RELATIONSHIPS AMONG THE SOLUTIONS OF TWO SYSTEMS
OF ORDINARY DIFFERENTIAL EQUATIONS

Nelson Onuchic

1. INTRODUCTION

Given two systems of ordinary differential equations,
. d
1) x=AWx+et,®  (=%),

(2) y = Ay,

the following problem is posed:

If y(t) {x(t)} is a solution of (2) {(1)}, is there a solution x(t) {y(t)} of (1)
{(2)} such that x(t) - y(t) = 0 as t = ©?

In this work we use a topological method of Wazewski to discuss this problem.
Reference to the above problem can be found in a book by L. Cesari [1, Section 3.7,
p. 41 and Section 3.9.xi, p. 47].

We are going to state here two theorems of WazZewski used in this paper, giving
first some definitions and notations.

Hypothesis H. (a) The veal-valued functions f; (i=1, -+, n) of the real vari-
ables t, X1, ***, X, ave continuous in a set § c Rl

(b) Through every point of Q passes only one integral curve of the system

(3) x = f(t, x),
where
Xy £i(t, xq, o0, x))
X = , Ht, x) = ,
X.n f(t, x;, e, X))

and (t, x) € Q.

Let w and £ be open sets of Rl with w c ©, and denote by B(w, £) the
boundary of w in Q.

Let P, = (t,, X,) € 2. We write I(t, Py = (t, x(t, Py)), where x(t, P,) is the inte-
gral curve of the system (3) passing through the point P,.

Let (a(Py), B(Py)) be the maximal open interval in which the integral curve pass-
ing through P, exists. We write
I(A, Py = {(t, x(t, P))|ten}
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for every A contained in (@ (P,), B(Py)).

The point P, = (t,, x,) € B(w, Q) is a point of egress from w (with respect to the
system (3) and the set ) if there exists a positive number 8 such that
I([t, - 0, ty), Py) C w; P, is a point of strict egress from w if P, is a point of
egress and if there exists a positive number & such that I((t,, t, + 8], Py) C - w.
The set of all points of egress (strict egress) is denoted by S (S*).

If A and B are any two sets of a topological space with Ac B and if Ki B— A
is a continuous mapping from B onto A such that K(P) = P for every P € A, then K
is aretraction from B into A, and A is a refract of B.

WAZEWSKI’S FIRST THEOREM. Suppose that the system (3) and the open sets
w C © c R satisfy the following hypotheses:

1) Hypothesis H
2) S = S*.

3) There exists aset Z C w U S such that Z NS is a retract of S, butl it is not
a relvact of 7.

Then there exists at least one point P, = (t,, X,) € Z ~S such that 1(t, Py) C w
Jor every t (t, <t < B(Py)).

WaZewski’s theorem [4, Theorem 1, p. 299] is actually more general than the
one stated above.

If fi(t, xq, =, %) (=1, -+, n) are complex-valued functions of the real variable
t and of the complex variables xj, *-+, X,, the n-dimensional complex system (3) can
be considered as a 2n-dimensional real system, so that the theorem of WaZewski is
also extensible, in a natural way, to complex systems [3, p. 19, Section 1 and p. 21,
Section 2].

Let g(t, xy, ***, x,) = g(t, x) be a real-valued function belonging to C! on a set
Q c Rrtl that is, suppose all first partial derivatives of g exist and are continuous
on .

Let Py = (t,, x,) € 2, and let x(t) be the integral curve of the system (3) passing
through the point P,. We set ¢(t) = g(t, x(t)). The derivative of g(t, x) at the point
P, = (t,, X,), With respect to the system (3) is by definition ¢(t,) and is denoted by
[D3) g(P)]p .

Regular polyfacial set. Let fi(t, x) and mi(t, x) (i=1, «=-, p; j=1, ---, q) be
real-valued functions belonging to C! on an open set & ¢ Rntl,

Let
w=1{Pe Q|(1(P) <0,i=1, -, p, mi(P) < 0, j=1, -, qa},
Li={Peq|fiP) =0, (XP)<0, mI(P)<0, k=1,,p;j=1,--,q},
M = {Pea|mi®) =0, {{P) <0, m*®) <0, i=1,-,p;k=1, - q}.

Suppose that for all i,j (1<i<p; 1<Lji<Lq), [D(3) Ii(P)]PeLi is positive, and
[Dzy m’(P)] ,,j is negative.

