A NEW APPROACH TO THE FIRST FUNDAMENTAL THEOREM
ON VALUE DISTRIBUTION

Gunnar af Hillstrom

1. The fundamental theorems of R. Nevanlinna in the theory of functions mero-
morphic in the plane or unit circle [8] were stated in a slightly different form by
Ahlfors [1] by means of a new technique. Using the methods of Ahlfors, the author
extended the results to functions meromorphic in more general domains D [5].
Later, analogous though weaker results were derived for functions of pseudomero-
morphic character in D [6]. These functions can be characterized as being quasi-
conformal in every compact subdomain of D and having continuous partial deriva-
tives. In this connection, formulas of Ozaki, Ono, and Ozawa [9] were useful. They
can be interpreted as an unintegrated form of the first fundamental theorem.

The aim of the present paper is to give a new proof of the unintegrated first
fundamental theorem, more in the style of the Ahlfors methods, and to state it for a
wider class of functions than the one considered by the original authors. Further,
we give a somewhat better estimate of the remainder term occuring in the analogue
of the integrated first fundamental theorem for pseudomeromorphic functions; this
estimate is valid for a slightly wider class than that previously considered. The
corresponding theorem for functions of meromorphic character is an easy corollary
of a step in the deduction; but the new approach is of course more involved than the
original concept used for this special case in [1] and [5].

2. Let D be an open domain in the z-plane (z = x + iy), and I" its boundary. Let
D be exhausted by open subdomains Ay (- < A < A,) with boundaries G) c D, each
consisting of a finite number of Jordan curves. We assume A) to be increasing with
A, so that Ay U G) © Ay for A <A', and so that A, tends to D for X / A, and to
some inner point O (which for convenience we take as z =0) as A\ -,

3. Let the function
w(z) = u(x, y) + iv(x, y)

provide a mapping of D into the Riemann w-sphere W. We assume that
a) w(z) is continuous (in the spherical sense);
b) there is no accumulation point of the roots of w(z) = a in D, for any a; and

c) the mapping is sense-preserving in the following strong sense: Whenever a
sufficiently small circle with center z, € D is described once in the positive sense,
then arg[w(z) - w(z,)] increases by 27k, where k is a positive integer (unless
w(z,) = =, in which case the obvious analogue on W has to be considered).

From c) it follows that k can be defined as the multiplicity of an a-point z,. We
see at once that the principle of the argument remains valid, so that for a domain A
bounded by Jordan arcs G c D,
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SG d{arg[w(z) - a]} = 27[n(A, a) - n(A, «)]

provided w(z) # a, » on G. Here n(A, b) denotes the number (multiplicity sum) of
b-points in A.

A mapping w is called inferior if it satisfies a) and b) and if further
c') it maps every open set onto an open set.

From c) and a) it follows that every interior point of an open set is mapped into
an interior point of the image set, and therefore our mapping is interior. Converse-
ly, if a mapping is interior and sense-preserving, then it also satisfies our condi-
tions a), b), c¢) [12, p. 88].

4. For w(z) # a on G), we define

1 { lw|? d (arg w)
Gy

(1) p, a) = 5= T TP - d[arg (w - a)]} (a# ),

1 [w[z d (arg w)
2 A = =

The argument principle then gives p(A, «) - p(x, a) = n(7, a) - n(x, ), where n(x, b)
means n(A), b). Therefore

(3) AQ) = p(x, a) + n(x, a)

is independent of a. Also, for a # «,

1 S |w|?

A a— 3 dl - dl -
p, a) = 52 9 G;L{l—*"m? og w og(w - a)
= _21_ 1) S { w - }dw.

