ON SOME METRIC PROPERTIES OF POLYNOMIALS WITH REAL ZEROS, II

Ch. Pommerenke

1. Let

(1)
$$f(z) = \prod_{\nu=1}^{n} (z - x_{\nu}) \quad (x_{\nu} \text{ real}),$$

and let $E: |f(z)| \le 1$. A closed disk that has a segment [a, b] ($a \le b$) of the real axis X as diameter will be called the *orthogonal circle over* [a, b]. By $\mathfrak E$ we shall denote the class of all closed bounded sets F such that for every $z \in F$ there exists an orthogonal circle K with $z \in K$ and $K \subset F$. Every $E: |f(z)| \le 1$ belongs to $\mathfrak E$ and has cap E = 1. Later on (see Remark 2 after Theorem 2) we shall show that there are sets $F \in \mathfrak E$ with cap F = 1 that cannot be approximated by lemniscate domains $|f(z)| \le 1$, where f(z) has only real zeros.

THEOREM 1. Let $F \in \mathfrak{C}$. If Λ and d are the sums of the perimeters and diameters of the components of F, then

$$\Lambda < \pi d < 4\pi \, cap \ F$$
 .

Remark. If we take F_m as the union of the orthogonal circles

$$|z - (2k - 1)/m| < 1/m \quad (k = 1, \dots, 2m),$$

we have $d_m = 4$, $\Lambda_m = 4\pi$. Because F_m is contained in the rectangle

$$\left\{\,0 \leq \, \Re\, z \leq 4, \,\, \left|\,\, \Im\, z\, \right| \leq 1/m
ight\}$$
 ,

it follows that cap $F_m \rightarrow 1$. The example shows that the inequalities

$$\Lambda < 4d < 4\pi \, \mathrm{cap} \, \, \mathrm{F}$$

and $\Lambda \leq 4\pi\,\mathrm{cap}\ F$ are best possible (except that perhaps $\Lambda < 4\pi\,\mathrm{cap}\ F$).

COROLLARY. If the polynomial f(z) has the form (1) and if Λ is the length of the lemniscate |f(z)| = 1, then $\Lambda \leq 4\pi$.

LEMMA. Let K_1 and K_2 be orthogonal circles over $[a_j,b_j]$ (j=1,2), and let $a_1 < a_2 < b_1 < b_2$. Let L_j denote the arc of the periphery of K_j which lies between the points of intersection with the periphery of K_{3-j} and contains the point a_j . If l_j is the length of L_j (j=1,2) and l_0 is the perimeter of the orthogonal circle over $[a_1,a_2]$, then $l_1 \leq l_0 + l_2$.

Proof. Let K_0^* be the orthogonal circle over $[a_2, b_1]$, of perimeter l_0^* , let L_1^* denote the complement of L_1 relative to the periphery of K_1 , and let l_1^* denote the length of L_1^* . The convex curve $L_2 \cup L_1^*$ contains the (convex) circle K_0^* in its closed interior. Hence, by a classical theorem, $l_0^* \leq l_2 + l_1^*$. Since

Received July 13, 1960.

$$l_1 + l_1^* = \pi(b_1 - a_1) = \pi(a_2 - a_1) + \pi(b_1 - a_2) = l_0 + l_0^*$$

we obtain

$$l_1 = l_0 + l_0^* - l_1^* < l_0 + (l_2 + l_1^*) - l_1^* = l_0 + l_2$$
.

Proof of Theorem 1. (1.1) Suppose $F = \bigcup_{\mu=1}^m K_\mu$, where K_μ denotes the orthogonal circles over $[a_\mu, b_\mu]$. We may assume that $a_1 < \cdots < a_m$ and that no K_μ is contained in the union of the rest (otherwise, we can delete this K_μ). We have d = meas ($F \cap X$), where X denotes the real axis. We shall prove that $\Lambda \leq \pi d$, by induction. For m = 1, we have $\Lambda = \pi d$. For m > 1, there are two cases:

(i) $b_1 \leq a_2$: Here K_1 is contained in $\Re z \leq a_2$, and $F_1 = \bigcup_{\mu=2}^m K_\mu$ in $\Re z \geq a_2$. Therefore $\Lambda = \pi(b_1 - a_1) + \Lambda_1$, where Λ_1 is the perimeter of F_1 , and by the induction hypothesis, $\Lambda_1 < \pi d_1$ (d_1 = diameter-sum for F_1), hence

$$\Lambda \leq \pi(b_1 - a_1) + \pi d_1 = \pi d$$
.