Under these hypotheses, the set w is called a regular polyfacial set. The i
are called positive faces, and the MJ are called negative faces of w.
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n+l

WAZEWSKI’S SECOND THEOREM. Let  be an open set in R where the

system (3) salisfies the hypothesis H.
Let w c Q be a regular polyfacial set,

P q
Then s=s*=UJ 1i- UM [4, Theorem 5, p. 310].
i=1 j=1

For convenience we shall write the systems (1) and (2) in the following way:

(1) % = 20 £55(0%; + gilt, ),
j=1
(2) i = 2 i5)y;
j=1

2. A THEOREM ON SOLUTIONS DEFINED IN THE FUTURE

In the sequel it is always supposed that the systems (1) and (2) satisfy the hy-
pothesis H in [T, «) X I', where T is a real number and I'" is an open set in __
{x| ||xll < =}. We denote the real part of a complex-valued function f(t) by %R(£(t)).
If z = z(t) is a complex-valued n-vector, t, > T, and £ > 0, we define

WS,to,z = U {t} X Vs(z(t)) ’

t>t,
where
Ve, a(t) = {x][|x-z®)]<e}.
We say that a solution x(t) is defined in the future if the maximum open interval
in which it is defined contains some half-line [7, ). A solution x(t) defined in the

future is said to be bounded in the future if it is defined and bounded in some half-
line [7, ).

THEOREM 1. Suppose y = y(t) is a given solution of (2) and theve exist an
€>0 agnd a t.> T such that

We,to,y © S = (T, o) XI.

If theve exist continuous functions hj(t) such that le it x)|<h it} for all
(t, x) € WS,tOsY (3=1, -, n), and if

oo t
(4) St hk(v)[exp S N (£ (s)) ds]dv —0 as t— o (k=1, -, n),

«° t
(5) S |fij(v) l[eXp S m(fii(s)) dS]d\;r7 — 0 as t—o (i + ]) .
t v
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Then there exists a solution x(t) of (2) defined in the future such that
x(t) -y(t) -0 as t — .
Proof. We define w = {P € Q| |x; - y;()| < ¢;(), t> t; > t}, where the func-

tion ¢;(t) and the constant t, will be chosen so that for all t>t;, (i=1, ---, n),
¢;(t) > 0, the ¢; are differentiable, lim;_,., ¢;(t) = 0, and w a regular polyfacial set.

If we put

]

@) = |x, -y, ®)° -2 (=1, -,
ml(P) = t; - t,
then w = {P e Q| fiP) <0, i=1, -, n, m!(P)<0}.
Forall i (1<i<n),

L' = {P €@ |x;- y 0] = 00, [%5- ;01 <050, i=1,,n, t>t},

M' = {Peg||x - y;®)] <o), t=t;}.

An easy computation shows that

S @pers > fxi- yi® | 006 - 21501 Ix - 5,01 [ - v,

- |gi(t, X)I * !Xi - yi(t)l - ¢i(t)éi(t)

> $ZO R, ®) - 27 |£,0)] 4,06, - |g;t, 0] 6,() - 6,1, (®).
j#i

As we want ¢;(t) to be positive and lim;_, . ¢;(t) = 0, we choose t, so that
T4 <e<1 forall t>t,. Then

D @i > ¢i(t>[¢i<t>;m<fﬁ(t)) - Z 15,0

- et | - &)i(t)] > o; (1) [o,(1) R(E(1) - 6, (1) - »(D)],

where y(t) = hy(t) + Z5; lfi.j(t) |-
In order to have [Dy;) £*(P)]p ;1> 0 (i=1, -+, n) it is sufficient to choose ¢;(t)
such that
;D) + N(E;;()e;5(1) - »(£) > 0.

The problem is then to look for a solution z(t) of z < o(t)z -~ y(t) satisfying the
conditions z(t) > 0 (t > t,), limy_, z(t) = 0, knowing that

0 t
S 'y(v)[exp S o(s) ds]dv — 0 as t — .
t

v
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If w(t) satisfies w(t) = o(t)w(t) - y(t), it follows that z(t) = 2w(t) satisfies the differ-
ential inequality z(t) < o(t)z(t) - y(t). It is then sufficient to find a solution w(t) for
which w(t) > 0 (t>t,) and lim,_,  w(t) = 0. The solution

t

w(t) = exp ( St o(s) ds) . S:oy(v)[exp ( _ Stv o(s) ds)l] dv = S:) v(v) [exp S:G(S) ds]dv

exists and w(t) » 0 as t — .
Since [D(1) ml(P)]PEMl = -1, it follows from Wazewski’s Second Theorem that w
1

is a regular polyfacial set and S = S* =[ ?=1 Li] - M-,

If we choose
= {(ts X)I t=7>14, IXJ = YJ(T)IS (f)J(T), i=1, -, n} ’

it follows that
n

snz=UJLinz-M,
i=1

L' n z = {(, X)|t=r, |xi - yi(T)I = ¢;(7), |xj - yj(7)|_<_ ¢>j(1’), j=1, -, n}.

