LOCALLY COHERENT MINIMAL SETS

Robert Ellis

Let (X, T) be a transformation group with phase space X and phase group T. In a recent paper [4] Chu proved: If X is compact, minimal, with dim X = n and if T acts trivially on $H^n(X)$, then $H^n(A) = 0$ for every proper closed subset A of X. Thus an n-dimensional minimal set is "like" a manifold. In this paper I introduce and study the notion of local n-coherence which is a "localization" of the property "T acts trivially on $H^n(X)$." If dim X = n and if X is locally n-coherent, then X has more of the properties of a manifold than the one given by Chu's theorem (see for example Theorems 3 and 4). As an application of the notions developed here I show that if T is the group of real numbers and if (X, T) is minimal with X compact, one dimensional, and locally connected, then X is homeomorphic to a circle.

In what follows X is assumed to be locally compact with dim X = n. The notation used is that of [3]. Thus $H_c^*(X)$ denotes the cohomology of X with compact supports with coefficients in the principal ring L, and dim X is the L-dimension of X.

Definition 1. Let V be an open subset of X. Then V is n-coherent if the diagram

(1)
$$H_{c}^{n}(V \cap Vt) = \begin{array}{c} H_{c}^{n}(V) \\ & \uparrow t^{*} \\ & H_{c}^{n}(Vt) \end{array}$$

is commutative for all $t \in T$. Of course if $V \cap Vt = \phi$ for some $t \in T$, the condition is vacuously satisfied for that t.

To say that X itself is n-coherent is another way of saying that T acts trivially on $H_c^n(X)$.

Whether or not V is n-coherent depends upon the coefficients used. Thus when necessary, the coefficients will be explicitly mentioned, for example, we may write V is Z-n-coherent.

(X, T) is said to be n-coherent at $x \in X$ if x has a neighborhood base of open n-coherent sets; (X, T) is *locally* n-coherent if it is n-coherent at all $x \in X$.

Diagrams of the type 1 will occur frequently, so that it will be convenient to represent it by the symbol $(V \cap Vt, V, Vt)$.

LEMMA 1. Let V be open, \underline{M} a submodule of $H^n_c(V)$, $(V_\alpha/\alpha \in I)$ a family of open subsets of V such that $V = \overline{\bigcup} V_\alpha$, and im $j^n_{V,V_\alpha} \subset M$. Then $M = H^n_c(V)$.

Proof. Let α , $\beta \in I$. Then the exact sequence

$$\mathrm{H}^{\mathrm{n}}_{\mathrm{c}}(\mathrm{V}_{\alpha} \,\cap\, \mathrm{V}_{\beta}) \,\to\, \mathrm{H}^{\mathrm{n}}_{\mathrm{c}}(\mathrm{V}_{\alpha}) \,\oplus\, \mathrm{H}^{\mathrm{n}}_{\mathrm{c}}(\mathrm{V}_{\beta}) \,\to\, \mathrm{H}^{\mathrm{n}}_{\mathrm{c}}(\mathrm{V}_{\alpha} \,\cup\, \mathrm{V}_{\beta}) \,\to\, \mathrm{H}^{\mathrm{n}+1}_{\mathrm{c}}(\mathrm{V}_{\alpha} \,\cap\, \mathrm{V}_{\beta}) \,=\, 0$$

Received September 24, 1962.

The author is a National Science Foundation Senior Postdoctoral Fellow.

shows that im $j_{V,V_{\alpha} \cup V_{\beta}}^{n} \subset M$. Then by induction im $j_{V,V_{F}}^{n} \subset M$, where $V_{F} = \bigcup [V_{\alpha}/\alpha \in F]$ and F is a finite subset of I. Finally,

$$H_c^n(V) = \lim_{\longrightarrow} [H_c^n(V_F)/F \text{ finite } \subset I]$$

implies that $M = H_c^n(V)$.

LEMMA 2. Let V be an n-coherent open subset of X, W an open subset of X and $t \in T$ with $W \cup Wt \subset V$. Then im $j_{V,W}^n = \text{im } j_{V,Wt}^n$.

Proof. Let $u \in H^n_c(Wt)$. Then $u/V = (u/Vt)t^*$ since V is n-coherent and $Wt \subset V \cap Vt$.

The commutative diagram

$$H_c^n(Wt) \rightarrow H_c^n(Vt)$$

 $\psi t^* \qquad \psi t^*$
 $H_c^n(W) \rightarrow H_c^n(V)$

shows that $(ut^*)/V = (u/Vt)t^* = u/V$. Since t^* maps $H_c^n(Wt)$ isomorphically onto $H_c^n(W)$, the proof is complete.

