, THE LINDELOF THEOREM AND
THE REAL AND IMAGINARY PARTS OF NORMAL FUNCTIONS

F. Bagemihl

1. Let D and K denote respectively the open unit disk |z| < 1 and the unit
circle Izl =1 in the complex plane. A function £(z) defined in D is normal pro-
vided the family of functions

fi(z) = f(lz—__%) (t € D)

is normal. If f(z) is a meromorphic function defined in D, we write u(z) = %{(z)
and v(z) = S£(z). The cluster set, the outer angular cluster set, and the boundary
cluster set of f at a point eif € K are denoted by C(f, eif), Ca(f, eif), CB(, eif),
respectively, and FC({, eif) means the frontier of the set C(f, eif). If y is an arc
of D UK terminating at the point eif € K, then C,(f, €if) is the cluster set of f at
eif along v; and, if E is a subset of DUK - {eif} whose closure contains ei6, then
Cg(f, €if) is the cluster set of f at eif on E.

Gehring and Lohwater [3, p. 165, Theorem 2] proved recently the following
theorem:

Let 1(z) be holomovphic and bounded in D, and let o and B be avcs lying in
DuU K and terminating at the point eit e K such that £(z) is continuous at all points
of (@UB)NK except possibly at eib. If u(z) — a and v(z) —» b as z — elf along o
and B, respectively, then £(z) has the angulayr limit a + bi at e,

This result is a generalization of a well-known theorem of Lindeldf, and the fact
(established by Lehto and Virtanen [5, p. 53, Theorem 2 ]) that the Lindel5f theorem
holds for normal meromorphic functions makes it natural to ask (as did Gehring in a
conversation with the author) whether the Gehring- Lohwater theorem remains valid
if the assumption that f(z) is holomorphic and bounded in D is replaced by the hy-
pothesis that f(z) is meromorphic and normal in D. In Theorem 1 we answer this
question in the negative; in Theorem 2 we show that the answer remains negative
even if we assume that f(z) is holomorphic (and normal) instead of merely mero-
morphic. Then in Theorem 3 we obtain a generalization of the Gehring-Lohwater
theorem to normal meromorphic functions under an additional assumption concerning
a certain cluster set CG(a,B) (f, ei9) and with a slightly modified conclusion, and we
give examples to show the necessity of such an additional assumption as well as of
the modification of the conclusion.

2. Noshiro [7, p. 154] has divided the class of normal meromorphic functions into
two parts, obtaining what he calls functions of the first and second category, but what
we prefer to call functions of the first and second kind in order to avoid any allusion
to Baire category, which is not involved here. A normal meromorphic function is of
the first kind if the family {fi(z)} (t € D) admits no constant limit; otherwise it is of
the second kind. Noshiro has shown that normal meromorphic functions of the first
kind in D possess some interesting properties, notably [7, p. 154, Theorem 5] the
properties of having no asymptotic value and of assuming every value, including <,
infinitely often in D.
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THEOREM 1. Theve exists a novmal mevomovrphic function £(z) of the first kind
in D with the property that to every point €l € K there correspond arcs o and B
in D terminating at €9 such that u(z) = 0 on a and v(z) = 0 on B, but £(z) has no
angular limit at any point of K.

Proof. Let £(z) be a Schwarzian triangle-function (see [6, Chapter II]) in D
whose fundamental triangle has angles n/2, n/ 7, n/3, so that [6, pp. 125-126] f(z) is
a normal meromorphic function in D, and of the first kind, as was noted by Noshiro
[7, p. 156]; and let its system of triangles be that displayed in [4, p. 437, Fig. 122],
where we assume that £(0) = ». Given any point eif € K, it is then evident that there
exists a sequence z, = 0, z,, z,, -+ of distinct vertices of the aforementioned tri-
angles such that z, — el as n —»«, f(z,) == (n=0, 1, 2, ---) and such that, for
n=1, 2, 3, ---, there exist triangles S,, T, of the figure satisfying the conditions
that z,,_; is a vertex of S,, z, is a vertex of T,, and the side s, of S;, opposite
Zp-]1 is identical with the side t, of T, opposite z,. The value of f(z) at one of the
end points of s, is zero, and it follows from the mode of genesis of the function that
there is an arc o, inside S, and extending from z,_; to the end point in question,
such that f(z) is a pure imaginary number for every z € 0;,, and hence u(z) = 0 on
0n. Similarly, there is an arc 7, inside T, and extending from the end point of
Sp = t, just considered to the point z,, such that u(z) = 0 on 7,. Setting

a=U ©@aum),

n=1

we have an arc @ in D terminating at eif such that u(z) = 0 on a@. On the sides of
the triangles S, T, (n=1, 2, 3, --+) the function f(z) is real, so that v(z) = 0 there,
and clearly there exists an arc 8 in D composed of sides of these triangles and
terminating at eif such that v(z) = 0 on 8. Finally, f(z), being a normal mero-
morphic function of the first kind, has no asymptotic value, as was noted above, and
hence f(z) has no angular limit at any point of K.

