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LOCALLY COHERENT MINIMAL SETS :
Robert Ellis

Let (X, T) be a transformation group with phase space X and phase group T. In
a recent paper [4] Chu proved: If X is compact, minimal, with dim X = n and if T
acts trivially on HYX), then H™(A) = 0 for every proper closed subset A of X. Thus
an n-dimensional minimal set is “like” a manifold. In this paper I introduce and
study the notion of local n-coherence which is a “localization” of the property “T
acts trivially on H%(X).” If dim X = n and if X is locally n-coherent, then X has
more of the properties of a manifold than the one given by Chu’s theorem (see for
example Theorems 3 and 4). As an application of the notions developed here I show
that if T is the group of real numbers and if (X, T) is minimal with X compact, one
dimensional, and locally connected, then X is homeomorphic to a circle.

In what follows X is assumed to be locally compact with dim X = n. The notation
used is that of [3]. Thus H*(X) denotes the cohomology of X with compact supports
with coefficients in the principal ring L, and dim X is the L-dimension of X.

Definition 1. Let V be an open subset of X. Then V is n-cokevent if the dia-
gram
H (V)
r
(1) Ho(V N Vi) A t*
S\
n
H C(Vt)
is commutative for all t € T. Of course if V N Vi = ¢ for some t € T, the condition
is vacuously satisfied for that t.

To say that X itself is n-coherent is another way of saying that T acts triv-
ially on H{(X).

Whether or not V is n-coherent depends upon the coefficients used. Thus when
necessary, the coefficients will be explicitly mentioned, for example, we may write
V is Z-n-coherent.

(X, T) is said to be n-cohervent at x € X if x has a neighborhood base of open
n-coherent sets; (X, T) is locally n-cohevent if it is n-coherent at all x € X,

Diagrams of the type 1 will occur frequently, so that it will be convenient to
represent it by the symbol (V N Vi, V, Vt).

LEMMA 1. Let V be open, M a submodule of HICI(V), (Va/ @ € 1) a family of
open subsets of V. such that V = U_Va, and im j‘%;’va C M. Then M = HY(V).

Proof. Let a, B € 1. Then the exact sequence

H(Vy N Vg) = HAV,) @ Ha(V,) — Ha(V,, U Vg) — Ho (Vg N Vg) = 0
B o B a B c o B
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shows that im ]V VeUVg C M. Then by induction im ]V Vg C M, where
Vg = U[Va/a €F] and F is a finite subset of I. Finally,

HY(V) = lim[H(V_)/F finite c I]
c N c' F

implies that M = H_(V).
LEMMA 2. Let V be an n-cohevent open subset of X, W an open subset of X
and t € T with W UWtcC V. Then im jy =im 5wy

Proof. Let u e Hg(Wt). Then u/V = (u/Vt)t* since V is n-coherent and
Wtc V N Vt,

The commutative diagram

Ho(Wt) > H(Vt)
¥ t* ¥ t*
n n
HC(W) > HC(V)
shows that (ut¥)/V = (u/Vt)t* = u/V. Since t* maps H(Wt) isomorphically onto
H_(W), the proof is complete.

LEMMA 3. Let V be open and n-cohevent, W.open and contained in V with
V c WT. Then jy 1w is surjective.

Proof. Let x € V. Then there existsa t € T with xt-1 e wW. Let N be an open
neighborhood of x such that x €e Nc V and Nt-lc w. Set U=Nt-!. Thus
Uc WcV and x € Ut c V. Therefore

im jr_\lr’U c im j?,’W and im jr.\‘,,U =im jI\‘/.’Ut.
Set N, = Ut. Then x € N_C V and im jy 5y C im jy . Since J[N/x e V]=V
tl x ’
HE(V) =im j\r;,w by Lemma 1.
THEOREM 1. Let (X, T) be minimal, V an opern n-cohevent subset of X. Then

Hg(A) = 0 for every proper closed subset A of V. (The transformation group (X, T)
is said to be minimal if cls(xT) = X (x € X).)

