ON SOME METRIC PROPERTIES OF POLYNOMIALS WITH
REAL ZEROS, II

Ch. Pommerenke

1. Let

(1) i) = II @-x,) (x, real,
v=1

and let E: |f(z)] <1. A closed disk that has a segment [a, b] (a < b) of the real
axis X as diameter will be called the orthogonal civcle over [a, b]. By G we shall
denote the class of all closed bounded sets F such that for every z € F there exists
an orthogonal circle K with z € K and Kc F. Every E: |f(z)| < 1 belongs to ¢ [3]
and has cap E = 1. Later on (see Remark 2 after Theorem 2) we shall show that
there are sets F € ¢ with cap F =1 that cannot be approximated by lemniscate
domains ]f(z)l < 1, where £(z) has only real zeros.

THEOREM 1. Let F € C. If A and d are the sums of the perimeters and di-
ameters of the components of F, then
A< nmd<4ncap F.
Remavrk. If we take F,, as the union of the orthogonal circles
|z - @k - 1)/m|<1/m (k=1, -, 2m),
we have d,, =4, A, = 4n. Because F,, is contained in the rectangle
{o< nz<4, |32 <1/m},
it follows that cap ¥, — 1. The example shows that the inequalities
A<4d< 4mcap F

and A < 4wcap F are best possible (except that perhaps A < 4w cap F).

COROLLARY. If the polynomial £(z) has the form (1) and if A is the length of
the lemniscate |f(z)|= 1, then A< 4.

LEMMA. Let K, and K, be orthogonal civcles over [aj, b;] (j = 1, 2), and let
a, <a,<b; <b, Let L; denote the avc of the peviphery of KJ- which lies between
the points of intevsection with the peviphery of K3_ j and contains the point aj. If 1
is the length of Lj (j = 1, 2) and 1, is the pevimeter of the orthogonal circle over
[a,, a,], then 1, <1, + L,.

Proof. Let K¥ be the orthogonal circle over [a,, b,], of perimeter 1¥ let L¥*
denote the complement of L, relative to the periphery of K, and let 1¥ denote the
length of L¥. The convex curve L, U L¥ contains the (convex) circle K¥ in its
closed interior. Hence, by a classical theorem, 1F < 1, + 1¥. Since
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1, + 1¥=w(b, - a,) = 7w(a, - a;) + w(b, - a,) = 1, + 1¥,
we obtain
L=lo+ 1F-1¥<ly+ (I, + 1¥) - 1¥F =1+ 1,.

Pyoof of Theorem 1. (1.1) Suppose F = Ur;f:l K, where K, denotes the

orthogonal circles over [a“, bu]. We may assume that a3 < --- < ap, and that no

K,, is contained in the union of the rest (otherwise, we can delete this KU«)' We have
d = meas (FN X), where X denotes the real axis. We shall prove that A < nd, by in-
duction. For m =1, we have A = 7d. For m > 1, there are two cases:

(i) by < a,: Here K, is contained in %z < a,, and F, = ;f_l__z Ky in 9z > a,.
Therefore A = n(b, - a;) + A,, where A, is the perimeter of F,, and by the induction
hypothesis, A, < 7d; (d; = diameter-sum for F,), hence

A < (b, - a,) + nd; = 7d.

(ii) a, < b,;: We apply the lemma to K; and K,. If A, denotes the length of the
part of the boundary of F that belongs to F,, then A =1; + A,. The part of the
boundary of F, that is contained in K, belongs entirely to K, (otherwise,

K, c K,UK, for some p'). If 1, is its length, and if 1, is again the perimeter of
the orthogonal circle K, over [a,, a,], it follows from the lemma that

A=1+ A <1lg+L+A,,

and the last quantity is equal to the perimeter A* of F* = K,UF,. The diameter-
sum d* is equal to d. We have case (i) for F*, and therefore A < A* < md.

(1.2) Let F be an arbitrary connected set in €. The part of the boundary of F
that lies in Iz > 0 is a simple curve of the form

C={z=x+iy®x :x0§x§x0+d},

where y(x) is a single-valued real function. The length of C is A/2. We choose
points z; € C (p =1, ---, m) with x3 <+ < x,, such that

m
(2) 2 lzy - zp-1|>A/2 - (or >1/e if A =w).
p=1

For each pu, let Ku be an orthogonal circle through Zy with K,u. C F. The set
F=xnmu lU,¥F,
is connected and has again the diameter d. Let C be the part of the boundary of F
contained in Yz > 0. If the segments of X contained in C have the total length d,
the length of C is
AR =d + A"/2,

where A and A" are the perimeters of ¥ and U K. Applying part (1.1), we ob-
tain
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(3) K<2d + nd" < w(d'+ d") = 7d.

Because

~

C={z=x+iyx 1%, <x< X+ d},
with single-valued y(x), and z, € C, x1< - <X, we have
A/2> 2. Iz“ - Zu—l[’
and therefore, by (2) and (3),
A< md+ 2 (for A < 2/e < 7d if A =)

for every £> 0, hence A<, A < 7d.

(1.3) If F € G is not connected, we obtain A < md by adding the corresponding
inequalities for the components of F. Finally we have d < 4cap F (this inequality
was first proved by Pélya; see also [3]), and hence A< 7d < 4mcap F.