G

1+ |wg w-a

But
SR‘S‘ ﬂ_: ‘S‘ M:l‘s‘ dlog(]_+u2+v2)=0 ERS dw =0
GA1+|W!2 le+u2+v2 2 Gy, ’ G, W-a )
so that for a # «
_ 15‘ W 1 _ 1 1+aw dw
(4) “’(A,a)—z_ﬂ,i' Gh{1+|w|2 -W—a}d ——27Ti GAW"a- 1+IW|2,

and likewise
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) = 1 wdw
211 ~Gy 1 + |w|z'

(5) r(x, o

If we integrate p (A, a) over the Riemann sphere W, with respect to a = pei‘P, we
have

1 1+ pei¥w pdpdy
A aw = S ‘S‘
SW pQ, a)dW(a) = - 5— oy T+ |W|2 0 w-pe¥ (I+p2)2
o0 -
B 15 dw S pdp 1 1+ pwt dt
Ghl“"lwlz (1 + p2)2 " 27 ] =1 w-ptt’

The residue of the last integrand is

Latt-0 ana -0 4 ¢-¥
w w p
so that
dw 1 le pdp - (% pdp
( a)dW=iS ——{—-S L% __ & —L=P_ %~ 0.
w“ ’ Gy 1+ w2l WY 1+ p?)? |w| (1 + p%)?2

From (3) and 5 dW(a) = 7 it now follows that
w
A =1 S n(x, a) dW(a) ;
T Jw ’ 3

that is, A(A) is identified as the Shimizu characteristic, mA being the area of the
image surface of A) spread over W. Formula (3) with the expressions (1) and (2)
or (4) and (5) for p is then recognized as the first fundamental theovem in uninte-
grated form. It may also be noted that for a # « we can find a form of y corre-
sponding to (2), namely

1 lwalz

6 A, a) = 5= ———d(arg w
(6) LR, 2) = 5 oy T+ Wil (arg w,),

where w, is the rotational transform of w = w,,

1+ aw
w, = .
w-a

5. The unintegrated form (3) of the first fundamental theorem as a statement in
terms of z is essentially of topological character. In fact, all previous integrations
could be carried out entirely in the w-plane. In this form, (3) occurs already in the
paper [2, 2 7] of Ahlfors, with (see (13) below)
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_Lji _1
(6a) nQx, a) =5 ), 7n log [w, a] ds,

where y is the w-image of G). In the integrated form (as in the original form by
R. Nevanlinna [8] and in Ahlfors’s modification [1]), the metric relation between w
and the z-plane comes into view. To be able to maintain the definitions of the sym-
bols occuring in this theory and to carry out the proofs, we therefore confine our-
selves to a more restricted class of functions w(z). For the same reason, the
method of exhaustion and the parameter A associated with it must be specified.
This also imposes certain restrictions on the domain D.

Let D again be normalized to contain the point z = 0. We require that there
exist a harmonic function g(z) which has the development

g(z) = log |z| + a harmonic function

in the neighborhood of 0 and is regular elsewhere in D. Furthermore g(z) shall
converge uniformly to a limit A, as z approaches the boundary I"' of D. We have
two possible cases: a) the parabolic case, where I' is a point set of logarithmic
capacity 0, A, = +», and g(z) is a Selberg-function (compare [5] or [10]); b) the
hyperbolic case, where D has a Greens function -g(z) and I" consists entirely of
regular points, in the sense that lim g(z) = 0 uniformly on I, so that we can take

A, = 0. In both cases, A) shall be the domain g(z) < A, and G, the system of level
curves g(z) = A. Also, in both cases the harmonic conjugate h(z) of g is multiple-
valued, but it increases by 27 as G) is described in its entirety with A) to the left.
We consider the analytic function

s(z) = g(z) + ih(z).
In the classical case, where D is the whole z-plane or the circle |z|< 1, we have
s(z)=logz, g=logr, h=¢ (z=re?),.

6. As to the function w(z) = u + iv defined in D, we now assume that

A) w(z) is continuous, and the partial derivatives u,, Uy, Vy, Vy exist and are
continuous;

B) an inverse Ho6lder condition is satisfied; in other words, to each compact sub-
domain of D there corresponds a finite k such that

) |w(z) - w(zg)| > |2z - 2z

whenever |z - z,| < 6, & being a suitable positive number;

C) Xz) = g—g}—;% > 0, except possibly on a point set having no limit points in D.
3

We shall allow w(z) to be infinite at points of D; at such points and in neighbor-
hoods of them, 1/w instead of w shall fulfill the above conditions.

