THE SINGULARITIES OF CONTINUOUS FUNCTIONS
AND VECTOR FIELDS

Wilfred Kaplan

1. INTRODUCTION

The singular points of a system of ordinary differential equations

(1) %}":l: fi(xla *tty Xn) (i = 1’ °"% Il)

are usually defined as the points at which all f; are 0. Much attention has been de-
voted to the study of the solutions in the neighborhood of such points, a powerful

tool being the approximation of the f; by polynomials on the basis of Taylor’s series
or formula. However, it is also natural to use the term singular point for a point at
which the existence theorem is inapplicable for some reason, for example, because
the f; fail to remain continuous at the point. The approximation by polynomials is
then not available, and one is apparently faced with an entirely different problem.

It is the purpose of the present paper to show that the second problem can be
reduced to the first. Our procedure is based on a geometric interpretation of the
differential equations: One is given a vector field; the solutions sought are to have
the given vectors as tangents. The length of the vectors is immaterial. Hence we
seek to modify the length by multiplication by a positive scalar in such a fashion as
to force the length to approach 0 at the singular point. The new vector field has
then a singular point of the conventional type. We shall in fact show that if the f;
are of class C(m) in a deleted neighborhood of the singular point, then the modified
vector field can be chosen to be of class C (™) in a full neighborhood of the singular
point. Hence analytical tools such as Taylor’s formula become available.

The modification of the vector field is equivalent to the introduction of a new
parameter, replacing t, to regularize the problem. The process thus resembles
Sundman’s famous regularization of collisions in the problem of three bodies.

2. A LEMMA ON C(°°) EXTENSIONS OF A NULL FUNCTION

We first establish a lemma which provides a smooth function resembling the
distance from a given closed set in n-space.

LEMMA 1. Let E be a closed proper subset of Euclidean n-space, R,,. Theve
exists a function f(xy, ---, x,) of class C) in Ry, such that £ and all its partial
devivatives ave identically 0 on E and f is greatev than 0 on D = R, - E.

Proof. We represent D as a union of open n-dimensional balls Dy, (h=1, 2, ---).
Let py, be the radius of Dy, and let r(x) be the distance of x = (x31, **+, Xn) from
the center of D,,. Let f;(x) be defined in R, as follows:
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1.x) = exp[-{r{® - pf} ¥ (xeD,),
£(x)=0 (x¢Dy).

Then f;,(x) is of class c) in R, and f3,(x) > 0 in Dy,. We can further choose con-
stants k5 (8 =0, 1, 2, ---) such that each partial derivative of f}, of order s is in
absolute value less than kyg for all x in R,,. We set

-1
ah = [thax (kho, kh].’ °ey, kh,h—l)] ,

so that 0 < ay ks < 2P for s < h. For each s, the series I} ayky . is then con-
vergent, since each term after the s-th is less than the corresponding term in the
series Z7 2-B, The series T apfy is dominated by Z anknhg, and hence it converges
uniformly to a function f(x). For fixed jj, -+, jn and s = j; + --- + jn, the series of
partial derivatives

o ety
L Ay~
h=1 = 9x;t .- axI®

converges uniformly in R,. Hence f is of class c(), By the construction of the f,,
>0 in D, f=0 in E, and all partial derivatives of f are 0 in E.

Remark. The lemma is related to the extension theorems of Whitney (see [3],
for example), but it does not seem to be included in them.

3. QUOTIENT REPRESENTATION OF CONTINUOUS FUNCTIONS
WITH SINGULARITIES

We show now that every function F(x), continuous in R, except on a compact set
E, can be represented in the form F = F,/F,, where F, and ¥, are continuous
throughout R, and F, = F, = 0 on E. This is suggestive of the representation of a
meromorphic function as a quotient of two entire functions. We show also that “con-
tinuous” can be replaced by “of class c(m) for m = 1, 2, «+¢, 0.7

THEOREM 1. Let F(x) be continuous in R, except on a compact set E. Then
there exist functions ¥, and F,, continuous throughout Ry, such that

F=F/F, on D=R,-E, F;=F,=00nE, F,>0o0nD.

Proof. We first choose a ball G: Z7x% < R? such that E is contained in the in-
terior of G. Let f be chosen as in Lemma 1 relative to E. Let

ro = L.u.b. {f(x)| x € G},
so that r, > C. Let K. be the set {x| f(x) > r, x € G}, and let
1+l.u.b.{|F(x)||x€Kr}~ (0<r<rg),
‘Po(r) =

Then Y,(r) is a nonincreasing function of r and Y,(r) > 1 for 0 < r <. Set
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u(r)=50%1(—u-)du for ©>0, p(0)=0.

