ENTIRE FUNCTIONS ON BANACH ALGEBRAS

A. Brown

1. INTRODUCTION

If f is an entire function and A is a (complex) Banach algebra with unit, then for
any x in A the element f(x) is well defined so that £ may be regarded in a natural
way as a mapping of A into itself. The question ¥When does f map A onfo itself?”
was raised by Kurepa, who gave [2] a necessary and sufficient condition on £ in
order that it should map the algebra of all n X n matrices onto itself. This condi-
tion may be formulated as follows:

(K) For every complex number «, there exists a ¢ such that f(¢) = ¢ and
£'(¢) # 0.

Thus, for instance, the equation X2 = Y cannot be solved for X in n X n matrices
(in general), while the equation X3 - X = Y can be. It should be noted that (K) im-
plies the trivially necessary condition

(N) For every o, there exists a ¢ such that £({) = a; that is, £ omits no finite
value,

which must be satisfied if the range of f is even going to contain the scalars.

In this note we take this question up for certain other algebras, notably for the
algebra of bounded operators on (infinite dimensional) Hilbert space. In the sequel,
D.. is used consistently to denote the open disc in the plane with center 0 and radius
r, except that, for simplicity, we write D instead of D, for the unit disc.

2. MULTIPLES OF THE SHIFT

Outstanding among the operators Y for which the equation £f(X) = Y is hard to
solve is the unilateral shift, and all our computations will be focussed on that fact.
Consequently, in order to avoid minor difficulties, it will be convenient to begin with
the separable case.

Let H be a Hilbert space with a fixed orthonormal basis {ey}%-¢, and denote by
V the shift operator defined by Vey = ex4+; (k=0, 1, +--). If A is any bounded oper-
ator commuting with V and if we write

Aeg =a= Z}akek,

then Ae, = AVKey = VXa so that the matrix of A has the form
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We express this relation by writing, formally, A ~ Zax vk,

Now let £(¢) = 28k {:,’k be the given entire function, and suppose that for some
bounded operator X,

f(X) = rv,

where r is a fixed positive real number. Then, of course, X commutes with V.
Let X ~Z £ VK, Since = |£|% < = the series Z & tX converges and defines a
regular function g in D. The function h = f © g is then also analytic in D and has a
Taylor expansion

h(¢) = 20 o k.
But now, as is not hard to see, f(X) ~ Z 01 V¥; and, since by hypothesis f(X) = rV, it
must be that h(¢) = f(g(£)) = r¢ identically in D.

The claim £(X) ~ Z o vk may be established as follows. Direct computation
shows the result holds if f is a power of { or, more generally, a polynomial. Let
P, () = ZP_o B X and write

h,(8) = P(g(0) = Loy, tx.

Then, as noted, P,(X) ~Z ak,nd; and since Pn(X) — £(X) uniformly, the matrix en-
tries oy, certainly tend, as n — «, to those of f(X). But also h, — h uniformly on
compact sets in D so that lim,_,, 0y , = 0 for each k.

It now follows that g is a schlicht mapping of D onto some domain U in the com-
plex plane and that f, in turn, is a scklicht map of U back onto D,. We have proved
the following lemma.

LEMMA 1. If { is entive and if £(X) = vV possesses a bounded operator solu-
tion, then theve exists in the plane a domain U thatl is mapped by f conformally and
homeomorphically onto the disc Dy.

THEOREM 2. Let f be an entive function, and let B denote the algebra of all
bounded operators on H. Then the following are equivalent conditions on f.

(i) £(3) =3,
(ii) £(B) contains all multiples rV of the shift Vv,
(iii) f satisfies the condition

(U) There exist a sequence {W,} of domains in the plane and a sequence
{rn} of positive numbers tending to +o such that, for each n, £ is a
schlicht map of W, onio Drn.

Movreover, unless f is linear, the domains W, in (iii) may be chosen to be disjoint.
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Note. Condition (U), which clearly says only that f maps certain domains one-
to-one and conformally onto arbitrarily large discs, has been stated here in this
fashion for the convenience of the proof. It is worth remarking that the possibility
of choosing the W, disjoint shows that if f is nonlinear and satisfies (U) then its
Riemann surface has, over every finite point, an infinite number of schlicht sheets.