3. It is not possible to obtain a normal Zolomovphic function with the properties
possessed by the function f(z) in Theorem 1, because every normal holomorphic
function in D has angular limits at the points of an everywhere dense subset of K
[1, Corollary 1]. Nevertheless, the next theorem shows that a normal holomorphic
function in D can thwart the Gehring-Lohwater conclusion at every point of K (al-
though for some points of K our continuity assumption is weaker than that in the
Gehring- Lohwater theorem).

THEOREM 2. Theve exists a normal holomovphic function 1(z) in D and an
enumevable subset E of K with the properties that to every point eif € K there
corvespond arcs a and B in DUK terminating at eif such that £(z) is continuous
(in the extended sense) on U B, except possibly at €19, and, if €l € K - E, then
u(z) =0 on a, v(z) =0 on B, but f(z) does not have an angular limit at eib; wheveas
if eif € E, theve correspond to €16 real numbers a, b such that u(z) =a on «,

v(z) =b on B, but f(z) does not have the angulay limit a + bi at eib,

Proof. Let f(z) be the modular function in Dj; it is holomorphic there and omits
the values 0, 1, «, so that it is also normal. Denote by E the enumerable set of
vertices of the modular figure {4, p. 432, Fig. 119]. To each vertex there corre-
sponds, in the course of construction of the function, one of the values 0, 1, «, and
the vertex will be dubbed a 0-, 1-, or «-vertex, accordingly. Each triangle of the
modular figure has a 0-, a 1-, and an «-vertex, and its sides will be called the 01-,
the «0-, and the ~1-side after the two vertices that the side in question joins.
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We consider first the points of E. Let eif be an «-vertex, and let T be a tri-
angle of the modular figure of which elf isa vertex. Then there is anarc a in T
extending from the 0O-vertex of T to the point eif, such that u(z) =0 on a. If we
denote by B8 the «0-side of T, then v(z) =0 on 8. The angular limit of f(z) at elf,
however, is «, not 0. Now let el® be a 0-vertex. Then there is a sequence of .
“consecutive” «l-sides of triangles of the modular figure approaching the point eif
whose union is an arc 8 in DUK terminating at e€if on which £(z) is continuous
(except at eif) and v(z)= 0 on B. The successive vertices of the «1-sides of the
sequence can be joined by arcs on which u(z) = 1, such that the union of these arcs
is an arc @ in D UK terminating at eif on which £(z) is continuous. The angular
limit of f(z) at eif, however, is 0, not 1. Finally, let eif be a 1-vertex. Then
there is a sequence of consecutive «0-sides approaching the point ele, whose union
is an arc B terminating at eif on which v(z) = 0. The successive vertices of the
©(-sides can be joined by arcs on which u(z) = 0, such that the union of these arcs
is an arc @ terminating at eif, The angular limit of f(z) at eif, however, is 1, not
0.

We turn now to the points of K - E. Let T be a triangle of the modular figure
that does not contain the origin in its interior, and let s be one of its sides. We say
that s spans the arc A on K if A is the minor subarc of K having the same end
points as s but containing no other vertex of T. Accordingly, only two sides of T
span arcs on K, and the arc spanned is uniquely determined by the side; the closure
of the region bounded by the side and the arc that it spans will be called the domain
G spanned by the arc. Suppose that eiB. € K - E, that the side s of the triangle T
spans the arc A, and that A contains eif. Since s is either an «]-side, an «0-side,
or a 0l-side, it contains either an «-vertex or a 0-vertex (possibly both). The mid-
point of A divides A into two subarcs; denote one which contains eif by A'. We
shall show, below, that it is possible to join the «- or O-vertex of s to an «- or a
O-vertex P,; of the modular figure on A' by means of a finite number of consecutive
©(0-sides of the modular figure, all of which lie in the domain G spanned by s. The
union of these sides is an arc B, in G along which f(z) is continuous and real, so
that v(z) = 0 on 8,. Moreover, the «- and 0-vertices of the consecutive «0-sides
can be joined by arcs in triangles having these sides and lying in G, such that f(z)
is a pure imaginary at every point of these arcs. Their union ¢, then, is an arc in
G terminating at the terminus, P,, of 8,; on @,, u(z) = 0 and f(z) is continuous. It
will be evident from the construction of 8, that eif lies on a proper subarc of A that
is spanned by a side of a triangle of the modular figure, where one vertex of that side
is P,. The construction process can then be repeated, and this leads successively to
arcs B,, a,, 5, @, --- such that, setting