. Conditions a), b}, and c) of Section 3 are consequences of A), B), and C), respec-
tively. We can therefore apply our previous results to the more restricted class of
functions defined here. ’
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7. At points where J(z) > 0, the dilatation quotient Q(z) can be computed from
_ (12 2 2 2
(8) Q(z) + 1/Q(z) = (us + ug + v+ vy)/J(z) .

The mean derivative dw/9z and the Pompéiu derivative dw/9z are (see [3, p. 41],
[7], or [11])

(9) —g%v-=-;-[ux+vy+i(vx—u.y)],
(10) % = %[ux - vy + i(vy + uy)] )

We know Q(z) to be invariant with respect to conformal transformations, so that if
f(w) and z(¢) are analytic functions, then f{w[z(¢)]} and w(z) have the same value
Q at corresponding points ¢ and z(¢). It is easv to show that in this case ow/0z
and ow/9z are transformed by means of the formulas

(11) g% - f(W)g2z'(t) and g% - f'(w)%%—v Z7(0) .
Also, from (8) to (10) we get

=%(Q+1)/% and %’"l:%(Q-l)/%.

We can combine conditions A) and C) of Section 6 with the condition

ow

(12) 0z

B,) Q(z) < KA < = in every compact subdomain A of D (in other words, w(z) is
quasiconformal in A).

A function w(z) satisfying these conditions is said to be pseudomeromorphic in
D (see [6] and [11]). In A, the pseudomeromorphic function w(z) can be considered
as a composite function w[¢(z)], where w({) is meromorphic and ¢(z) is a quasi-
conformal homeomorphism. This can be shown in the following way. For each
z € A (with exception of the finite point set E where J = 0), w(z) determines Q(z)
and, wherever Q(z) > 1, also an angle Y(z) that can be described as follows: Y¥(z)
is the angle between the real axis in the z-plane and the preimage of the major axis
of the infinitesimal ellipse onto which w(z) maps the infinitesimal circle with center
z. As was shown in [7], it is possible to construct a quasiconformal mapping ¢(z) of
A with these preassigned values Q(z) and ¥(z). The function w(z(¢)) then maps the
domain ¢(A) in such a way that in each point of £(A - E) where Q = 1, infinitesimal
circles are carried onto infinitesimal circles, and in the other points infinitesimal
ellipses are carried onto similar infinitesimal ellipses, major axes being mapped
onto major axes. But then the map is conformal and sense-preserving, and w(¢) is
of meromorphic character. Because z as a function of ¢ is subject to a Holder
condition [4], (7) is valid for ¢(z), and therefore, with appropriately changed expon-
ent it holds also for w(z). Therefore the pseudomeromorphic functions belong to the
class considerved. Because the mapping w = x® + 3xy? + iy is not quasiconformal in
any A containing 0, but satisfies conditions A) to C), the classes do not coincide.
(In {11], however, all functions satisfying A) and C) are called pseudomeromorphic.)

8. Let [w, a] denote the chordal distance between w and a on W. Then
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[w,a]l =1+ Iwalz)‘1/2= |w - al(1 + IWIZ)'I/Z 1+ [a|2)-1/2 (a # =),
(13)
[w, «] = (1+ |wp)-1/2.

Just as for functions meromorphic in D, we can, for the class considered in Section
6, define

(14) m(, a) = log

1
- ———F— dh
27 YGy 7T [w(=),a]

1]

A
N(x, a) S_w n(g, a) dg + log[w(0), a],

where the formula for N(A, a) should be slightly modified for a = w(0). Condition B)
guarantees the convergence of (14), and we have, for all a,

(15) lim [m(x, a) + N(», a)] = 0.

A—=—co

The Nevanlinna-Ahlfors characteristic is

A
0= _ A@ae.