Proof. (ii) = (iii). Suppose f is not linear. Let r = 1, 2, ---, successively, in
the lemma, and choose U, Uz, **- accordingly. If m<nandif Uy, N U, = W=0,
then the regular functions (flUm)' and (f | Un) ! a agree on the open set £f(W) C D,
and must therefore agree throughout D, whence U C U,. In other words, either
Um © U, or else the domains are d1SJomt Moreover there can be no infinite
nested sequence of U,’s. Indeed, suppose

U cu C oo C U. C oo
| n, e

with n; <n, < ---. Let

Then f maps U homeomorphically and conformally onto the whole plane, so that

(f | U)-! is entire and also one-to-one on the whole plane. Such a function is neces-
sarily linear. Therefore, f agrees on U with a linear function and must be linear
itself, contrary to assumption. It follows that, given any finite collection

n; < np;< --- < ny of integers, there exists an n > nj such that U, is disjoint from
each of U Unk, and we proceed by induction. Let W, =1,;, ry =1, and if

ces
n b ’

W, = UIli and r; = n; have already been chosen for i =1, ---, k, let np,; be the first

n> n; for which U  is disjoint from W, ---, W, and define W, ;= Unk+1’

Trt1 = Prere
(iii) = (i). For any fixed Y in % select n to be such that r > || Y]], and let

g= (fl Wn)-l
so that g is analytic on Dl‘n’ If X = g(Y), then clearly Y = £(X).

COROLLARY. The only polynomials P such that P(®) contains all multiples of
V ave the linear polynomials.

It is a simple matter to dispose of the assumption that H is separable. Indeed,
let H=Hy(® H; with H, separable and consider the operator V=v@®o. If A is
an operator on H that commutes with V then, writing A asa 2x2 matrix,

B A B
C D

we obtain the relations AV = VA and VB = CV = 0 so that, in particular, B = 0. But
then, for two such operators
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/Ay 0N A, 0
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2
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and the proof can be formulated as before.

The sifnplest example of a nonlinear entire function satisfying (U) seems to be
£(¢) = el sin g.

(I am indebted for this example to John Wermer and Richard Askey.) That the func-
tion does, in fact, have the desired property may be seen as follows. Since £'(0) =1,
there certainly exists some domain U = U; about 0 that is mapped scklickt onto a
small disc Dg,. But then, since

f(¢ + 2n7w) = e2nT (),

the domain U, ., = U; + 2nm maps in the same fashion onto the disc of radius
2nT
e s.

3. ADEQUATE ALGEBRAS

The above proof that (iii) = (i) is clearly perfectly general. Thus if f has
property (U) it is universally onto in the sense that it maps every Banach algebra
onto itself. Let us, for the nonce, call a Banach algebra adequate if it has the prop-
erty that the only entire functions mapping it onto itself satisfy (U) and consequently
do the same to every Banach algebra. Thus, the foregoing shows that the algebra #
of bounded operators on a Hilbert space is adequate if H is infinite dimensional but
is inadequate otherwise. In the balance of this note we consider some further exam-
ples of adequate and inadequate algebras.

Although the proof of Theorem 2 was so phrased as to make no use of the fact, it
is well known that the correspondence indicated there by “A ~ 2 o vk is, in effect
an isomorphism between the commutant of V in % and the algebra H* consmtmg of
the functions bounded and holomorphic in D. Thus the same argument serves to
show that H* is also adequate. Indeed, the argument is even easier when we start
with an explicitly given function algebra: f acts by composition, and we simply ex-
press the functions r¢ in the form f(x). The same trick shows that the algebra Ag
of the continuous functions on D that are analytic in D is adequate, while only a
slight refinement of the same idea is needed to prove the next result.

THEOREM 3. Amny Divichlet algebra is adequate if (1) it is genevated by a single
element and (2) its maximal ideal space contains at least one analytic disc. (See

[3].)

There are also plenty of adequate commutative algebras that do not possess a
single generator.