o 0
a = U Qn, B = U Bn,
n=1 n=1

we have arcs o a_md 8 in DUK terminating at eif such that f(z). is continuous on
@ U B except at eif u(z)=0 on a, and v(z) =0 on B. As is well known, f(z) does
not have an angular limit at eif,

Suppose first that s is an «1-side. Reflect T in s, getting a triangle T' with
its O-vertex at an interior point of A. If A' has the «-vertex of T as one of its end
points, reflect T' in its «0-side, the resulting triangle in its «1-side, the ensuing
triangle in its «0-side, and so on, until a triangle is obtained whose «0-side has its
O-vertex on A' and whose 01-side spans an arc containing eif; the «0-side of this
triangle is taken to be B,. If, however, A' has the 1-vertex of T as one of its end
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points, reflect T' in its 0l-side, the resulting triangle in its «1-side, the ensuing
triangle in its 0l-side, and so forth, until a triangle is obtained whose «0-side has
a vertex on A' and spans an arc containing eif; the union of this last «0-side, the
©(0-side of T', and the «0-sides of all the other triangles that were obtained by re-
flections, is taken to be 3,.

Suppose next that s is a 0l-side. Interchange “«” and “0” in the preceding
paragraph.

Suppose finally that s is an «0-side. If A' has the «-vertex of T as one of its
end points, then an argument like that in the first half of the penultimate paragraph
yields a triangle whose «0-side has its 0-vertex on A' and whose «-vertex is the
o-vertex of T; this «0-side or, if necessary, its union with the «0-side of T, is
taken to be B,. If, however, A' has the 0O-vertex of T as one of its endpoints, then
an argument like that in the first half of the last paragraph affords a triangle whose
©0-side has its «-vertex on A' and whose 0-vertex is the 0O-vertex of T; this «0-
side, or, if need be, its union with the «0-side of T, is taken to be g,.

4. We now introduce the notion of a quadrantal set, which will enable us to state
the next theorem more concisely. Let a and b be finite real numbers. The
straight lines Rz = a, 3z =Db divide the plane into four quadrants, which we con-
sider as open sets, and to which we refer as the quadranis at a + bi; they are num-
bered in the usual manner. We say that a set S is quadvrantal at a + bi if S con-
tains a point belonging to some quadrant at a + bi and, whenever S contains a point
of some quadrant at a + bi, S contains every point of that quadrant.

If ¢ and B8 are arcs lying in DUK and terminating at the point eif € K, there
is no loss of generality, for our purposes, in assuming that &« and 8 have a common
initial point in D. We define the set G(a, B) to consist of all points of @ and B ex-
cept elf, as well as the points of every subregion of D whose frontier is a subset of
aU B,

THEOREM 3. Let f(z) be a normal mevomorphic function in D, and let @ and B
be arcs lying in DU K, terminating at the point €0 € K, and such that £(z) is con-
tinuous at all points of (@ U B) NK except possibly at eif, If u(z) — a and v(z) — b
as z — €9 glong o and B, respectively, and if CG(a ”3)(f, eil) is not quadrantal at
a + bi, then £(z) has the angulayr limit a + bi or «» at elf,

Proof. Suppose first that at least one of the values a, b, say a, is infinite, so
that a + bi = ©. Then f(z) — ©» as z — eif along o, which implies [5, p. 53, Theo-
rem 2] that f(z) has the angular limit « at eif, and we thus obtain the conclusion of
our theorem without the aid of any assumption concerning CG(x ,3)(f, eif),

Suppose, however, that both a and b are finite real numbers. We modify the
proof [3, pp. 166-167] of the Gehring-Lohwater theorem. Since, by hypothesis, f(z)
is continuous at all points of (¢ U B) N K except possibly at eif, we can replace «
and B, if (@UB)NK - {elf} is not empty, by arcs a' and B' lying in D and termi-
nating at eif such that u(z) — a and v(z) » b as z — eif along a' and B', respec-
tively, and such that

Ca(a,p)t %) = Ca(ar g1, €if);
we may therefore assume, without loss of generality, that (¢ U ) - {eig} C D. Next
we construct a Jordan curve y such that eif ey, v - {eif} c D, G(o, B) lies in the
interior, J, of v,

(1) CJ(fa 816) = CG(a’ ﬁ)(f) eie) ’
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and

(2) Cy (L, eif) c Ca(f, eif) uCpalf, eif).

