MEROMORPHIC FUNCTIONS WITH SMALL CHARACTERISTIC
AND NO ASYMPTOTIC VALUES

G. R. Mac Lane

1. INTRODUCTION

By the well-known theorem of Fatou, if f(z) is holomorphic and bounded in
|z| < 1 then f(z) possesses radial limits almost everywhere, that is, lim,.14 f(reid)
exists for almost all 8. This result was extended by Nevanlinna to meromorphic
functions of bounded characteristic T(r), for as Nevanlinna showed, the functions
meromorphic in |z| < 1 with bounded T(r) are exactly those which may be obtained
as quotients of bounded holomorphic functions {4, p. 189]. A natural question raised
by Lohwater and Piranian [2, p. 16], is this: if the condition of boundedness of T(r)
be relaxed to “T(r) doesn’t grow faster than so-and-so,” can one still conclude that
some radial limits must exist? Bagemihl, Erdos and Seidel [1, Theorem 7]} have
given an example of a kolomorphic function without radial limit for which
T(r) = O((1 - r)~8). Lohwater and Piranian [2] gave an example of a meromorphic
funct%on without radial limit for which T(r) = O(-log (1 - r)). See also Noshiro [5,
p. 90].

The object of the present paper is to prove (Theorem 5) that there exists a func-
tion F(z), mervomorphic in |z| < 1, whose characteristic is dominated by an arbi-
trarily given increasing unbounded function, such that F(z) has no asymptotic value,
finite or infinite, and hence no radial limit. As will be obvious, the method used to
prove this result will nof apply to kolomoyphic functions; a holomorphic function
must possess at least one asymptotic value, though not necessarily a radial limit [4,
p. 292].

It is of interest to note one result for holomorphic functions which follows easily
from theorems of Zygmund [6, pp. 90-91]. A slight reformulation of these results of
Zygmund may be stated as

THEOREM 1. Let

whevre

l/nk _

o0
(1) D /0 > q> 1, lim sup [cyf 1, lime=0, 27 |g|%=c.
k=1
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Let E denote the subset of |z| = 1 on which F(z) possesses finite vadial limits,
Then E is of measure zero.

As a simple consequence of this result we obtain

THEOREM 2. Let u(r)>0o0n [0,1) andlet u(r) 1 « as r 1 1. Then there
exists a function ¥(z), holomorphic in |z| < 1, whose maximum modulus M(r)
satisfies

(2) M(r) < p(r),
and such that the subset E of |z| = 1 on which F(z) possesses finite radial limits
is of measure zevo.

Proof. Choose any sequence {ck} which satisfies the three conditions on cj
stated in (1); for example, let ¢ = k-1/2. Then choose the mc by induction to satisfy
the first restriction in (1), with q = 2, and so that (2) will be an obvious consequence.
Choose the positive integer n, so that

n,; 1
leilr ! <zu@)  (O<r<y),

which is clearly possible from the conditions on p(r). Choose n, so that n, > 2n,
and

leolr™2 <gu@)  ©O<r<);

and so on.

We conclude the introduction by stating for future reference several well-known
facts on characteristic functions. Let f(z) be meromorphic in |z| < R < w, with
characteristic

T(r) = T(I‘, f) = N(I‘, °°) + m(r; °°) = N(r9 f, °°) + m(r, f, °°) )

where N and m have their usual significance. According to the result of Cartan [4,
p. 178],

(3) T(r) = —21?5217 N(r, eia) do + lgg [f(O)I (£(0) # ).
Cc

Also, we note the following lemma.

LEMMA 1. Let f(z) be holomorphic in |z| < R < «, and let ¢(w) be mero-
movphic in |w| < o, with both £ and ¢ non-constant. Set F(z) = $(£(2)), which is
mevomorphic in |zf< R, and non-consitant. Let a be any complex number and let

the a-points of ¢(w) be &1, €2, ++-, {k, **+, vepeated according to multiplicity, as
usual, 3 “°n

(4) N(r! F’ a) = Z: N(r’ f, Ck) .
k=1
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This lemma is obvious, for clearly the functions n(r, F, a) and n(r, f, i) sat-
isfy a similar relation. For any given r < R, the apparent infinite series in (4) is a
finite sum, since ]Ckl — o0,

It is convenient to note that Jensen’s formula may be put in the form: let £(z) be
holomorphic in |z| < R, £(0) # 0; then

2T
(5) N(r, £, 0) = T?.:-l;r So log |f(reif)| dg - log |£(0)] (0<r <R).