2 2
Therefore Z = H?=l Bj, where Bj is a disc in RZ, and
e 2 2 1 2 2
ZN§ = H By X+ X B X 8j X Bj41 X *** X By,

where S is the boundary of B in R? Also, modulo homeomorphisms, Z = B%" (a
solid sphere in R2%) and Z N § = §2°-1 , the boundary of B%® in R?®, So ZN S is
not a retract of Z. However the functlon

®:S—-SNZ
given by ®(P) = P*, with

t* =T, x;" =y, (7) + [x -y; ()] ilg—)) s

is aretraction.

Using Wazewski’s First Theorem, we can conclude the existence of at least one
point P, = (7, x,) € Z - S such that

(t, x(t, Py)) = I(t, Py) C w for all t> 7.
It must be that B(P,) = « because otherwise
{It, Py | < t<B@I} N [Q - w] 9,

which is not possible.
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Consequently, x(t, Py) is defined in the future, and lim,_,, [x(t, P, - y(t)] = 0.
The proof of the theorem is complete.

In the sequel U(t) will denote a fundamental matrix of (2) and for an n X n matrix
Z = (21, ***, Zp), ||Z] is defined by =3 | z;].

3. COROLLARIES

COROLLARY 1. Suppose the following conditions hold:
(i) All solutions of (2) are bounded in the future.

(ii) In the system (1), g(t, x) is defined on [T, «) X I", wherve T is a real num-
ber and T = {x| |x|| <=}.

(iii) For every constant M > 0 and some t,> T, there exists a continuous real-
o0
valued function h \(t) such that 5 hy® U dt <o and ||glt, || < hpylt) for
all (t, x) with t>t,, ||x] <M.

Then for every solution y(t) of (2) { bounded solution x(t) of (1)}, there exists
a solution x(t) of (1) defined in the future {solution y(t) of (2)} such that
x(t) - yt) = 0 as t — oo,

Proof. If we make the transformations x(t) = Ut)z(t), y(t) = Ut)v(t) in the sys-
tems (1) and (2), then
(6) z(t) = U (t)e(t, Ubz(t) = i(t, 2),
(D v({t) = 0.

To prove that for every solution y(t) of (2), there exists a solution x(t) of (1)
defined in the future such that x(t) - y(t) — 0 as t — «, it is enough to prove that for
every constant n X 1 matrix c there is a solution z(t) of (6) defined in the future
with z(t) —» ¢ as t — =,

There exists a constant K such that || UW)||< K for t> t,. Therefore

ltt, 2] < o @] - e, vw2) || < v O lng® ¢>to),

o0
for [|z|| < M, where M = KM; and by hypothesis, S ut® || hga(®) dt < wo.

Now the existence of a solution z(t) of (6) with the required property follows
from Theorem 1 applied to the systems (6) and (7).

If x(t) is a given bounded solution of (1), we consider the solution y(t) of (2) de-
fined by the integral equation

t
x(t) = F() + i v U H(e)els, x(s)ds  (t; > tg),
1

such that |x(t)|| is less than some constant M for all t > t,.

Clearly,
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|ut(s)els, x| < U U9 | bpgls) (s> ).

Therefore,

Sw |u~ (s)g(s, x(s))|| ds < =, ana

x(t)

fore) t
5 + U St U Ys)e(s, x(s)) ds + U(t)S U1 (s)a(s, x(s)) ds

to1
y® + U | U e)e(s, x(s)) ds,

where y(t) is a solution of (2).

It follows that x(t) - y(t) — 0 as t — . The proof of the Corollary 1 is com-
plete. \

We notice that under the hypotheses of Corollary 1 there are systems (1) for
which one can find unbounded solutions. For instance x = exp t is a solution of
% = [exp(-t)]x2.

COROLLARY 1'. Suppose assumptions (i) and (iii) of Covollary1 hold and
Surther, suppose that:

(iii*) For every constant M > 0 and some t, > T theve exists a continuous real-
valued function hy(t) such that

§ ) hM(t)[exp Sto > St(fjj(s))ds]dt at < e

t j:]_

and ||g(t, x)|| < hft) for all (t, x) with > t,, ||x| < M.
Then the conclusions of Covollary 1 hold,

Proof. From the Jacobi-Liouville formula,

t n
det U(t) = det U(ty) [exp ‘g 22 fjj(s) ds]‘ ,
to j=1

it follows that

tO n
| [det U(t)]'ll = | [det U(to)]_ll [exp 5 Zi sn(fjj(s))ds] .
t =

Since U(t) = [det U(t)]"*adj U(t) and hypothesis (i) implies adj U(t) is bounded, it
is clear that
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o~ | = | [det U@)]~t|-]ladj U@

to n
| [det Ut)]™"| - [|adj U |- [exp St 27 %(fj1(s) ds]
j=1

ty D
< K[exp St g)l R(E () ds] ,

for some constant K. Therefore, Soo hy4(t) |u-Yt)||dt < ~» and Corollary 1' now
follows immediately from Corollary 1.
In the system (1) suppose now
mj
g;(t, x) = 'Zigij(t, X), |gij(t, x| < F() "x”aij , @35 > 0, o = max(ay;).
j=