(ii) $a_2 < b_1$: We apply the lemma to K_1 and K_2 . If Λ_1 denotes the length of the part of the boundary of F that belongs to F_1 , then $\Lambda = l_1 + \Lambda_1$. The part of the boundary of F_1 that is contained in K_1 belongs entirely to K_2 (otherwise, $K_2 \subset K_1 \cup K_{\mu'}$ for some μ '). If l_2 is its length, and if l_0 is again the perimeter of the orthogonal circle K_0 over $[a_1, a_2]$, it follows from the lemma that

$$\Lambda$$
 = l_1 + $\Lambda_1 \leq l_0$ + l_2 + Λ_1 ,

and the last quantity is equal to the perimeter Λ^* of $F^*=K_0\cup F_1$. The diametersum d* is equal to d. We have case (i) for F^* , and therefore $\Lambda \leq \Lambda^* \leq \pi d$.

(1.2) Let F be an arbitrary connected set in \mathfrak{C} . The part of the boundary of F that lies in $\Im z>0$ is a simple curve of the form

$$C = \{ z = x + iy(x) : x_0 \le x \le x_0 + d \},$$

where y(x) is a single-valued real function. The length of C is $\Lambda/2$. We choose points $z_{\mu} \in C$ ($\mu = 1, \dots, m$) with $x_1 < \dots < x_m$ such that

(2)
$$\sum_{\mu=1}^{m} |z_{\mu} - z_{\mu-1}| > \Lambda/2 - \varepsilon \quad (\text{or } > 1/\varepsilon \text{ if } \Lambda = \infty).$$

For each μ , let K_{μ} be an orthogonal circle through z_{μ} with $\mathrm{K}_{\mu} \subset \mathrm{F}$. The set

$$\widetilde{\mathbf{F}} = (\mathtt{X} \cap \mathtt{F}) \cup \ \bigcup_{\mu} \mathtt{F}_{\mu}$$

is connected and has again the diameter d. Let \widetilde{C} be the part of the boundary of \widetilde{F} contained in $\Im z \geq 0$. If the segments of X contained in \widetilde{C} have the total length d', the length of \widetilde{C} is

$$\tilde{\Lambda}/2 = d' + \Lambda''/2,$$

where $\tilde{\Lambda}$ and Λ " are the perimeters of $\tilde{\mathbf{F}}$ and \mathbf{U} \mathbf{K}_{μ} . Applying part (1.1), we obtain

(3)
$$\widetilde{\Lambda} \leq 2d' + \pi d'' \leq \pi (d' + d'') = \pi d.$$

Because

$$\widetilde{C} = \left\{ z = x + i\widetilde{y}(x) : x_0 \le x \le x_0 + d \right\}$$
 ,

with single-valued $\tilde{\mathbf{y}}(\mathbf{x})$, and $\mathbf{z}_{\mu} \in \tilde{\mathbf{C}}$, $\mathbf{x}_1 < \cdots < \mathbf{x}_m$, we have

$$\tilde{\Lambda}/2 \geq \sum |z_{\mu} - z_{\mu-1}|,$$

and therefore, by (2) and (3),

$$\Lambda < \pi d + 2\varepsilon$$
 (or $\Lambda < 2/\varepsilon < \pi d$ if $\Lambda = \infty$)

for every $\epsilon > 0$, hence $\Lambda < \infty$, $\Lambda < \pi d$.

- (1.3) If $F \in \mathbb{C}$ is not connected, we obtain $\Lambda \leq \pi d$ by adding the corresponding inequalities for the components of F. Finally we have $d \leq 4$ cap F (this inequality was first proved by Pólya; see also [3]), and hence $\Lambda \leq \pi d \leq 4\pi$ cap F.
- 2. Again, let E: $|f(z)| \le 1$, where f(z) is a polynomial of the form (1). Let ρ be the radius of the largest (orthogonal) circle contained in E, and b the width of E. Since there exists an orthogonal circle $K \subset E$ through each $z \in E$, we have (with z = x + iy)

(4)
$$b = 2\rho = 2 \max_{z \in E} |y|.$$

It is easy to see [3] that $b \le 2$ (and that this also holds for all sets F in $\mathfrak C$ whose capacity is ≤ 1), with equality for the set E: $|z| \le 1$. Using a parameter, I shall give a sharper upper bound for b, for the case where E is symmetric with respect to the point 0.

THEOREM 2. Let the distribution of the zeros x_{ν} of f(z) be symmetrical with respect to 0, and let $a = |f(0)|^{1/n}$. Then

$$b \leq \begin{cases} 1/a & \text{if } \frac{1}{2}\sqrt{2} \leq a \leq \infty \,, \\ \\ 2(1 \, - \, a^2)^{1/2} & \text{if } 0 \leq a \leq \frac{1}{2}\sqrt{2} \text{ and } \left| \, x_{\, \nu} \right| \leq \frac{1}{2}\sqrt{2} \,\,, \end{cases}$$

with equality for $f_0(z) = z^2 - a^2$.