Let z = z({) map the open unit disk in the {-plane conformally onto J, let eiel,

@,, B, denote the preimages of eif, a, g, respectively, and let w = £,(¢) = £(z(¢)). It
follows from (2) that

Calfy, €% € Ca s, ei®) uCy(, eif),

and hence in the w-plane the set Cg(f;, elal) is a subset of the union X of the lines
fw=a, 3w =D, and the point «. We wish to derive the equality

3) Cty, % = cp(y, %)

from the familiar inclusions

(4) gy, 9 c ey, ¥ c ey, &%),
and to this end it suffices to show that

(5) 1, e c Fe, 9.

Now a consequence of (1) is that C(fj, elel) is not quadrantal at a + bi. This means

that either C(fj, eigl) contains no point of any quadrant at a + bi, or C(fj, eiol) con-
tains a point, but not every point, of some quadrant Q at a + bi. In the first case it

is clear that C(f;, eiel) can have no interior point, and hence (5) holds. In the second
case, suppose that C(fj, eiel) contains the point w, € Q but not the point w, € Q.

Then FC(f;, elg") contains a point w, on the segment bounded by w, and w,, and
evidently w, does not belong to X. This, however, contradicts (4) and the fact noted
above that

(6) CB(fl, eigl) _C_ X.

The second case therefore cannot occur, and thus the validity of (3) is established.

It follows from (3) and (6) that C(f;, eiel) is nowhere dense in the w-plane, and
Gross’s theorem (see [3, p. 166 ]) implies that

CA(fl’ eiel) E. Ca1(f1’ eiel) n c31(f1’ eiel) E { a+ bi’ Oo} °

Thus f,(¢) tends to a + bi or to » as ¢ — ele1 in some Stolz angle at elgl, and
hence f(z) tends to a + bi or to « as z — eif along some arc in D terminating at
e'0, and the conclusion that f(z) has either the angular limit a + bi or the angular

limit « at eif now follows from [5, p. 53, Theorem 2].
5. In this section we illustrate Theorem 3 by means of a few examples whose
details can be readily supplied by the reader.

(a) A closer study of the figure of the system of triangles associated with the
function considered in the proof of Theorem 1 shows that there exists a normal
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meromorphic function in D with the property that if S is either the closure of one
quadrant at the point 0, or the closure of two adjacent quadrants, or the closure of
two alternate quadrants, or the closure of three quadrants, or the whole complex
plane, then there exist a point elf € K and suitable arcs a, 8 in D terminating at
eif such that

Co (a,B)(f’ elf) = S, u(z) =0 on «, vi{z) =0 on.B,

and yet f(z) has no angular limit at eif, This indicates that the notion of quadrantal
set as we have defined it is germane to the situation treated in Theorem 3.

(b) The need for including « in the conclusion of Theorem 3 is shown by the
function w = f(z) that maps D conformally onto the first quadrant of the w-plane in
such a manner that z = 1 goes into w=« and z = -1 goes into w = 0: take o to be
the upper half and 8 to be the lower half of K, eif to be the point 1, and a=b = 0,

(c) We adduce a function f(z), cited by Carathéodory [2, p. 271], to show that if
CG(a,ﬁ)(f: eif) is quadrantal at a + bi then f(z) can have an angular limit at eif
different from a + bi, even if f(z) is holomorphic in D and omits there an entire
half-plane of values. The function alluded to is

exp 7 +1
w=1f(z)=1 T2 .
exXpI— -1

It is holomorphic in D, and omits there all values belonging to the lower half-plane,
so that it is normal in D. At the point 1 € K it has the angular limit i. Along the
radius ¢ of K terminating at the point 1, u(z) = 0, whereas along the lower half 8
of K, v(z) = 0, and f(z) is continuous at every point of 8 - {1}. In this case,
CG(a,p)(, 1) is the closure of the upper half-plane.
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