Then w(r) is a continuous function of r for 0 < r < «, and u(r) > 0 for r > 0. Set
Fo(x) = p[f(x)],

0 (x in E),
Fi(x) =
F(x) - F(x) (x in D=R, - E).

Then, on E, f(x) = 0, so that F,(x) = 0; F,(x) = 0 in E by definition. Since p is con-
tinuous, F, is continuous in R,, and F,(x) > 0 in D. Now

pir) </Yolr) (x> 0).

Hence on the locus f=r in G (r > 0),

|F.®@) | < |F&| 5 < r.

d/()

Accordingly, lFl(x)| < f(x) in G. It follows immediately that F,(x) is continuous at
each point of E, and hence F,(x) is continuous in R;,. Since F,(x) > 0 in D,
F(x) = F,(x)/Fo(x) in D, as asserted.

THEOREM 2. If in Theovem 1 F(x) is of class C(m) in D (m a positive inte-
ge?), then F,(x), F,(x) can be chosen to be of class C(m) in R,.

Proof. We proceed as in the proof of Theorem 1 and let

gil+eetin o

(2 V() =1+ max {|F|+20 = - 0<r< ),
x€K,. 8X11 aX -
where the summation is over all ij, ***, i, suchthat 1 <ij + ***+ + in< m. For

r> ry, we set Ym(r) = Ym(ro). Let pm(r) be defined inductively:

3 Ir 1 _ ~T _
bo) = § grdn  m) = § pka@dn (=1, m),
Then g (r) is of class C(X) for r> 0, and

(3) 0 < py(r) < — (k=0,1, -, m, r>0).

tl/m( ¥ m(r)
We let F,(x) = p, [f(x)], again let F,(x) = 0 for x in E, and let
F,(x) = F(x) - Fo(x)

for x in D. It then follows that F,(x) is of class C(™) in R, and F,(x) > 0 in D;
accordingly, F,(x) is of class C(™) in D. On the locus f=r in K, (x>0,
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rm+l 1
|F1(X)|S|F(X)|'Hm(r)_<_|F(X)|m§r .
Accordingly, |F (x| < [£(x)]™"! in G. It follows that F,(x) is continuous at each

point of E, and hence F,(x) is continuous in R;.

Furthermore, grad ¥, = 0 on E. For if x isin E and “ Ax" is the Euclidean

I]iornli of the vector Ax = (Ax,, -*-, AX,), then for positive and sufficiently small
Ax
Fi(x + Ax) - F1(%) B! (x + AX)
Il o] | 2]
< f"ﬁ + T‘) [£(x + Ax)]™
fx + Ax) - £1(%) m
< [f(x + Ax)] ™.
=1 lax]

As ||Ax|| — 0, both of the last two factors approach 0, since f=0 on E and
grad £ =0 on E. Therefore grad F, = 0 on E.

Next, on the locus f=r> 0 in G,

|| grad F " = || F grad F,+ F, grad F||

< |F||lgrad pm®| + | (@] || grad F

' I,m-l-l
< |F| pp, @) [|graa £ + m | graa |
m
SUF| gy @) | grad £ + 5y ) | graa F|

< |F| 'l/ ( v (r) “grad f" ( )"grad F"

Therefore, everywhere in G,
(4) lgrad ¥y || < £™| grad £|| + £,

Since f =0 and grad f = 0 in E, we conclude that grad ¥, — 0 as x approaches a
point of E. Therefore F, is of class C' on E and hence in R,.
For m > 2, we consider the second derivatives of F,. By (4), each first deriva-
tive F, x; satisfies an inequality
|F1xj| < t™grad £ + £ (m>2, x€ Q)

and is 0 on E. Hence, as above, we find that each difference quotient of F; x5 at a

point of E is in absolute value less than or equal to the absolute value of the corre-
sponding difference quotient of f times fm‘ljl grad f|| + £f™ evaluated at x + Ax.

)
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Again both factors approach 0 as " Ax" — 0, and we conclude that all second deriva-
tives of F, are 0 on E.

Next, on the locus f=r > 0 in Ky,

lejxkl = | FXj FZxk + ka FZXJ- + ijxk F2 + FFijxk‘
< Iijl B -1(r) Ikal + ‘ka| Lm-1(r) Iijl + |Fijk| Em(T)
+ |F‘ {P"m—Z(r) ‘ijl : Ika‘ + o -1(1) lijxkl}

1 1
Sm(lFle rmlka‘ + |kal rm|ij| + |FXijl rm+

e 1] Lot g |- g ]+ 1 g 1)

by (3). Since, by (2), ¥ m(r) exceeds the absolute value of F and all its first and
second derivatives on the locus f = r, we conclude that

-1 1
llejxkl S £ Iijl ’ |ka‘ + fm(| ka| + |ij| + |ijxk|) + fm+ .