LEMMA 3. Let V be open and n-coherent, W open and contained in V with V \subset WT. Then $j^n_{V\,.\,W}$ is surjective.

Proof. Let $x \in V$. Then there exists a $t \in T$ with $xt^{-1} \in W$. Let N be an open neighborhood of x such that $x \in N \subset V$ and $Nt^{-1} \subset W$. Set $U = Nt^{-1}$. Thus $U \subset W \subset V$ and $x \in Ut \subset V$. Therefore

$$\text{im } j^n_{V,U} \subset \text{im } j^n_{V,W} \quad \text{and} \quad \text{im } j^n_{V,U} = \text{im } j^n_{V,Ut}.$$

Set $N_x = Ut$. Then $x \in N_x \subset V$ and im $j_{V,N_x}^n \subset \text{im } j_{V,W}^n$. Since $\bigcup [N_x/x \in V] = V$, $H_c^n(V) = \text{im } j_{V,W}^n$ by Lemma 1.

THEOREM 1. Let (X, T) be minimal. V an open n-coherent subset of X. Then $H^n_c(A) = 0$ for every proper closed subset A of V. (The transformation group (X, T) is said to be minimal if cls(xT) = X $(x \in X)$.)

Proof. Let W = V - A. Then W is a non-null open subset of V. Moreover, WT = X since (X, T) is minimal. Hence $j_{V,W}^n$ is surjective by Lemma 3. Theorem 1 now follows from the exactness of the sequence

$$H_c^n(W) \rightarrow H_c^n(V) \rightarrow H_c^n(A) \rightarrow H_c^{n+1}(W) = 0$$
.

Theorem 1 is a generalization of Chu's Theorem 1 [4] since to say that T acts trivially on $H_c^n(X)$ is equivalent to saying that X is n-coherent.

THEOREM 2. Let (X, T) be minimal, V an open n-coherent subset of X with $H^n_c(V) \neq 0$, and let A be a closed subset of V with dim $A \leq n-2$. Then V - A is connected. In particular, V is connected.

Proof. Let B, C be closed subsets of V with B \cup C = V and B \cap C = A. Then the exact sequence

$$0 = \operatorname{H}^{n-1}_{c}(B \cap C) \to \operatorname{H}^{n}_{c}(B \cup C) \to \operatorname{H}^{n}_{c}(B) \oplus \operatorname{H}^{n}_{c}(C) \to \operatorname{H}^{n}_{c}(B \cap C) = 0$$

together with Theorem 1 shows that both B and C cannot be proper.

LEMMA 4. Let (X, T) be minimal and locally n-coherent. Then every point of X has a neighborhood base consisting of n-coherent open sets V with $H_c^n(V) \neq 0$.

Proof. Since dim X = n, there exists an n-coherent open set U with $H_c^n(U) \neq 0$. Let $x \in X$, and let W be open with $x \in W$. Choose V to be n-coherent and open, and choose a t in T such that $x \in V \subset W$ and $Vt \subset U$. Then $H_c^n(Vt) \neq 0$ by Lemma 3. Hence $H_c^n(V) \neq 0$.

LEMMA 5. Let (X, T) be minimal and locally n-coherent, let A be a locally compact subset of X, and let $x \in A$. Then the following statements are equivalent. (i) $x \in int A$. (ii) There exists an open A-neighborhood N of x such that $H^n_c(M) \neq 0$ for every open A-neighborhood M of x contained in N.

Proof. Let $x \in \text{int } A$. Then by Lemma 4, there exists an n-coherent open set N with $x \in N \subset \text{int } A$ and $H^n_c(N) \neq 0$. If M is open with $M \subset N$, then $H^n_c(M) \neq 0$ by Lemma 3. Thus (i) implies (ii).

Assume (ii). Now $A=U\cap F$ with U open and F closed. Let V be an n-coherent open subset of X with $x\in V\subset U$ and $V\cap A\subset N$. Then $V\cap F=V\cap A$ is an A-neighborhood of x contained in N. Thus $H^n_C(V\cap F)\neq 0$, whence $V\cap F=V$ by Theorem 1. Therefore $V\subset A$.

THEOREM 3. Let (X, T) be minimal and locally n-coherent. Let U be open in X, and let f be a homeomorphism from U into X. Then f(U) is open.