Integration of (3) then gives [for a # w(0)]
(16) m(x, a) + N(, a) = T(A) + E(), a),

where, by (6) and (13) to (15),

A
E(x, a) = m(a, a) - m(-, a) - S_w p(x, a)da
(17)
A 2
1 |w, | 3 (log |wal) @(arg wa)
BT PN . LT TA Y

If in particular w(z) is of meromorphic character, then log w_, is an analytic
function of s(z), and the Cauchy-Riemann equations yield E(A, a) = 0. Therefore the
first fundamental theovem is valid in the form (see [5, p. 21])

(18) m(x, a) + N(a, a) = T(\).

Also, in this case the invariance of the operation % ds in (6a) immediately shows
that p(:, a) = d—md%’——a), so that (18) holds.
In the general case, however, (16) constitutes the modified form of the first

Sfundamental theorem. It remains to compute or estimate the term E(A, a). It turns
out (see Section 10 below) that E can vanish identically for all a, even for a function
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with Q(z) unbounded and increasing arbitrarily fast with A. On the other hand
E(7, a) may be of the same order of growth as T(X), even in cases where Q(z) is
bounded.

9. From (10), (11), and (17) we get

155 o a(10g w,) |w,|?dgdh

E(x, a) - IWaIZ

1 1 dw, aw &z ) |wal* dgdn
NIEE

w, dw 9Z ds| 1 4 IWaIZ

[
=

L/d
)

dw, dwds - | _dxdy
dw 9z dz 2 1+lWa|2.

From this we compute

155 1+awawds| dxdy
EQ, a) = -3 m{w-aaidz}1+|w‘2 (a# ),

1 ((glgavas) axe
EQ, <) = 7 gl{w 0z dz}1+ [w[2

Now (12) gives the estimate

1l

IWaIdXdy
1+ |w(z) IZ

ds
dz

(19) |EQ, 2)] < —SS[Q(z) 1] Jg:

which, in the case where D is a c1rcle or the whole plane, reads

/ dr d
(20) IE(logr a)l < SS [Q(z) - 1] J(z) IWaI r d¢

Izl 1+ ’WZ)IZ

These results provide a slight improvement over the previous estimate (20) in [6].

10. In the following examples, take D as the z-plane or a circle, and
w(z) = £[¢(z)], where £(¢) 1s meromorphic and £(z) is a quasmonformal homeo-
morphism. We set z = rel®, ¢ = pei?,

Example 1. Set p=r, ¥ =¢ + s(r) where s(0) = s'(0) = 0, and where s(r) > 0
and s'(r) > 0 for r> 0. Then Q(rei®) > r2s'(r)2. If £(¢) and a finite set of values
a are given, we can therefore choose s'(r) growing rapidly enough so that the right-
hand side of (20) increases more rapidly than T(r) or any arbitrary function tending
to infinity as r — 1 or r — o, respectively. But in fact E(log r, a) = 0 for every a,
as can be seen from (17) or from the fact that {(z) only twists the plane, so that ob-
viously the values of m, N, and T are the same for w(z) as for £(¢). Therefore (18)
is valid.
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Example 2. Set p = p(r), Y = ¢, with lim_._,g p/r=1 and p/ o as r /o, and
let £(¢) = ¢®. Then T(r) =nlogr [1 - o(1)] for r > . For a# «, E(log r, a)
is bounded, so that (18) holds if only a bounded term is added. If, for a =,

N 9—(5)5%‘—“’-)- does not change sign, then the right-hand side of {20) gives the exact
value of |E(log r, ) |, because 9 9—(1%%1”—) = 0. This is true when rp' - p is non-

negative or nonpositive for all r. 2a) The first case is valid for p(r) = r + r¥ with
k> 1. Here E(logr, «) = (k - 1)n log r + O(1), so that lim,._ E/T=k - 1> 0.
Also, Q(z) — k as r — . 28) The second case occurs if log p=log r - k arctan r
and 0 < k < 2. Then also E(log r, ) is bounded, and the first fundamental theorem
holds with a bounded remainder term. This phenomenon is to be expected whenever
the mapping is nearly conformal in the sense that, as z becomes large, Q(z) — 1 so
rapidly that the right-hand side of (20) remains bounded.
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