Remarks. 1. The first inequality $b \le 1/a$ remains true for all a > 0, but it is not longer the best bound (at least for $a \le \frac{1}{2}$). For $0 \le a \le \frac{1}{2}\sqrt{2}$, the inequality $b \le 2(1-a^2)^{1/2}$ probably holds even without the restriction $|x_{\nu}| \le \frac{1}{2}\sqrt{2}$.

2. The function

$$z = \left(\frac{i}{2} \log \frac{iw + 1}{iw - 1}\right)^{-1} = w + \cdots$$

maps |w| > 1 conformally onto the complementary region of the union F_0^* of the orthogonal circles $|z \pm 2/\pi| \le 2/\pi$. Consequently cap $F_0^* = 1$. Since $0.6 < 2/\pi$, there exists a $c > 2/\pi$ such that the union F_0 of the orthogonal circles $|z \pm c| \le 0.6$ has again capacity 1. Suppose that F_0 could be approximated arbitrarily closely by

lemniscate domains $|f(z)| \le 1$ determined by polynomials with real zeros. Then there would exist a polynomial $f(z) = z^n + \cdots$ such that

$$|f(\pm c + 0.55i)| < 1, |f(0)| > 1,$$

because $0 \notin F_0$. The polynomial

$$g(z) = (-1)^n f(z) f(-z) = z^{2n} + \cdots$$

would have real zeros symmetrical to 0, and it would satisfy the conditions

$$|g(c + 0.55i)| < 1$$
, $|g(0)| > 1$.

Therefore the width of the set $|g(z)| \le 1$ would be greater than 1.10, whereas the width is at most 1, by Theorem 2.

Proof. We may assume, by [3, Theorem 2], that $f(0) \neq 0$, that is, $x_{\nu} \neq 0$. Since the zeros are symmetrically distributed with respect to 0, we can group them in pairs x_{ν} , $-x_{\nu}$ ($\nu = 1, \dots, m$), where m = n/2. Then

(5)
$$|\mathbf{f}(\mathbf{z})|^2 = \prod_{\nu=1}^{m} |\mathbf{z}^2 - \mathbf{x}_{\nu}^2|^2 = \prod_{\nu=1}^{m} (\mathbf{x}^4 + 2\mathbf{x}^2\mathbf{y}^2 + \mathbf{y}^4 - 2\mathbf{x}_{\nu}^2\mathbf{x}^2 + 2\mathbf{x}_{\nu}^2\mathbf{y}^2 + \mathbf{x}_{\nu}^4)$$
.

Therefore

$$|f(z)|^2 = \prod_{\nu=1}^m \left[(x^2 + y^2 - x_{\nu}^2)^2 + 4x_{\nu}^2 y^2 \right] \ge \prod_{\nu=1}^m 4x_{\nu}^2 y^2 = 4^m \left(\prod_{\nu=1}^m x_{\nu}^2 \right) y^{2m}.$$

If $z \in E$, then $1 \geq 2^n |f(0)| \cdot |y|^n$ and

$$|y| \le \frac{1}{2} |f(0)|^{-1/n} = 1/(2a)$$
,

and because of (4) we have proved the first inequality of Theorem 2.

Let
$$|x_{\nu}| \leq \frac{1}{2}\sqrt{2}$$
. Then $a = \left(\prod_{1}^{m} x_{\nu}^{2}\right)^{1/n} \leq \frac{1}{2}\sqrt{2}$.

From (5) we obtain

$$|f(z)|^2 = \prod_{\nu=1}^{m} [(y^2 + x_{\nu}^2)^2 + x^4 + 2x^2(y^2 - x_{\nu}^2)].$$

Suppose there exists a $z \in E$ with $y^2 > 1 - a^2$. Then

$$y^2 - x_{\nu}^2 > 1 - a^2 - x_{\nu}^2 \ge 0$$
,

because $a^2 \le \frac{1}{2}$ and $x_{\nu}^2 \le \frac{1}{2}$, and

$$1 \ge |f(z)|^{1/m} \ge \prod_{\nu=1}^{m} (y^2 + x_{\nu}^2)^{1/m}.$$

We apply the inequality [2, p. 55]

$$\prod_{\nu=1}^{m} (a_{\nu} + b_{\nu})^{1/m} \ge \prod_{\nu=1}^{m} a_{\nu}^{1/m} + \prod_{\nu=1}^{m} b_{\nu}^{1/m}$$

(for $a_{\nu} \geq 0$, $b_{\nu} \geq 0$) and obtain (with n = 2m)

$$1 \ge y^2 + \left(\prod_{\nu=1}^m x_{\nu}^2\right)^{2/n} = y^2 + a^2,$$

and therefore $y^2 < 1 - a^2$, contrary to our hypothesis.