2. Again, let E: |f(z)|_<_ 1, where f(z) is a polynomial of the form (1). Let p be
the radius of the largest (orthogonal) circle contained in E, and b the width of E.
Since there exists an orthogonal circle K Cc E through each z € E, we have (with
z = X + iy)

(4) b =2p =2 max [y|
z€E

It is easy to see [3] that b < 2 (and that this also holds for all sets F in G whose .
capacity is < 1), with equality for the set E: |z| < 1. Using a parameter, I shall give
a sharper upper bound for b, for the case where E is symmetric with respect to the
point 0.

THEOREM 2. Let the distvibution of the zevos x,, of £(z) be symmetrical with
vespect to 0, and let a = |f(0)|1/n. Then

1/a if%ﬁSaSw’
b<
21-a9/2 i 0<a< Vi and |x,|<iVE,

with equality for {,(z) = 2% - a2.

Remarks. 1. The first inequality b < 1/a remains true for all a > 0, but it is
not longer the best bound (at least for a < 2). For 0 <aK< 1 V2, the inequality
b < 2(1 - a®)¥2 probably holds even without the restriction |x,| < V2.

2. The function

z—(-i—lo iw+1) =W+ "
“\2'98w o1 B ,

maps |w| > 1 conformally onto the complementary region of the union F¥ of the
orthogonal circles |z + 2/7| < 2/m. Consequently cap F¥ = 1. Since 0.6 < 2/7,
there exists a ¢ > 2/n such that the union F, of the orthogonal circles |z + c|<o0.6
has again capacity 1. Suppose that F; could be approximated arbitrarily closely by



52 CH. POMMERENKE

lemniscate domains |f(z)| < 1 determined by polynomials with real zeros. Then
there would exist a polynomial f(z) = z® + ... such that

[fc+ 0.551)| <1, |f(0)|> 1,
because 0 ¢ F,. The polynomial
g(z) = (-1)P £(z) £(-2) = 220 + -.-
would have real zeros symmetrical to 0, and it would satisfy the conditions
lg(c +0.551) | <1, |g(0)]>1.

Therefore the width of the set Ig(z) I < 1 would be greater than 1.10, whereas the
width is at most 1, by Theorem 2.

Proof. We may assume, by [3, Theorem 2], that £(0) # 0, that is, x,, # 0. Since
the zeros are symmetrically distributed with respect to 0, we can group them in
pairs xy, -x, (v =1, ---, m), where m = n/2. Then

m
(5) |f(z)|2 H |z - X [2 =II (x4+2x2y2+y - 2x7, x2+2x y +x ).
v=1
Therefore
m m
|f(z)|2 = II [(x%+ y? _XIZ,)Z + 4x12}y2]2 11 4xl?;y = 4™ H X )
v=1 v=1

If z € E, then 1> 22|£(0)]-|y[* and
vl < Lo - y/@a),

and because of (4) we have proved the first inequality of Theorem 2.

73

IND| Pt

1 1/n
Let |x,|<5V2. Then a= Hx <
From (5) we obtain
m
| £(z) |2 = II [y2% + x%)2 + xt 4 2x%(y% - xl%)]
v=1
Suppose there exists a z € E with y2> 1 - a®. Then
y 2 2
y& -x,>1-a —xIZ/ZO,

because 2% < 3 and xIZ} < 3, and
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1> [f(z)ll/mz 11 (y?‘ + x,zj)l/m.
p=1

We apply the inequality [2, p. 55]

]:[(ay+by) m_>__ H aym+ H bV m
v=1 v=1 v=1

(for a, > 0, by, > 0) and obtain (with n = 2m)

m Z/n
12y2+(Hx5) =y2+a2,

v=1

and therefore y2 < 1 - a?, contrary to our hypothesis.
Finally, let fo(z) = z* - r® (r > 0) and E,: |2z - r?| < 1. Computation shows that

2(1-1‘2)1/2 for 0_<_r§l\/:2_,
(6) by = 2 max |y|=
=€ [ 1/x for VZ < < .

Because a = |f0(0)l1/2 = r, this proves the statement about equality.

" THEOREM 3. If |x,|<r, then

S2(1 - r3)1/2 g5 ogrgéﬁ,
b>

Zl/r for%ﬁgrgl,

with equality for f,(z) = z% - r2.

Remark. If r < 2, the segment [-r, +r] has capacity r/2 < 1. Therefore, as
Erdos, Herzog and Piranian proved [1, Theorem 6], there exists a p(r) > 0 (inde-
pendent of f(z)) such that E contains a disk of radius p(r) if lxyl < r. Hence
b = 2p > 2p(r). Theorem 3 gives the best lower bound for b and therefore for p(r),
if r < 1. A similar method yields b> (2 - r2)1/2 for 1 < r < V2, but this is not the
best estimate, at least if r is near V2.

Proof. Let |z,|<r and r < V2. Then

n

|81 - rz)l/z)l2 =TI |i(1 - r?')l/2 -x, 12 =TI (1-r2+ le})_<_ 1.
v=1 v=1

Therefore the point i(1 - 1'7-’)1/2 belongs to E, and b > 2(1 - rz)l/z.
If 3V2<r<1,let £=(r? - (2r)-2)¥2. Then
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II i i
l(-§+2r—xy)(§+2r"xy)|2

H[(EZ+Z:‘—Z-—X3)2+X,Z,I‘_Z]

|£(- & + i(2r)" 1) £(+ £ + i(2r)~1) 2

n

_ 4 2.2 2..-2 4
=1l - 2X5r% + X5 + X))
-{ max (r4m, 1) <1

(note that the factor occurring under the last product sign is a quadratic function of
xg). Hence one of the two points z =+ & + 1(2r)~*! belongs to E, and b > 2(2r)~* = r™%.
Equation (6) shows that we have equality for fy(z).
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