Proof. Let W=V - A, Then W is a non-null open subset of V. Moreover,
WT = X since (X, T) is minimal. Hence JV w 1s surjective by Lemma 3. Theorem
1 now follows from the exactness of the sequence

n n+1
Ho(W) — H (V) — H (A) » H (W) = 0.
Theorem 1 is a generalization of Chu’s Theorem 1 [4] since to say that T acts

trivially on HICI(X) is equivalent to saying that X is n-coherent.

THEOREM 2. Let (X, T) be minimal, V an open n-cohevent subset of X with
H2(V) + 0, and let A be a closed subset of V with dim A< n - 2, Then V - A is
connected. In particular, V is comnected.

Proof. Let B, C be closed subsets of V with BUC =V and B NC =A. Then
the exact sequence

0=H2Y B NC)— HX(BUC)— H(B)@ HXC) - HXBNC) =0
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together with Theorem 1 shows that both B and C cannot be proper.

LEMMA 4. Let (X, T) be minimal and locally n-cohevent. Then every point of
X has a neighborhood base consisting of n-cohevent open sets V with Hrc‘(V) # 0.

Proof. Since dim X = n, there exists an n-coherent open set U with HE(U) # 0.
Let x € X, and let W be open with x € W. Choose V to be n-coherent and open, and

choose a t in T such that x €e Vc W and Vt ¢ U. Then Hn(Vt) # 0 by Lemma 3.
Hence Hn(V) + 0.

LEMMA 5. Let (X, T) be minimal and locally n-cohevent, let A be a locally
compact subset of X, and let x € A. Then the following statements ave equivalent.

(i) x € int A. (ii) There exists an open A-neighbovhood N of x such that HE(M) # 0
for every open A-neighborhood M of x contained in N.

Proof. Let x € int A, Then by Lemma 4, there exists an n-coherent open set N

with x e NC int A and HZ(N) # 0. If M is open with M C N, then HJ(M) # 0 by
Lemma 3. Thus (i) 1mp11es (ii).

Assume (ii). Now A = U N F with U open and F closed. Let V be an n-coher-
ent open subset of X with x e VcUand VNACN. Then VN F=V N A isan
A-neighborhood of x contained in N. Thus HZ(V N F) # 0, whence VN F =V by
Theorem 1. Therefore V C A.

THEOREM 3. Let (X, T) be minimal and locally n-cohevent. Let U be open
in X, and let T be a homeomorphism from U into X. Then £(U) is open.

Proof. Apply Lemma 5 to £(U).

THEOREM 4. Lel (X, T) be minimal, connected, and locally n-coherent. Let
A be a locally compact subset of X. Then dim A = n if and only if int A + 0.

Proof. If int A + @, then of course dim A = n.

Conversely if int A = @, then, by Lemma 5, every point of A has an A- nelghbor—
hood base consisting of open sets N with HY (N) = 0. Hence dim A< n- 1.

LEMMA 6. Let V be an open n-coherent subset of X. Then Vt is n-cohervent
for each t € T.

Proof. Let s€ T and u € H® <(Vt N Vts). Then ut* € H (V N Vtst~ ) whence
ut*/V = (ut*/Vr)r*, where r = tst- 1 since (VN Vr, V, Vr) is commutative. Now

ut*/V = (w/Vt)* and (ut*/Vr) = (u/Vts)t*.
Therefore
(W/VHt* = ut*/V = (ut*/Vr)r* = (u/Vts)t*r* = (u/Vts)s* t*

since r* = t-1*g*t*, Thus u/Vt = (u/Vts)s*.

LEMMA 1. Let V be an openrn n-cohevent subset of X, and let t be an element
of T for which ]V v Nvi LS suvjective. Then V U Vt is n- coherent.

Proof. Suppose s € T, and let W=V U Vt. We must show that (WN Ws, W, Ws)
is commutative. Since

WNWs =VNVIsUVtNVsUV NVts UVt N Vts,

it suffices to show that (i) (VN Vs, W, Ws), (ii) (Vt N Vs, W, Ws),
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(iii) (V N Vts, W, Ws), (iv) (Vt N Vts, W, Ws) are commutative. The proofs for
diagrams (i) and (iv) are similar as are those for (ii) and (iii). Hence we need only
show that (i) and (ii) are commutative.