Finally, let $f_0(z) = z^2 - r^2$ $(r \ge 0)$ and E_0 : $|z^2 - r^2| \le 1$. Computation shows that

(6)
$$b_0 = 2 \max_{\mathbf{z} \in \mathbf{E}_0} |\mathbf{y}| = \begin{cases} 2(1 - \mathbf{r}^2)^{1/2} & \text{for } 0 \le \mathbf{r} \le \frac{1}{2}\sqrt{2}, \\ 1/\mathbf{r} & \text{for } \frac{1}{2}\sqrt{2} \le \mathbf{r} < \infty. \end{cases}$$

Because $a = |f_0(0)|^{1/2} = r$, this proves the statement about equality.

THEOREM 3. If $|\mathbf{x}_{\nu}| < \mathbf{r}$, then

$$b \geq \begin{cases} 2(1-r^2)^{1/2} \ \text{for } 0 \leq r \leq rac{1}{2}\sqrt{2} \ , \\ 1/r \qquad \qquad \text{for } rac{1}{2}\sqrt{2} \leq r \leq 1 \ , \end{cases}$$

with equality for $f_0(z) = z^2 - r^2$.

Remark. If r < 2, the segment [-r, +r] has capacity r/2 < 1. Therefore, as Erdös, Herzog and Piranian proved [1, Theorem 6], there exists a $\rho(r) > 0$ (independent of f(z)) such that E contains a disk of radius $\rho(r)$ if $|x_{\nu}| \le r$. Hence $b = 2\rho \ge 2\rho(r)$. Theorem 3 gives the best lower bound for b and therefore for $\rho(r)$, if $r \le 1$. A similar method yields $b \ge (2 - r^2)^{1/2}$ for $1 < r < \sqrt{2}$, but this is not the best estimate, at least if r is near $\sqrt{2}$.

Proof. Let $|z_{\nu}| < r$ and $r < \frac{1}{2}\sqrt{2}$. Then

$$\left| f(i(1-r^2)^{1/2}) \right|^2 = \prod_{\nu=1}^n \left| i(1-r^2)^{1/2} - x_{\nu} \right|^2 = \prod_{\nu=1}^n (1-r^2+x_{\nu}^2) \le 1.$$

Therefore the point $i(1 - r^2)^{1/2}$ belongs to E, and $b \ge 2(1 - r^2)^{1/2}$.

If
$$\frac{1}{2}\sqrt{2} \le r \le 1$$
, let $\xi = (r^2 - (2r)^{-2})^{1/2}$. Then

$$\begin{aligned} |\mathbf{f}(-\xi + \mathbf{i}(2\mathbf{r})^{-1}) \, \mathbf{f}(+\xi + \mathbf{i}(2\mathbf{r})^{-1})|^2 &= \Pi \, |\left(-\xi + \frac{\mathbf{i}}{2\mathbf{r}} - \mathbf{x}_{\nu}\right) \, \left(\xi + \frac{\mathbf{i}}{2\mathbf{r}} - \mathbf{x}_{\nu}\right)|^2 \\ &= \Pi \, \left[\, \left(\xi^2 + \frac{1}{4\mathbf{r}^2} - \mathbf{x}_{\nu}^2\right)^2 + \mathbf{x}_{\nu}^2 \, \mathbf{r}^{-2} \, \right] \\ &= \Pi \, (\mathbf{r}^4 - 2\,\mathbf{x}_{\nu}^2 \, \mathbf{r}^2 + \mathbf{x}_{\nu}^2 \, \mathbf{r}^{-2} + \mathbf{x}_{\nu}^4) \\ &\leq \max \, (\mathbf{r}^{4\mathbf{n}}, \, 1) \leq 1 \end{aligned}$$

(note that the factor occurring under the last product sign is a quadratic function of x_{ν}^{2}). Hence one of the two points $z = \pm \xi + i(2r)^{-1}$ belongs to E, and $b \geq 2(2r)^{-1} = r^{-1}$. Equation (6) shows that we have equality for $f_{0}(z)$.

REFERENCES

- 1. P. Erdös, F. Herzog, and G. Piranian, *Metric properties of polynomials*, J. Analyse Math. 6 (1958), 125-148.
- 2. G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, vol. I, Springer, Berlin, 1925.
- 3. Ch. Pommerenke, On some metric properties of polynomials with real zeros, Michigan Math. J. 6 (1959), 377-380.

Universität Göttingen