Proof. Apply Lemma 5 to f(U).

THEOREM 4. Let (X, T) be minimal, connected, and locally n-coherent. Let A be a locally compact subset of X. Then dim A = n if and only if int $A \neq \emptyset$.

Proof. If int $A \neq \emptyset$, then of course dim A = n.

Conversely if int $A = \emptyset$, then, by Lemma 5, every point of A has an A-neighborhood base consisting of open sets N with $H^n_c(N) = 0$. Hence dim $A \le n - 1$.

LEMMA 6. Let V be an open n-coherent subset of X. Then Vt is n-coherent for each $t \in T$.

Proof. Let $s \in T$ and $u \in H^n_c(Vt \cap Vts)$. Then $ut^* \in H^n_c(V \cap Vtst^{-1})$, whence $ut^*/V = (ut^*/Vr)r^*$, where $r = tst^{-1}$, since $(V \cap Vr, V, Vr)$ is commutative. Now

$$ut*/V = (u/Vt)*$$
 and $(ut*/Vr) = (u/Vts)t*$.

Therefore

$$(u/Vt)t^* = ut^*/V = (ut^*/Vr)r^* = (u/Vts)t^*r^* = (u/Vts)s^*t^*$$

since $r^* = t^{-1*} s^* t^*$. Thus $u/Vt = (u/Vts)s^*$.

LEMMA 7. Let V be an open n-coherent subset of X, and let t be an element of T for which $j_{V,V \cap Vt}^n$ is surjective. Then $V \cup Vt$ is n-coherent.

Proof. Suppose $s \in T$, and let $W = V \cup Vt$. We must show that $(W \cap Ws, W, Ws)$ is commutative. Since

$$W \cap Ws = V \cap Vs \cup Vt \cap Vs \cup V \cap Vts \cup Vt \cap Vts$$

it suffices to show that (i) $(V \cap Vs, W, Ws)$, (ii) $(Vt \cap Vs, W, Ws)$,

(iii) (V \cap Vts, W, Ws), (iv) (Vt \cap Vts, W, Ws) are commutative. The proofs for diagrams (i) and (iv) are similar as are those for (ii) and (iii). Hence we need only show that (i) and (ii) are commutative.

Consider

I is merely $(V \cap Vs, V, Vs)$, which is commutative by assumption. Since II is commutative, so is $(V \cap Vs, W, Ws)$.

With respect to $(Vt \cap Vs, W, Ws)$, let $a \in H^n_c(Vt \cap Vs)$. Then $(a/Vt)t^* \in H^n_c(V)$. Hence, by assumption, there exists a $b \in H^n_c(V \cap Vt)$ with $b/V = (a/Vt)t^*$. Since $(V \cap Vt, V, Vt)$ is commutative by assumption, $b/V = (b/Vt)t^*$, whence b/Vt = a/Vt.

Now $(Vt \cap (Vt)t^{-1} s$, Vt, $(Vt)t^{-1} s$) is commutative by Lemma 6. Hence $a/Vt = (a/Vs)(t^{-1} s)^*$, whence $b/V = (a/Vt)t^* = (a/Vs)s^*$.

Also

$$\begin{split} & H_{c}^{n}(V) \rightarrow H_{c}^{n}(W) \\ & \uparrow s^{*} \qquad \uparrow s^{*} \\ & H_{c}^{n}(Vs) \rightarrow H_{c}^{n}(Ws) \end{split}$$

is commutative. Thus

$$a/W = (a/Vt)/W = (b/Vt)/W = (b/V)/W = (a/Vs)s*/W = ((a/Vs)/Ws)s* = (a/Ws)s*;$$

that is, $(Vt \cap Vs, W, Ws)$ is commutative.

LEMMA 8. Let V be an n-coherent open subset of X. Then $j_{V \cup Vt,V}^n$ is injective for each $t \in T$.

Proof. Let $a \in H_c^n(V)$ with $a/V \cup Vt = 0$. Since

$$H_c^n(V \cap Vt) \to H_c^n(V) \oplus H_c^n(Vt) \to H_c^n(V \cup Vt)$$

is exact, there exists a $b \in H_c^n(V \cap Vt)$ with b/V = a and b/Vt = 0. Hence a = 0 because $(b/Vt)t^* = b/V$ since V is n-coherent.

LEMMA 9. Let V be an n-coherent subset of X, and let (X, T) be minimal and X connected. Then $j_{X \ V}^n$ is an isomorphism and X is n-coherent.