COROLLARY 2. Suppose T' = {x| ||x|< =}, y = y(t) is a solution of (2), and

oo t

(8) ‘S; Fj(v) [exp SV %R(fjj(s)) ds] dv —0 gst—

G= 1, -, n) ’
o t ) 1

(9) St vy ||* Fj(v) [exp jv R (£55(s)) ds] dv—0 ast—ow

(] = 19 ’ n) 3
0 - t
(10) St 1550 [exp SV R (£(s)) ds] dv —» 0 ast—eo (i#]).

Then there exists a solution x(t) of (1) such that x(t) - y(t) - 0 as t — .
Proof. If we choose a t,> T and ¢ = 1, then the statement (t, x) € Wa,to y im-
plies that ||x| < [ly®) | + 1, and that

m

gt D] < 2 gyt 0] < Z O™ < ZEHODL+ [yO 1™
j=1 j= =

my

<K F001+ ly®[1* < K, P02 sup(, [y [HI*

< KZ. Fi(t) [1 + ”Y(t) "a]’

where K; and K, are constants.

Now we use Theorem 1 with h;(t) = K, F;(t)[1 + |y (® "a] "and obtain the desired
conclusions.
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COROLLARY 2'. Suppose T = {x| ||x] < =},

v
K < S R(f;;(s)) ds, for some constant K and
t

(11)
allv>t>T (i=1, -, n),
® v i -
12 f.. R ds | dv < +j, k=1, -, n),
(12) § 150! [exp S ataenas |av <o e n)
(13) S Fj(v) [exp ST aR(f;;(s)) ds? dv < e i,j=1, -, n).

Then for every solution y(t) of (2) therve exists a solution x(t) of (1) such that
(x(t) -y(t) = 0 as t — .

Proof. Consider the system
(14) 23 = f3;(00z; (=1, 1)

and rewrite (2) in the form

(2) yi = :O)y; + 27 £5()y; -
J#i

Hypotheses (11), (12) and (13) imply that
o [>e]
S Ifij(v)|dv <o (i#j) and S F (V)dv <w, (k=1, ", n).

By applying the Corollary 2 to the systems (2) and (14) in relation to any solution
z(t) of (14), we conclude that there exists a solution y(t) of (2) such that
z(t) - y(t) — 0. Hence, for the fundamental matrix z(t) of (14) defined by the con-
ditions

. . t
(Z) = 0 if i+ and (Z(V)} = exp ST £.,(s) ds,

there exists a matrix Y(t) of solutions of (2) such that Y(t) - Z(t) - 0 as t — . As
t_
there exists an € > 0 such that exp S % (fj;(s))ds>¢€ (i=1, >+, n; t > T), the

existence ofa 6> 0 anda t,> T sucg‘ that |(Y(t)\)i| >d for t>t, i=1, -, n) and
(Y(t))} — 0 as t — « for i# j follows. This implies that Y(t) is a fundamental ma-
trix of (2). Therefore, for every solution y(t) of (2) there exists a solution z(t) of
(1) such that z(t) - y(t) = 0 as t — .

So, if t, is sufficiently large and if t > t,, then
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o t
Iyl < 2 K;exp 5 % (£;5(s)) ds + 1
j=1 T

t
< [n+ 1] sup {Kjexp S ﬂt(fjj(s))ds, 1}
1<j<n T

where the K; > 0 are constants. Thus there exists a constant K > 0 such that

o t
lyoll* < x [1 + 27 exp S a % ‘f;:(s)) ds] ,
5=1 T

0 t oo
St F, (v) [exp SV R(f,()) ds] dv < constant St F(v)dv -0 (t— ),

oo t o0
‘S; ”y(v) "a Fk(v) [exp Svﬂt(fkk(s)) ds] dv < ‘S; ”y(s) ""’ F (s)ds

o

< constant [ S:o F (v)dv + j:[.l) S:o F (v) {exp S; afn (fjj (s)) ds } dv] —
(t — oo) ,
o t (]
St |fij(v)| [exp Sv R (£, (s)) ds] dv < St [t;8) ds - 0 (&t — =),

where i#j (k=1, ---, n).
Corollary 2' follows now from Corollary 2.

We notice that Corollary 2' is a generalization of Theorem III-2 in [2, p. 1524].
Also it is easy to obtain Theorem III-3, [2, p. 1526] as a consequence of Corollary 2'.

This work was completed while I possessed a Guggenheim Fellowship.

I am indebted to Drs. P. Hartman and J. K. Hale who have read the original
manuscript and have made suggestions improving some results.
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