Hence each second partial derivative approaches 0 as x approaches a point of E.
Thus the second partial derivatives are continuous.

The third, fourth, ---, m-th partial derivatives are analyzed in similar fashion,
and we conclude that F, is of class c(m) everywhere.

THEOREM 3. If in Theorem 1 F¥(x) is of class cl) i D, then ¥,, F, can be
chosen to be of class C() in R,.

Proof. We require a lemmas:

LEMMA 2. Let {u,,(r)} (m=0,1,2,-..) be a sequence of functions of r on
the interval 0 < r < « such that L (r) is continuous, Lm(0) = 0, and pm(r) > 0
Jor r > 0. Then theve exists a sequence of numbers r., > 0 and a function p(r) of
class C) such that

p)0)=0 m>0), p@>0@E>0, |pE|<pLE) O0<rry,).

Proof. For k=1, 2, --- choose di(r), a function of class c®) for 0 <r<eo,
such that &, (r) > 0 for 2l-2k < y <« 23'2i< and 6x(r) = 0 otherwise; choose g (r), a
function of class C() for 0 < r < w, such that g, (r) > 0 for 2-2k < r < 22-2K and
£ (r) = 0 otherwise. Let

[o o]

Alr) = Z;ak o (r), E(r)= 2;/ by 4 (r),

where {ak} and {bk} are sequences of positive numbers to be specified. Let 5(r)
be a function of class C() for 0 < r<eo equal to 0 for < r <1 and positive
otherwise. The function u(r) is then defined as the sum

u(r) = n(r) + A(r) + E(r).
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For each r > 0 at least one of the three functions on the right is positive, so that
u(r) > 0. The three functions are of class c) for r> 0; if the ax and bk are suf-

ficiently small, they are of class C(®) for r > 0, with all derivatives 0 at r = 0.
This is proved in the same way as Lemma 1.

Next, for proper choice of the sequence {a},
6(r) <%uo(r) (rel27%2), o(r)< 2#0(1') and |6'(r)] < 2Jul(r) (r e [273, 271]),

and

160w <3 G=0,1, -, & real X 232K,

so that

16M@] < 2un) (0 <r< 23,
Similarly, for proper choice of the by,

e®@)| < gur) (0 < r <222,

Since n(&)(r) = 0 for 0 < r < 1, we conclude that
|n®@)| < plr)  O<r<27®5 k=0,1,2, ).

Thus the lemma is established.

Now, to prove Theorem 3, we define Y (r) (m= 0,1, 2, --.) as in the proofs of
Theorems 1 and 2, and we let

U, (T) = NmO(r) = ir—ﬁnl(—u)du’ Emilr) = Sor“mO(u) du, ---,

so that, as in the proof of Theorem 2,
rk+l
U (r)

We then choose p(r) in accordance with Lemma 2. Hence, for some r,,
p(r) < po(r) = peolr) if 0 <r < r, Next, for 0<r<r,

(5) 0 < pp(r) < 7= (k=0,1, -, m; r> 0).

@) = |50r p'(w) du| < ‘S': py(w) du = Sor miolw)du = ) (r),

and in general, for 0 <r < r_,,
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| 1) (1) < @) = B o),
(6) | w1 ()| = ISru(m)(u) du| < Srumo(u) du= gy (@), o
0 0

|0 < p @) &=0,1, -, m).

We again let F (x) = p[f(x)], F,(x) = 0 in E, F,(x) = F(x) F5(x) in D. Then Fy(x)
is of class C() in Ry, and F,(x) = 0 if and only if x € E. Because of (5) and (6), the
proof of Theorem 2 can now be repeated without essential change to show that, for
each m, F,(x) is of class C(m); that is, F,(x) is of class C(),

4. GENERALIZATIONS

Instead of R, we can consider an n-dimensional differentiable manifold M,. If
M, is of class c(*), Lemma 1 can be generalized to M,, with only minor modifica-
tions in the proof. If M, is only of class C (m) (m finite), one can prove a lemma
analogous to Lemma 1 for M, but with f(x) of class C (m only. Theorem 1 can
then be formulated and proved for M,, even without any differentiability assumption
on M,; in fact, Theorem 1 has a counterpart for locally compact metric spaces.