Consider

Ho(V) ——> H_ (W)

HO(V N Vs)/I ]t's* II I s*
\

H(Vs) —> H_(Ws) .
I is merely (V N Vs, V, Vs), which is commutative by assumption. Since II is
commutative, so is (V A Vs, W, Ws).

With respect to (Vt N Vs, W, Ws), let a€H 2AvEn Vs) Then (a/Vi)t* € H (V)
Hence, by assumption, there ex1sts abeHy(V N Vt) with b/V = (a/Vt)t*. Since
(VN Vt, V, Vt) is commutative by assumptlon, b/V = (b/Vt)t¥, whence b/Vt = a/Vi.

Now (Vt N (Vt)t'1 s, Vi, (Vt)‘c'1 s) is commutative by Lemma 6. Hence
a/Vt = (a/Vs)(t~! s)*, whence b/V = (a/Vt)t* = (a/Vs)s*.

Also

Ho(V) > Ho(W)
A s* A s*
H,(Vs) > Ho(Ws)

is commutative. Thus
a/W = (a/Vt)/W = (b/Vt)/W = (b/V)/W = (a/Vs)s*/W = ((a/Vs)/Ws)s* = (a/Ws)s*;

that is, (Vt N Vs, W, Ws) is commutative.

LEMMA 8. Let V be an n-cokerent open subset of X. Then ]V UVt V is in-
jective fov each t € T.

Proof. Let a € HC(V) with a/V U Vt = 0. Since
Ho(V N Vi) — Ho(V) @ Ho(Vt) — Ho(V U Vi)

is exact, there exists a b € Ho(V N Vt) with b/V = a and b/Vt=0. Hence a =0 be-
cause (b/Vt)}t* = b/V since V is n-coherent.

LEMMA 9. Let V be an n-cohevent subset of X, and let (X, T) be minimal and
X connected. Then j% v is an isomovphism and X is n-coherent.

Proof. Let £ be the collection of open subsets W of X having the following
properties: (i) Vc W, (ii) W is n-coherent, (iii) jr\}v’v is injective._Let
(Wg/a € I) be a simply ordered family of elements of €, and let W =.'UWa. Then
V ¢ W, and since HE(W) = lgn HE(Wa), W satisfies (iii). Let t € T. Since

(W R Wy t, Wy, W, t) is commutative (@ € I), sois (W, N W, t, W, Wi). There-
fore (W N Wt, W, Wt) is also commutative. Thus g is a non-vacuous i inductive set
if ordered by inclusion. Let W be a maximal element of €. Let x € W. Then there
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ex1sts ateT with xt™! € W. It follows that Wt N W # ¢. Since (X, T) is minimal,
]W wtNw is sur]ectlve by Lemma 3. Hence W U Wt is n-coherent by Lemma 7.
Fmally by Lemma 8, ]W UWt,W is injective, whence JW UWt,V is injective. Thus
W U Wt € & with Wc W UWt. This implies that W =W UWt that is, Wt c W.
Consequently, x € W. Thus W is an open and closed subset of X. The connected-
ness of X implies that W = X Hence X is n-coherent, and ]X v is injective.
Then Lemma 3 1mp11es that ]X v is surjective.

LEMMA 10. Let V be an n-coherent open subset of X, and let W be an open
subset of V with j%-,w injective. Then W is n-cohevent.

Proof. Let u € HXW N Wt), a = (u/W)t*, b = u/W. Then
a/V = (u/Vtit* = u/V

by the n-coherence of V. Further a/V = b/V, whence a = b; that is, (W N Wt, W, Wt)
is commutative.

LEMMA 11. Let (X, T) be minimal and locally n-cohevent, and suppose X is
connected. Let V, W be n-cohervent open subsets of X with VN W = 0. Then
V U W is n-coherent..

Proof By Lemma 9, X is n-coherent. Hence by Lemma 10, it suffices to show
that j% v yw is 1n]ect1ve Let a € H(V U W) with a/X = 0. Choose b € HY(V) and
ce H“(W) with b/ VU W - ¢/V U W = a. Let U be an n-coherent open subset of X
with Uc VN W. By Lemma 3, there exist uj, u, € Ho(U) with u;/V =b and
u,/W = c. Then

(u; ~up)/VUW=a and (u; -u,)/X=0.