Proof. Let \mathcal{E} be the collection of open subsets W of X having the following properties: (i) $V \subset W$, (ii) W is n-coherent, (iii) $j_{W,V}^n$ is injective. Let $(W_{\alpha}/\alpha \in I)$ be a simply ordered family of elements of \mathcal{E} , and let $W = \bigcup W_{\alpha}$. Then $V \subset W$, and since $H^n_c(W) = \varinjlim H^n_c(W_{\alpha})$, W satisfies (iii). Let $t \in T$. Since

 $(W_{\alpha} \cap W_{\alpha} t, W_{\alpha}, W_{\alpha} t)$ is commutative $(\alpha \in I)$, so is $(W_{\alpha} \cap W_{\alpha} t, W, Wt)$. Therefore $(W \cap Wt, W, Wt)$ is also commutative. Thus \mathcal{E} is a non-vacuous inductive set if ordered by inclusion. Let W be a maximal element of \mathcal{E} . Let $x \in \overline{W}$. Then there

exists a $t \in T$ with $xt^{-1} \in W$. It follows that $Wt \cap W \neq \phi$. Since (X,T) is minimal, $j_{W,Wt \cap W}^n$ is surjective by Lemma 3. Hence $W \cup Wt$ is n-coherent by Lemma 7. Finally by Lemma 8, $j_{W \cup Wt,W}^n$ is injective, whence $j_{W \cup Wt,V}^n$ is injective. Thus $W \cup Wt \in E$ with $W \subset W \cup Wt$. This implies that $W = W \cup Wt$, that is, $Wt \subset W$. Consequently, $x \in W$. Thus W is an open and closed subset of X. The connectedness of X implies that Y = X. Hence X is n-coherent, and $y_{X,V}^n$ is injective. Then Lemma 3 implies that $y_{X,V}^n$ is surjective.

LEMMA 10. Let V be an n-coherent open subset of X, and let W be an open subset of V with j_{V-W}^n injective. Then W is n-coherent.

Proof. Let $u \in H_c^n(W \cap Wt)$, $a = (u/Wt)t^*$, b = u/W. Then

$$a/V = (u/Vt)t* = u/V$$

by the n-coherence of V. Further a/V = b/V, whence a = b; that is, $(W \cap Wt, W, Wt)$ is commutative.

LEMMA 11. Let (X, T) be minimal and locally n-coherent, and suppose X is connected. Let V, W be n-coherent open subsets of X with $V \cap W \neq \emptyset$. Then $V \cup W$ is n-coherent.

Proof. By Lemma 9, X is n-coherent. Hence by Lemma 10, it suffices to show that $j_{X,V \cup W}^n$ is injective. Let $a \in H_c^n(V \cup W)$ with a/X = 0. Choose $b \in H_c^n(V)$ and $c \in H_c^n(W)$ with $b/V \cup W - c/V \cup W = a$. Let U be an n-coherent open subset of X with $U \subset V \cap W$. By Lemma 3, there exist $u_1, u_2 \in H_c^n(U)$ with $u_1/V = b$ and $u_2/W = c$. Then

$$(u_1 - u_2)/V \cup W = a$$
 and $(u_1 - u_2)/X = 0$.

Thus $u_1 - u_2 = 0$ by Lemma 9, whence a = 0.

THEOREM 5. Let (X, T) be minimal, locally n-coherent, and let X be connected. Let V be open in X. Then V is n-coherent if and only if V is connected.

Proof. Since dim X = n, there exists an n-coherent open subset W with $H_c^n(W) \neq 0$. By Lemma 9, $H_c^n(X) \neq 0$, and X is n-coherent. Consequently, by Lemma 3, $H_c^n(U) \neq 0$ for every open set U.

Let V be an n-coherent open subset of X, and let U be an open and closed subset of V. If U were proper, $H_c^n(U) = 0$ by Theorem 1. This is impossible. Hence V is connected.

Conversely, let V be an open connected subset of X. Let $\mathcal E$ be the collection of open subsets W of V such that $j_{X,W}^n$ is injective. Then $\mathcal E \neq \emptyset$ by Lemma 9. Also $\mathcal E$ is inductive if ordered by inclusion. Let W be a maximal element of $\mathcal E$. Then W is open. Let $x \in V \cap \overline{W}$, and suppose N is an n-coherent open subset of X with $x \in N \subset V$. Then W is n-coherent by Lemma 10. Moreover, $W \cap N \neq \emptyset$ implies that $W \cup N$ is also n-coherent by Lemma 11. Hence $W \cup N \in \mathcal E$. Thus $x \in W \cup N \subset W$, and so W is open-closed in V. Hence W = V. The proof is complete.