For Theorem 2 one requires a corresponding differentiability assumption for
Mp. Since the proof mainly concerns a compact subset G that includes E in its in-
terior, one can cover G by a finite number, N, of coordinate neighborhoods and then
define Y,,(r) as in (2) so that the “max” applies both to x € K. and to all of the N
coordinate systems. The proof of Theorem 2 then carries over to this case, with
each partial derivative being computed in one of the N coordinate systems. Similar
remarks apply to Theorem 3.

In Theorems 1, 2, 3 we can replace the word “compact” by “closed.” For, if E
is unbounded, R, can be imbedded by stereographic projection in the sphere S, and
E becomes a set E, whose closure (E, plus “the point at infinity”) is compact. The
function F becomes a function of class C(m) in the complement of the closure of E,.
We can thus apply Theorem 1, 2, or 3, as generalized to the differentiable manifold
S,. The resulting representation of ¥ as F,/F, in S, becomes the desired repre-
sentation in R, ; in addition, F,(x) and F,(x) will now approach 0 as x approaches
the point at infinity.

5. APPLICATION TO DIFFERENTIAL EQUATIONS

THEOREM 4. Let E be a closed proper subset of R,. Let a vector field
f(x) = {£;(x;, *-+, Xp)} of class C(m) (m € {0, 1, 2, -+, ©}) be defined in D = Ry, - E.
Then there exist a vector field g(x) and a scalar o(x), defined and of class C{(m) in
R,, such that a(x) > 0 in D, a(x) = 0 in E, g(x) =0 in E,and g(x) = a(x) f(x) in D.

In other words, the lengths of the vectors f(x) can be modified by multiplication
by the positive scalar a(x) so that the modified vector field g(x) can be extended to
E to remain of class C(m) and to become 0 on E. Thus the singularities of the
vector field become z2evos of the vector field.

Pyoof of Theorem 4. We apply Theorem 2 or Theorem 3 (with E a closed set
as in Section 4) to write f;(x) = f;; (x)/f;,(x), where f;; (x), f;(x) are of class c(m
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in Ry, £;,(x) > 0 in D, and f;;(x) = f;,(x) = 0 on E. Then we set
n n -,
ax) =II fiz(X), gi(X) = fil(x) II sz(x)
i=1 j=1

where the  denotes that the factor for which j = i is omitted in the product. We
see at once that a(x) and g(x) = {g;(x)} have the properties asserted.

From Theorem 4 we obtain the desired conclusion for the differential equations
(1). For example, let the f; be of class c(m) in a deleted neighborhood D of a
point x,. We then set E = R, - D and apply Theorem 4. The new differential
equations

) S gy x) (=1, )

have right hand-members of class c(m) in all of Ry, so that the existence theorem
is applicable at every point. The point x, is now an “equilibrium point” for equa-
tions (7): all g; are 0 at x,. The solutions of (7) have the same trajectories in D
as the given equations (1), the difference being one of parametrization; along each
solution

(8) dt = a(xy, -+, x,) d7 (x> 0).

For examples of such reparametrizations, we refer to [2, pp. 426-428 and 436-
4317].

6. APPLICATION TO EXTENSIONS OF FUNCTIONS

We give an example which, in turn, suggests generalizations. Let F(x, y) be a
function of two variables x and y, defined and continuous on a nonvoid subset D of
the circle K: x® + y® = 1; let D be open relative to K. We then seek an extension ¢
of F to the interior of K. Such an extension ¢ can be obtained; it can even be
analytic in x and y, in the interior.

In order to find ¢, we regard K as a 1-dimensional differentiable manifold, as
in Section 4, and apply Theorem 1, generalized, to obtain functions F,(x, y) and
F,(x, y), continuous on K, such that ¥ = F,/F, in D and

F,(x,y) > 0.in D, Fy(x,y)=0=F,(x,y) in E=K - D.

We then solve the Dirichlet problem for the unit circle with boundary values F,, F,
respectively; let the solutions be ¢,(x, y), ¢,(%x, y). Now set ¢(x, y) = ¢,(%, y)/d,(%X, y).
Since F,(x, y) > 0 on K and F,(x, y) > 0 in D, we can apply the maximum principle
to conclude that ¢,(x, y) > 0 in the interior of the circle. Thus ¢(x, y) is an analytic
function of x, y in the interior of K and is continuous in D plus the interior of K,
with ¢ = F,/F, = F in D. Accordingly, ¢ is the desired extension of F.

Remark. One can in fact choose ¢(x, y) to be harmonic in the interior (see [1]).
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