Thus u; - u, = 0 by Lemma 9, whence a = 0.

THEOREM 5. Let (X, T) be minimal, locally n-coherent, and let X be con-
nected. Let V be open in X. Then V is n-coherent if and only if V is connected.

Proof. Since dim X = n, there exists an n-coherent open subset W with
HZ (W) # 0. By Lemma 9, Hg(X) # 0, and X is n-coherent. Consequently, by Lemma
, H2(U) # 0 for every open set U.

Let V be an n-coherent open subset of X, and let U be an open and closed sub-
set of V. If U were proper, HZ(U) = 0 by Theorem 1. This is impossible. Hence
V is connected.

Conversely, let V be an open connected subset of X. Lef £ be the collection of
open subsets W of V such that ]X w is injective. Then € # @ by Lemma 9. Also
€ is inductive if ordered by inclusion. Let W be a maximal element of £ Then W
is open. Let x € VN W, and suppose N is an n-coherent open subset of X with
xe€ Nc V. Then W is n-coherent by Lemma 10. Moreover, WN N # @ implies
that W U N is also n-coherent by Lemma 11. Hence W U N € €. Thus
Xxe€ WU NC W, and so W is open-closed in V. Hence W = V. The proof is com-
plete.

THEOREM 6. Let X be an n-cm (see [3]) such that X is n-coherent and
(X, T) is minimal. Then X is ovientable if and only if (X, T) is locally n-coherent.

Proof. Since H (X) # 0, X is connected by Theorem 2. If X is orientable, then
JX v isan 1somorphlsm for every connectedropen set V. Hence in this case (X T)
is locally n-coherent by Lemma 10.
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Conversely, if (X, T) is locally n-coherent, then HC(X) L (that is X is orient-
able) by Theorem 5 and Lemma 9.

COROLLARY 1. Let (X, T) be minimal, wheve X is a connected n-cm. Then
(X, T) is Z2-locally n- coherent.

As an application of the above results let us consider the action of the reals
R on a space X.

LEMMA 12. Let x € X with xR = X, Thern X is homeomovphic to a point, the
real line, ov a civcle.

Proof. Let ¢: R — X be such that ¢(t) = xt (t € R), let I be a compact subinter-
val of R. Then ¢(I) is a compact subset of X, and the union of countably many
translates of I covers X. Hence int ¢(I) # 0.

Now let N be an open subset of R, and let t € N. Choose I, an interval about 0,
such that I+ (t - I) ¢ N. Let xr € int ¢(I) for some r € I. Then

$(t) = xt = xr (t - r) € (int (D))t - r) C int ¢(N).

Thus ¢ is open as well as continuous. rIl‘he proof is complete.

THEOREM 7. Let (X, R) be minimal, let dim X = 1, and let X satisfy condition
(A): Given x € X and U a neighbovhood of x, theve exists an open neighborhood V
of X such that V.c U and X - V is connected. Then X is homeomorphic to a circle.

Proof. Let V be open and relatlvely compact with X - V connected. Consider
the exact sequence H (X V)— H (V) — H (X) If X is not compact, X - V is not
compact. Hence H (X V) =0 since X -V 1s connected. Thus ];{ y is injective.
If X is compact, the above sequence with H (X V) replaced by the reduced group
again shows that ];C’V is injective.

Now R is connected, whence X is 1-coherent. This implies that V is 1-
coherent by Lemma 10. Hence (X, R) is locally 1-coherent if Condition (A) is
satisfied.

Let x € X, and suppose ¢: R — X is such that ¢(t) = xt (t € R). If ¢ is not in-
jective, then xt = x for some t € R. Let I=[-t, t]. Then xR = xI, and

X = cls(xR) = cls(xI) = xI.

Thus if ¢ is not injective, X is homeomorphic to a circle by Lemma 12.