THEOREM 6. Let X be an n-cm (see [3]) such that X is n-coherent and (X, T) is minimal. Then X is orientable if and only if (X, T) is locally n-coherent.

Proof. Since $H_c^n(X) \neq 0$, X is connected by Theorem 2. If X is orientable, then $j_{X,V}^n$ is an isomorphism for every connected open set V. Hence in this case (X,T) is locally n-coherent by Lemma 10.

Conversely, if (X, T) is locally n-coherent, then $H_c^n(X) = L$ (that is X is orientable) by Theorem 5 and Lemma 9.

COROLLARY 1. Let (X, T) be minimal, where X is a connected n-cm. Then (X, T) is Z_2 -locally n-coherent.

As an application of the above results let us consider the action of the reals R on a space X.

LEMMA 12. Let $x \in X$ with xR = X. Then X is homeomorphic to a point, the real line, or a circle.

Proof. Let $\phi: R \to X$ be such that $\phi(t) = xt$ ($t \in R$), let I be a compact subinterval of R. Then $\phi(I)$ is a compact subset of X, and the union of countably many translates of I covers X. Hence int $\phi(I) \neq \emptyset$.

Now let N be an open subset of R, and let $t \in N$. Choose I, an interval about 0, such that $I + (t - I) \subset N$. Let $xr \in int \phi(I)$ for some $r \in I$. Then

$$\phi(t) = xt = xr(t - r) \in (int \phi(I))(t - r) \subset int \phi(N)$$
.

Thus ϕ is open as well as continuous. The proof is complete.

THEOREM 7. Let (X, R) be minimal, let $\dim X = 1$, and let X satisfy condition (A): Given $x \in X$ and U a neighborhood of x, there exists an open neighborhood V of x such that $V \subset U$ and X - V is connected. Then X is homeomorphic to a circle.

Proof. Let V be open and relatively compact with X - V connected. Consider the exact sequence $H_c^0(X-V) \to H_c^1(V) \to H_c^1(X)$. If X is not compact, X - V is not compact. Hence $H_c^0(X-V)=0$ since X - V is connected. Thus $j_{X,V}^1$ is injective. If X is compact, the above sequence with $H_c^0(X-V)$ replaced by the reduced group again shows that $j_{X,V}^1$ is injective.

Now R is connected, whence X is 1-coherent. This implies that V is 1-coherent by Lemma 10. Hence (X, R) is locally 1-coherent if Condition (A) is satisfied.

Let $x \in X$, and suppose $\phi: R \to X$ is such that $\phi(t) = xt$ ($t \in R$). If ϕ is not injective, then xt = x for some $t \in R$. Let I = [-t, t]. Then xR = xI, and

$$X = cls(xR) = cls(xI) = xI$$
.

Thus if ϕ is not injective, X is homeomorphic to a circle by Lemma 12.

Now suppose ϕ is injective. Let I be a compact subinterval of R. Then xI is a closed one dimensional subset of X, whence int $(xI) \neq \emptyset$ by Theorem 4. Thus xR = (xI)R = X because (X, R) is minimal. Lemma 12 now implies that X is either a point, a circle, or the real line. It cannot be a point since dim X = 1, and it cannot be the real line because the latter does not satisfy Condition (A).

COROLLARY 1. Let (X, R) be minimal, let $\dim X = 1$, and let X be a compact metric space that is semi-locally connected [6, p. 19]. Then X is homeomorphic to a circle.

Proof. If xR = X for some $x \in X$, then X is homeomorphic with a circle by Lemma 12. Let $x \in X$, and let $y \notin xR$. Then the everywhere dense connected set $yR \subset X - x$, whence X - x is connected.

By [6, p. 50], X will satisfy Condition (A) of Theorem 7 if X - x is connected $(x \in X)$. The proof is complete.

THEOREM 8. Let (X, R) be minimal, let $\dim X = 1$, and let X be compact and locally connected. Then X is homeomorphic to a circle.

Proof. Let $x \in X$, let U be a neighborhood of x, and let W be an open connected neighborhood of x whose closure N is contained in U.