Finally, we recall that if ¢(z) is a rational function, then T(r, ¢) ~c log r as
r — o, whereas if ¢(z) is meromorphic in |z| < « and non-rational, then [Nevan-
linna 4, p. 218]

i L, 8) _
(6) lim _@—I‘— =

Ir—r o0

2. A WILD MEROMORPHIC FUNCTION
Let
(7 1<, << Te

be a given sequence of numbers. Let {an}°i’ be a sequence of distinct finite points
in the w-plane such that

(8) alqeO; Sani i"san_,_l (DZ 1),
and
(9) {ay}T is dense in |w| < .

Then for any N, {a_} is dense in |w| < . Now, let w = ¢,(z) map |z| < R, onto
the Riemann sphere slit along (the stereographic image of) the rectilinear segment
[a,, a, + h;], where h, > 0 is such that 0 £ [a,, a, + h,], with ¢,(0) = 0, ¢,'(0) = 1/4.
As h, |0, R, — «, and we choose h, so that

(10) R, > 47, h,<1.

Now look at the two-sheeted covering &, of the w-sphere consisting of the sheets
S, and S,, where S, is the sphere slit along [ a,, a, + h,] and S, is the sphere slit
along both [a,, a, + h,;] and [a,, a, + h,]; S, and S, are joined in the usual fashion
along [a,, a, + h:]. We note that [a,;, a, + h,] and [a,, a, + h,] are disjoint, by (8).
Let w = ¢,(z) map |z| <R, onto &, with ¢,(0) =0 € S,, ¢,'(0) = 1/4. As h, |0,

R, — . To see this, start with h, = 0 and with the map, similarly normalized, of
the corresponding &, onto |§ I < «j; the &, in which we are interested is the image
of |§ | <« less a slit y along an arc ending at «. By continuity, for a given M > 0,
v C {ICI > M} for O < hz <b6ypp. This domain Dg, corresponding to ¥,, is mapped
onto |z| <R, by z = g(¢) with g(0) =0 and g'(0) = 1. On application of the Koebe
1/4-theorem [4, pp. 87-91] to the function M~!g(Mw), which maps ]w] < 1 into

|z] < R,/M, it follows that R, > M/4 for 0 < h, < 6,;. Thus we may choose h, so
that
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(11) R, > 4X,, 0<h2<%.

And so on by induction. &, is the n-sheeted covering of the w-sphere consisting of
the sheets S, Sp, +-+, S;;. S, is as above; S, (1 < p < n) is the smooth w-sphere slit
along the segments

[ap_l, ap_1+hy_1] and [ap, ap + hpl.

Sp and Sp.1 are joined along the slit [ap_1, ap-1 + hp_1]. The slit [an, an + hy] in
Sn is left open. Let w = ¢,(z) map |z| < R, onto &, with ¢,(0) = 0 € S,

¢,1(0) = 1/4. By the type of argument used previously, R, — « as hy | 0, and there-
fore we may choose h,, so that

(12) R, >4, 0<h,<i (@>1).

Now let & =1im &, denote the simply connected surface consisting of all the
sheets S, +-+, Sp, +--; then ¥, C &¥. Let w = ¢(z) map ]zl <R < onto ¥ with
#(0) = 0 € S, and ¢'(0) = 1/4. The sheets S, correspond to regions D, in |z| <R
that are bounded by elements of an expanding sequence of analytic Jordan curves C,;
Cn is the image of the doubled segment [a,, an + h,] where S, and Snh+1 are joined.
D, is the interior of C,;; D, (n > 1) is the doubly-connected region between Cp_1
and C,. Let A, denote the interior of C,. Then g,(z)= ¢~1(¢n(z)) is a schlicht
map of |z| < Ry, onto Ap, with gn(0) = 0, gn(0) = 1. Thus A, contains the disc
|z| < R,/4. Then, by (12),

(13) Cnc {lz| >}

By (7), A, — =, and hence ¢ is parabolic and w = ¢(z) maps ‘z! < « onto &.

