \geq 0, \alpha = \max(\alpha_{ij}).$$

COROLLARY 2. Suppose $\Gamma = \{x | \|x\| < \infty\}$, y = y(t) is a solution of (2), and

(8)
$$\int_{t}^{\infty} F_{j}(v) \left[\exp \int_{v}^{t} \Re(f_{jj}(s)) ds \right] dv \to 0 \quad as \ t \to \infty$$

$$(j = 1, ..., n),$$

$$(j = 1, ..., n),$$

Then there exists a solution x(t) of (1) such that $x(t) - y(t) \to 0$ as $t \to \infty$.

Proof. If we choose a $t_0>T$ and $\epsilon=1$, then the statement $(t,\,x)\in W_{\epsilon,t_0,y}$ implies that $\|x\|<\|y(t)\|+1$, and that

$$\begin{split} \left| g_{i}(t, x) \right| &\leq \sum_{j=1}^{m_{i}} \left| g_{ij}(t, x) \right| \leq \sum_{j=1}^{m_{i}} F_{i}(t) \left\| x \right\|^{\alpha_{ij}} \leq \sum_{j=1}^{m_{i}} F_{i}(t) \left[1 + \left\| y(t) \right\| \right]^{\alpha_{ij}} \\ &\leq K_{1} F_{i}(t) \left[1 + \left\| y(t) \right\| \right]^{\alpha} \leq K_{1} F_{i}(t) \left[2 \sup(1, \left\| y(t) \right\|) \right]^{\alpha} \\ &\leq K_{2} F_{i}(t) \left[1 + \left\| y(t) \right\|^{\alpha} \right], \end{split}$$

where K_1 and K_2 are constants.

Now we use Theorem 1 with $h_i(t) = K_2 F_i(t) [1 + ||y(t)||^{\alpha}]$ and obtain the desired conclusions.

COROLLARY 2'. Suppose $\Gamma = \{x | ||x|| < \infty\}$,

(11)
$$K \leq \int_t^v \Re(f_{ii}(s)) \, ds, \ \ \textit{for some constant} \ K \ \textit{and}$$

all
$$v > t > T$$
 (i = 1, ..., n),

(13)
$$\int_{-T}^{\infty} F_{j}(v) \left[\exp \int_{-T}^{v} \alpha \Re(f_{ii}(s)) ds \right] dv < \infty \qquad (i, j = 1, \dots, n).$$

Then for every solution y(t) of (2) there exists a solution x(t) of (1) such that $(x(t) - y(t) \rightarrow 0 \text{ as } t \rightarrow \infty$.

Proof. Consider the system

(14)
$$\dot{z}_{i} = f_{ii}(t)z_{i}$$
 (i = 1, ..., n)

and rewrite (2) in the form

(2)
$$\dot{y}_{i} = f_{ii}(t)y_{i} + \sum_{j \neq i} f_{ij}(t)y_{j}$$
.

Hypotheses (11), (12) and (13) imply that

$$\int^{\infty} \big| \, f_{i\,j}(v) \, \big| \, dv < \infty \quad (i \neq j) \ \, \text{and} \, \int^{\infty} \, F_k(v) \, dv < \infty \,, \quad (k = 1, \, \cdots, \, n) \,.$$

By applying the Corollary 2 to the systems (2) and (14) in relation to any solution z(t) of (14), we conclude that there exists a solution y(t) of (2) such that $z(t) - y(t) \rightarrow 0$. Hence, for the fundamental matrix z(t) of (14) defined by the conditions

$$(Z(t))_{j}^{i} = 0 \text{ if } i \neq j \text{ and } (Z(t))_{i}^{i} = \exp \int_{T}^{t} f_{ii}(s) ds,$$

there exists a matrix Y(t) of solutions of (2) such that $Y(t) - Z(t) \to 0$ as $t \to \infty$. As there exists an $\epsilon > 0$ such that $\exp \int_T^t \Re (f_{ii}(s)) \, ds > \epsilon$ ($i = 1, \cdots, n; \ t \ge T$), the existence of a $\delta > 0$ and a $t_o \ge T$ such that $|(Y(t))_i^i| > \delta$ for $t \ge t_o$ ($i = 1, \cdots, n$) and $(Y(t))_j^i \to 0$ as $t \to \infty$ for $i \ne j$ follows. This implies that Y(t) is a fundamental matrix of (2). Therefore, for every solution y(t) of (2) there exists a solution z(t) of (1) such that $z(t) - y(t) \to 0$ as $t \to \infty$.