Now suppose ¢ is injective. Let I be a compact subinterval of R. Then xI is a
closed one dimensional subset of X, whence int (XI) # § by Theorem 4. Thus
xR = (xDR = X because (X, R) is minimal. Lemma 12 now implies that X is either
a point, a circle, or the real line. It cannot be a point since dim X = 1, and it can-
not be the real line because the latter does not satisfy Condition (A).

COROLLARY 1. Let (X, R) be minimal, let dim X = 1, and let X be a compact
metric space that is semi-locally connected|[6, p. 19]. Then X is homeomorphic to
a citrcle.

Proof. If xR = X for some x € X, then X is homeomorphic with a circle by
Lemma 12. Let x € X, and let y £ xR. Then the everywhere dense connected set
yR C X - x, whence X - x is connected.

By [6, p. 50], X will satisfy Condition (A) of Theorem 7 if X - x is connected
(x € X). The proof is complete.
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THEOREM 8. Let (X, R) be minimal, let dim X = 1, and let X be compact and
locally connected. Then X is homeomorphic to a circle.

Proof. Let x € X, let U be a neighborhood of x, and let W be an open connected
neighborhood of x whose closure N is contained in U.

Suppose X - N# 0 and Hl(X N) = 0. Let K be a component of X - N. Then K
is open, and Hl(K) 0. Let B be the boundary of K. Then B# @, and cls K - B=K.
Consider the exact sequence

H°(c1s K) — HO(B) - HA(K).

Since cls K is connected and Hl(K) = 0, B is connected. Since B is 0-dimensional,
it must be a single point b. Now let y € K. Since yRN K+ g and yR N K' # @,

BN yR # f. Hence y € bR; that is, K C bR. The fact that K is open then implies
that bR = X. Since X is compact and one-dimensional, Lemma 12 now implies that
X 1s homeomorphic with a circle. However, in this case it is clear that

H (X N) # 0.

Consequently if X - N+ 9, H é(X - N) # 0. The exactness of the sequence
ol ol
H(N) — H (X - N) = H{(X)

shows that ]X x.N is injective. Hence X - N is 1l-coherent by Lemma 10. Then
Theorem 2 shows that X - N is connected. Now X - int N = cls (X - N), which is
again connected. Thus V = int N will satisfy Condition (A) of Theorem 7. The
proof is complete.

REMARKS

1. Theorem 6 and its corollary show that (X, T) may be locally Z,-n-coherent
and not locally Z-n-coherent.

2. If T is connected, then (X, T) is n-coherent.

3. Let L be a finite field, let X be connected, and suppose dim Hn(X) is finite.
Let S =[t/t € T, t* = id.]. Then S is an invariant subgroup with finite 1ndex. Since

X is connected, (X, S) is again minimal. Thus the various results may be applied
to (X, S).

4. Let M be the universal curve of Menger. Then [1] (M, T) is minimal, with
T the group of integers. Also M is connected and locally connected [2], and
dim M = 1. However, (M, T) is not locally 1-coherent for if it were, M would be
n-coherent, which is impossible [4].

5. For each positive integer n, let X, denote the subset [Z/ | Z| = 1] of the
complex numbers. Let R denote the reals. The transformation group (X, R, 7,)
is defined by the relation

Wn(X,t)zxexp(zi—fl) xeX,, teR).

n

Thus t € R acts as a rotation through t/2" radians on X,. Then (X, R,) is mini-
mal and equicontinuous. For each n, let ¢,: X, — X,,_; be the map such that
¢,(x) = x? (x € X)). Then ¢, is a homomorphism of (X,, R) onto (X,_;, R). The
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family [(X,, ¢p); n= 1, +--)] defines an inverse system of transformation groups.
Let (X, R) denote the inverse limit of the family. Then (X, R) is minimal and
equicontinuous. Also X is a solenoid, dim X = 1, and X is connected. Moreover,
X is n-coherent since R is connected. However, (X, R) is not locally n-coherent,
because X is not locally connected.

Let I be the unit interval, and let x € X. Then xI is a closed subset of X with
dim (xI) = 1, but int (xI) = 8. Thus X does not satisfy the conclusion of Theorem 4.

6. Mostow’s result [5] that the Klein bottle is the homogeneous space of a con-
nected Lie group shows that locally euclidean does not imply local n-coherence.
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