Clearly ¢(z) takes each value‘, including «, just once in each Dp, with the usual
interpretation for values assumed on some Cyp. Since we shall be interested in points
where ¢(z) assumes the value e® (o real), we restrict a, and h, by

(14) al>1’ |a'nl¢1’ [ansan“’hn]n{lWl:l}:ﬂ:

which is compatible with (8), (9), and (12). Then all the el®_points of ¢ are simple;
none occur on any Cp. The condition a, > 1 implies that S, contains the schlicht
disc |w| < 1. By the normalization ¢'(0) = 1/4, ¢~ maps |w| < 1 onto a domain
including |z| < 1. Hence by (13), |¢(z)| < 1 in |z| < 1. Thus if ¢,(@) (n> 1) de-
notes the single simple ei®-point of ¢(z) in D,, then |§n(a)| > An_1, where we
define A, = 1.

Now if K is any unbounded curve:

z=y({t) (0<t<w,y continuous, lim sup |y(t)|=«),

t—o0

then the image ¢(K) is dense on the sphere. This is clear from (9), (12), and the
fact that any such K intersects all but a finite number of the curves C;,. Collecting
these results, we have

THEOREM 3. Let 1=2g< A1 <2A2< - < Apl w be a given sequence. There
exists a function ¢(z), mevomovrphic in |z| < oo, with $(0) = 0 and with the properties
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(15) the image ®(K) of any unbounded cuvve is dense on the sphere, and

(16) if tn=Ctn(@) (n> 1) are the ¥ _points of ¢(z) (a real), theneach
¢n is a simple ei®-point, and |C, ()| > 2y, 0> 1).

A consequence of (15) is that ¢ possesses no asymptotic values.

Before going on, we note the following corollary of Theorem 3, which is the
analog of Theorem 5 (our principal objective) for functions in |z| < o, The result
is as strong as possible, in view of (6).

COROLLARY. Let u(r) be given for r > 0 and let it satisfy 0 < u(r) { «. Then
there exists ¢(z), mevomovphic in |z| < o, and satisfying (15) and also

oY) T(r, ¢) = O(u(r) log r).

Proof. By (16): n(r, ¢, ei®) <v, for 0 <r <Ap and v =0, 1, *-*; in particular,
n=0 for r <2, =1. Therefore N(r, ¢, &%) =0 for r <1, and

r
N(r,¢, eia)SSI V—?t=V10gr _(1_<_I‘S}\V, VZ 1).

Then by (3), since ¢(0) =0, T(r, ¢) =0 for 0 <r <1 and
T(r,¢) <vlogr 1<r<a, v>1).

Finally, if the initial sequence {A,} was chosen so that p(x,_;) >v (v>1) which
is obviously possible, then for Ay, ) <r <X, and-v > 1,

T(r, ) <vlogr < u(rp.1)logr < p(r)logr.

3. AN UNSAVORY HOLOMORPHIC FUNCTION

THEOREM 4 (Bagemihl, Erdds, and Seidel). Let u(r) be given for 0 <r <1,
and let it satisfy 0 < p(r) 1 as r] 1. Then theve exists a function {(z), halo-
movphic in |z| < 1, whose maximum modulus M(r) satisfies

(18) M(r) < p(r) (0O<r<1),

and such that on each curve T in |z| < 1 tending to |z| = 1, £(z) assumes arbi-
trarily large values.

We remark that the curve T' in this theorem need not tend to a point on |z| = 1;
it is actually sufficient that it have points in every neighborhood of the unit circle.
The theorem is due to Bagemihl, Erdés, and Seidel [1, Theorems 3 and 5], who con-
struct f as an ingenious infinite product. The first example of one such function
seems to be that of Lusin and Priwaloff [3, pp. 147-150], who use a gap Taylor
series; the formulation used by Lusin and Priwaloff is not best adapted to an arbi-
trary pu, but it is interesting to note that the basic idea in their construction may be
used to prove Theorem 4 as follows:

Set a,=1 and a, =n! - (n-1)! (n>1). Then
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n-1

(19) a,=m-1) Za, @m>1).
k=1

There exists a sequence { Bn} of positive integers such that

(20) aann <2%u(r) (O<Lr<1, n>1).
If {A,} is any sequence of integers such that
(21) A 2B
the function
< by
(22) f(z) = 22 a,z' ™
n=1

is holomorphic in Iz1 < 1 and satisfies (18). Now, by induction, we choose the A,
and a sequence {rp} (0 <rpl 1) so as to satisfy (21) and

A 1
(23) a1 < Pr n>1),
and
' A, 1
(24) r , <r <1, rnn2§ (n>1).