So, if t_1 is sufficiently large and if $t \ge t_1$, then

$$\begin{split} \left\| y(t) \right\| &\leq \sum_{j=1}^{n} K_{j} \exp \int_{T}^{t} \Re(f_{jj}(s)) \, ds + 1 \\ &\leq \left[n+1 \right] \sup_{1 \leq j \leq n} \left\{ K_{j} \exp \int_{T}^{t} \Re(f_{jj}(s)) \, ds, \, 1 \right\} \end{split}$$

where the $K_j \geq 0$ are constants. Thus there exists a constant $K \geq 0$ such that

$$\begin{split} \|y(t)\|^{\alpha} &\leq K \left[1 + \sum_{j=1}^{n} \exp \int_{T}^{t} \alpha \, \Re \, {}'f_{jj}(s)) \, \mathrm{d}s \, \right], \\ &\int_{t}^{\infty} F_{k}(v) \left[\exp \int_{v}^{t} \, \Re (f_{kk}(s)) \, \mathrm{d}s \, \right] \mathrm{d}v \leq \operatorname{constant} \int_{t}^{\infty} F_{k}(v) \, \mathrm{d}v \to 0 \quad (t \to \infty) \, , \\ &\int_{t}^{\infty} \|y(v)\|^{\alpha} \, F_{k}(v) \left[\exp \int_{v}^{t} \, \Re (f_{kk}(s)) \, \mathrm{d}s \, \right] \mathrm{d}v \leq \int_{t}^{\infty} \|y(s)\|^{\alpha} \, F_{k}(s) \, \mathrm{d}s \\ &\leq \operatorname{constant} \left[\int_{t}^{\infty} F_{k}(v) \, \mathrm{d}v + \sum_{j=1}^{n} \int_{t}^{\infty} F_{k}(v) \left\{ \exp \int_{T}^{v} \alpha \, \Re \, (f_{jj}(s)) \, \mathrm{d}s \, \right\} \mathrm{d}v \, \right] \to 0 \\ &\qquad \qquad (t \to \infty) \, , \\ &\int_{t}^{\infty} |f_{ij}(v)| \left[\exp \int_{v}^{t} \Re (f_{ii}(s)) \, \mathrm{d}s \, \right] \mathrm{d}v \leq \int_{t}^{\infty} |f_{ij}(s)| \, \mathrm{d}s \to 0 \quad (t \to \infty) \, , \end{split}$$

$$\int_{\mathbf{t}} |\mathbf{f}_{ij}(\mathbf{v})| \left[\exp \int_{\mathbf{v}} \Re(\mathbf{f}_{ii}(\mathbf{s})) \, \mathrm{d}\mathbf{s} \right] \mathrm{d}\mathbf{v} \le \int_{\mathbf{t}} |\mathbf{f}_{ij}(\mathbf{s})| \, \mathrm{d}\mathbf{s} \to 0 \quad (\mathbf{t} \to \infty)$$

where $i \neq j$ $(k = 1, \dots, n)$.

Corollary 2' follows now from Corollary 2.

We notice that Corollary 2' is a generalization of Theorem III-2 in [2, p. 1524]. Also it is easy to obtain Theorem III-3, [2, p. 1526] as a consequence of Corollary 2'.

This work was completed while I possessed a Guggenheim Fellowship.

I am indebted to Drs. P. Hartman and J. K. Hale who have read the original manuscript and have made suggestions improving some results.

REFERENCES

- 1. L. Cesari, Asymptotic behavior and stability problems in ordinary differential equations. Ergebnisse der Mathematik und ihrer Grenzgebiete. n.F., Heft 16, Springer-Verlag, Berlin, 1959.
- 2. N. Onuchic, Applications of the topological method of Ważewski to certain problems of asymptotic behavior in ordinary differential equations, Pacific J. Math. 2 (1961), 1511-1528.

- 3. Z. Smydtówna, Sur l'allure asymptotique des intégrales des équations différentielles ordinaires, Ann. Soc. Polon. Math. 24 (1951), 17-34.
- 4. T. Ważewski, Sur un principe topologique de l'examen de l'allure asymptotique des intégrales des équations différentielles ordinaires, Ann. Soc. Polon. Math. 20 (1948), 279-313.

RIAS and Faculdade de Filosofia, Ciencias e Letras, Rio Claro, S.P., Brazil