Suppose $X - N \neq \emptyset$ and $H_c^1(X - N) = 0$. Let K be a component of X - N. Then K is open, and $H_c^1(K) = 0$. Let B be the boundary of K. Then $B \neq \emptyset$, and cls K - B = K. Consider the exact sequence

$$H^0_c(\operatorname{cls} K) \to H^0_c(B) \to H^1_c(K)$$
.

Since cls K is connected and $H^1_c(K) = 0$, B is connected. Since B is 0-dimensional, it must be a single point b. Now let $y \in K$. Since $yR \cap K \neq \emptyset$ and $yR \cap K' \neq \emptyset$, $B \cap yR \neq \emptyset$. Hence $y \in bR$; that is, $K \subset bR$. The fact that K is open then implies that bR = X. Since X is compact and one-dimensional, Lemma 12 now implies that X is homeomorphic with a circle. However, in this case it is clear that $H^1_c(X - N) \neq 0$.

Consequently if $X - N \neq \emptyset$, $H_c^1(X - N) \neq 0$. The exactness of the sequence

$$H_c^0(N) \rightarrow H_c^1(X - N) \rightarrow H_c^1(X)$$

shows that $j_{X,X-N}^l$ is injective. Hence X - N is 1-coherent by Lemma 10. Then Theorem 2 shows that X - N is connected. Now X - int N = cls (X - N), which is again connected. Thus V = int N will satisfy Condition (A) of Theorem 7. The proof is complete.

REMARKS

- 1. Theorem 6 and its corollary show that (X, T) may be locally \mathbb{Z}_2 -n-coherent and not locally \mathbb{Z}_2 -n-coherent.
 - 2. If T is connected, then (X, T) is n-coherent.
- 3. Let L be a finite field, let X be connected, and suppose dim $H^n_c(X)$ is finite. Let $S = [t/t \in T, t^* = id.]$. Then S is an invariant subgroup with finite index. Since X is connected, (X, S) is again minimal. Thus the various results may be applied to (X, S).
- 4. Let M be the universal curve of Menger. Then [1] (M, T) is minimal, with T the group of integers. Also M is connected and locally connected [2], and dim M = 1. However, (M, T) is not locally 1-coherent for if it were, M would be n-coherent, which is impossible [4].
- 5. For each positive integer n, let X_n denote the subset [Z/|Z|=1] of the complex numbers. Let R denote the reals. The transformation group (X_n, R, π_n) is defined by the relation

$$\pi_n(X, t) = x \exp\left(\frac{it}{2^n}\right) \quad (x \in X_n, t \in R).$$

Thus $t \in R$ acts as a rotation through $t/2^n$ radians on X_n . Then (X,R_n) is minimal and equicontinuous. For each n, let $\phi_n \colon X_n \to X_{n-1}$ be the map such that $\phi_n(x) = x^2$ $(x \in X_n)$. Then ϕ_n is a homomorphism of (X_n,R) onto (X_{n-1},R) . The

family $[(X_n, \phi_n); n = 1, \cdots)]$ defines an inverse system of transformation groups. Let (X, R) denote the inverse limit of the family. Then (X, R) is minimal and equicontinuous. Also X is a solenoid, dim X = 1, and X is connected. Moreover, X is n-coherent since R is connected. However, (X, R) is not locally n-coherent, because X is not locally connected.

- Let I be the unit interval, and let $x \in X$. Then xI is a closed subset of X with dim (xI) = 1, but int $(xI) = \emptyset$. Thus X does not satisfy the conclusion of Theorem 4.
- 6. Mostow's result [5] that the Klein bottle is the homogeneous space of a connected Lie group shows that locally euclidean does not imply local n-coherence.

REFERENCES

- 1. R. D. Anderson, Minimal sets under flows on tori and derived spaces, Notices Amer. Math. Soc. 5 (1958), 843.
- 2. ——, A characterization of the universal curve and a proof of its homogeneity, Ann. of Math. (2) 67 (1958), 313-324.
- 3. A. Borel et al., Seminar on transformation groups, Princeton Univ. Press, Princeton, N. J., 1960.
- 4. H. Chu, Algebraic topology criteria for minimal sets, Proc. Amer. Math. Soc. 13 (1962), 503-508.
- 5. G. D. Mostow, The extensibility of local Lie groups of transformations and groups on surfaces, Ann. of Math. (2) 52 (1950), 606-636.
- 6. G. T. Whyburn, *Analytic topology*, Amer. Math. Soc. Colloq. Publ. vol. 28, Amer. Math. Soc., New York, 1942.

Institute for Advanced Study and University of Pennsylvania