To get started, set A, = 8, and choose r, so that (24) is valid for n=1 (r, is zero
and (23) is vacuous for n = 1). Now, when An and rn have been chosen so that (21),
(23), and (24) are satisfied for 1 < n < m, choose Ap,;) large enough so that (21) and
(23) are satisfied for n = m + 1; then choose r,4+] so that (24) is satisfied for
n=m+ 1.

It follows from (20) and (21) that f(z) satisfies (18). The remaining part of the
theorem follows if we show that

(25) lim (min |f(z)|) _—

n-—m0oo Z =rn

But, for lz[ = Iy,

n-1 o
|f(z)|= anzhn«:- 22 akzhk+ 22 ax z)’k
k=1 =n+1
n-1 0
_>_anrr}:n- 2 a; - 22 akrﬁk.
k=1 k=n+1

Then, by (19), (23), and (24), for n > 1:
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o0
1 1 Ay
|£z)| >3 an-——5an- 2 kiryk
=2 "% n-1""
n-3 s -k _n-3 -n
Z—z(n—_l)an—zz = 3 (n—l)!-2 .

n+l

Thus (25) follows and Theorem 4 is proved.

Theorem 4 can also be proved in a more geometrical fashion by starting with the
Riemann surface onto which f(z) maps |z| < 1. This will be the subject of a forth-
coming paper. The advantage of the geometric approach is that it makes f(z) seem
less outlandish; the disadvantage is that the proof is considerably longer than that
given here.

4. A REPULSIVE MEROMORPHIC FUNCTION

©

THEOREM 5. Let p(r) be a given function in [0, 1) satisfying 0 < p(r) 1 «.
Then there exists a function F(z), mevomovrphic in |z| < 1, with the properties

(26) T, F)<pr) ((0<r<1)
and

@7) if T is any curve in |z| < 1 such that sup,er |z| = 1, then its image
F(I') is dense on the sphere (in particular, ¥(z) has no asymptotic values).

Proof. Let f(z) and ¢(z) be the functions of Theorems 4 and 3, respectively.
We choose the sequence {A,} in Theorem 3 to be A, =n+ 1. Set

(28) F(z) = ¢(£(z)) .

Then if T" satisfies the conditions in (27), it follows from Theorem 4 that f(I") is an
unbounded curve in the plane; hence (27) follows immediately from (15).

To prove (26), we show that if p(r) in Theorem 4 is appropriately chosen, then
(26) follows. Now, by (4),

o0
(29) N(I‘, F’ eia) = E N(I‘, f9 Cn(a)) ’
n=1
and the problem comes down to making N(r, f, (o)) small. Since ¢(0) =0, £ %0

(we suppress the subscript n, temporarily); also, by (22) £(0) = 0, hence
f(0) - € = -¢ # 0. Applying (5) to £(z) - ¢, we obtain

1 2T
N(r, f, £) = N(r, £ - £, 0) =§;ISO log | f(reif) - ¢| a6 - log |¢]|.

Now clearly N(r, f, {) = 0 if M(r) < |§|; whereas for M(r) > |C| ,
| £(reif) - ¢| < 2M(r) and
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N(r, £, £) < log (2M(r)) - log |¢] .
By (16), with our specification Ap=n+ 1, log |&,(a)| > 0, so that
N(r, £, tn(@)) = 0 if M) < [&a(@)],
N(r, f, ty(a)) < log [2M(r)]  if M(r) > |¢,(a)] .
By (16) and (18),
N(r, £, {5(@)) =0 (n(r) < n) > 1.
N(r, f, {n(@)) <log (2u(r))  (u(r) > n)
Then, by (29),
N(r, F, )< 2 log (2u(r),
1<n<p (r) ?
and hence
N(r, F, ei®) = 0 (k(r) <1),
N(r, F, €l®) < p(r) log2(u(r)) < p2(r)  (u(r)>1).
or, more simply,
N(r, F, é®) < p2(r) (0<r<1).
It follows from (3), since F(0) = 0, that
T(r, F) < p?(r) (0<r<1).

Therefore, if we choose pu(r) = Vp(r), which is permissible, then (26) follows and
Theorem 5 is proved.
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