THEOREM 4. If X is any compact subset of the plane having non-empty intevior,
then C(X) is adequate.
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Proof. Choose r and ¢ so that y(¢) = r{ + 0 maps X onto a large disc, and
then solve f(x) =y.

Somewhat more interesting is the following.

THEOREM 5. The algebra Cy of all functions continuous on the unit civcle is
adequate.

Proof. Consider, once again, the function y € Cy defined by y(¢) = rg, II;‘ | =1,
and solve the equation f(x) = y. The range of x is a simple Jordan loop which is
mapped by f in one-to-one fashion onto the circle with center 0 and radius r. But
then, according to the argument principle (see, for example, [1, p. 187]), f isa
schlicht mapping of the interior domain of the loop onto D...

4. TWO INADEQUATE ALGEBRAS

If X is totally disconnected then C(X) is certainly not adequate. The facts con-
cerning this special situation are essentially well known, but we write down the de-
tails nonetheless.

THEOREM 6. Let X be a totlally disconnected compact Hausdorff space, and let
f be an analytic function on some domain. Then the equation £(x) =y can be solved
in C(X) if only the vange of y is contained in that of f. In parvticular, if { is entire,
then f maps C(X) onto itself if and only if it satisfies (N).

Proof. Our space has a base of compact-open sets, whence it follows that it
suffices to solve the problem locally. On the other hand, if f(t’o) = ag, then in a
suitably chosen neighborhood U of {,

£(§) = (6N + ay,

where g is a schlicht map of U onto some disc Dg and n is the index of the first
nonzero Taylor coefficient (after o) in the expansion of f about 3. The result is
thus reduced to the following special case.

LEMMA 7. The equation y = X always has a solution in C(X) if X is totally
disconnected,

So far as I know, this fact was first observed by Kaplansky.

Proof. Let Q= {te€ Xl y(£) = 0}, and suppose there is given a continuous func-
tion x defined on X - Q and satisfying the equation X(£)® = y(£) there. Then the
function x obtained by extending X to be 0 on Q is continuous, since

lim r1/7- 0,
T—+0

and therefore provides a solution of the equation. But now, Q is a compact Gg set
in X and it follows at once that X - Q can be written as the union of an ascending
sequence of compact-open sets. Finally, taking the differences of successive pairs
of these sets enables us to specialize to the case of a function y € C(X) which is
nowhere zero. But then the equation is locally solved by means of analytic functions.

Another interesting special case is the algebra C; of all functions continuous on
the unit interval [0, 1]. The following lemma was called to my attention in a conver-
sation with Carl Pearcy and Burton Randol.
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LEMMA 8. The equation y = x™ always has a solution in Cj.

Proof. Just as before, it suffices to define a solution on X - Q, and in this case
we deal with the complementary open intervals by straightforward analytic continua-
tion.

Now suppose, once again, that f is entire, and let y be an element of C;, that is,
a continuous arc in the plane. If 0 < 79 < 1 and £(¢y) = x(7(), then, applying the
lemma, fore and aft as required, we see that the equation y = f(x) can still be solved
locally: there exists a function x, defined and continuous on some subinterval of
[0, 1] comprising a relative neighborhood of 7y, and satisfying the equation
f(x(7)) = y(7) there. Suppose now that f satisfies (N) and choose a maximal element
in the partially ordered set of such local solutions. If o, B8 are the left and right
end-points of the interval on which x; is defined, then an easy and familiar argu-
ment shows that either xg is defined at B, in which case B8 = 1, or else

lim IXO(T)l = +oo,
T—B-0

Similarly, either « is in the domain of definition of xg, in which case a = 0, or else
lim._,q 40 | xo(7)| = +0. Thus, if it should be that y £ £(C;), we would be in the fol-
lowing bizarre situation: no matter what initial point 7, is chosen, and no matter
how our local solution is continued from 7, it retreats down an asymptotic path of
f. In any case, the following result obtains.

THEOREM 9. If f is entive, satisfies (N), and has no finite asymptotic values,
then £ maps C; onto itself.

We offer a final observation which we found to be amusing. We have seen that
Cy is adequate, while C; is not. Thus it is possible for an inadequate algebra to
possess an adequate subalgebra of co-dimension 1.
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