THE SCHUR INDEX IN THE THEORY OF
GROUP REPRESENTATIONS

Irving Reiner

1. INTRODUCTION

Let KG denote the group algebra of the finite group G over a field K of charac-
teristic 0. By a KG-module M we always mean a left G-module M which is a
finite-dimensional vector space over K, such that the identity element of G acts as
identity operator on M. Once a K-basis of M is specified, for each g € G the
linear transformation m — g-m (m € M) is represented by a matrix T(g) with en-
tries in K. We shall say that M affords the K-represeniation T of G. Two K-
representations T,, T, of G are called K-equivalent (notation: T; g T2) if there
exists a non-singular matrix S with entries in K such that

S-IT,(2)S =Ty(g) (g€G).

Each KG-module affords a set of mutually K-equivalent K-representations of G.

Suppose that L is a field containing K, and let U be an L-representation of G.
We say that U is realizable in K if there exists a K-representation T such that
U 1, T. If U is afforded by the LG-module M*, it is clear that U is realizable in

K if and only if there exists a KG-module M such that

M*=L®g M as LG-modules.

(For an exposition of tensor products, see Bourbaki [2]. The concept of extension of
the ground field may also be found in van der Waerden [6, pp. 134-136, pp. 158-163,
pp. 193-197].)

Let K* be the algebraic closure of K. The question of determining in which
fields a given K*-representation is realizable leads naturally to the introduction of
the Schur index, as follows:

Let U be an irreducible K*-representation of G with character ¢ (defined by:
€(g) = trace of U(g) (g € G)), and let K({) denote the field obtained by adjoining to K
all of the values {¢(g): g € G}. If F is an extension of K in which U is realizable,
then certainly F D K({). Define the Schuy index of U with vespect to K as

(1) my (U) = Min (F: K(0)),

the minimum being taken over all fields F in which U is realizable.

The Schur index has the following basic properties (see Brauer [4], Schur [5],
witt [7]):

THEOREM 1. Let U be an irveducible K*-vepresentation of G with character
€. Theve exists a finite extension F of K in which U is vealizable, such that
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(F:K(8) = mk(U). For any finite extension L of K in which U is realizable, we
have mK(U)|(L:K(§)), where the notation “a|b” means “a divides b.” Finally,
mg (U) is the minimal value of m such that mU is realizable in K(¢).

THEOREM 2. Each irreducible K-vepresentation T of G is completely re-
ducible over K* inlo a certain number of inequivalent ivveducible K*-vepresenta-
lions Uy, ---, Uk, each occurving with the same multiplicity m given by

m=mK(Ui) (1_<_1Sk)
If & is the character of U;, then in fact
(2) k=(K():K) (1<i<Kk).

Furthermove, Uy, ---, Ux may be taken to be algebraically conjugate over K. Con-
versely, each ivveducible K*-vepresentation U of G occurs in the splitting up over
K* of some irveducible K-vepresentation T of G, and T is determined uniquely (up
to K-equivalence) by U.

THEOREM 3. Let T be an irreducible K-vepresentation of G, and extend T
(by linearily) to a K-rvepresentation of KG. Set

(3) A= {T®x): x € KG}.

Then A is a simple algebra over K, and we may write A = Ny, wheve A, denotes a
Jull matrix ving over the skewfield N. If P is the center of A, then (with the nota-
tion of Theovem 2)

(4) P=K(@y), (0:P)={mg(U)}* (1<i<K.

During the {ifty years since it was first introduced, the Schur index has become
a useful tool in the theory of group representations. Despite this fact, there do not
seem to be available any self-contained proofs of the above theorems by modern
techniques. Schur’s proof of Theorems 1 and 2 is substantially correct, but has
some minor gaps. Witt [7] has pointed out Theorem 3, and has proved parts of
Theorems 1 and 2.

It is our purpose to give complete proofs of the above theorems by making use of
the rudiments of the theory of splitting fields for division algebras. The concept of
Schur index seems to be best understood in this context. We shall assume familiarity
with the theory of semi-simple rings (see [1], [3], [6]), as well as with the orthogo-
nality relations for the characters of the irreducible K*-representations of G (see
[6, 183-189]).

2. DIVISION ALGEBRAS

By a division algebra we shall mean a skewfield A which is a finite-dimensional
vector space over its center P. We say that a field F splits A (or is a splitting
field for A) if F > P and

-

(5) FQRp A= F, for some t,

where as usual F{ denotes the algebra of all t-by-t matrices over F. From (5) we
obtain
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FRpa, 2 FR®pARp P, £ F,, for each n.

Conversely, if FO P and FQRp A, £ Fy, for some t and some n, then the unique-
ness part of Wedderburn’s Theorem [1, p. 32] implies that F splits A.

We shall state without proof the basic theorem on splitting fields.

THEOREM 4 ([1, pp. 76-77], [3, pp. 119-120], [6, p. 205]). There exists an in-
teger m, called the index of A, such that (A:P) =m? If F is any maximal sub-
field of A, then F splits N, and (F:P) = m. Further,for any finite extension L of
P which splits A, we have rnl (L : P).

If ¥ is any splitting field for A, a dimension argument shows at once that
F®P An = an

for each n. If N denotes a minimal left ideal in FXp A, the above implies that
(N:F) = mn, that every minimal left ideal in F®p A, is isomorphic to N (as
F®p A,-module), and that every left ideal in F ®p A, can be expressed as a
direct sum of minimal left ideals.

On the other hand, let M be a minimal left ideal in A,. Then
(M:A) =n, (M:P) = n(A:P) = nm?2.
Now F(®p M is a left ideal in F®p A, and

(FQp M:F) = (M:P) = nm?,

Therefore FXp M is a direct sum of m minimal left ideals in F ®p A,,.

The above may be paraphrased in terms of representations as follows: let T be
the irreducible P-representation of A, afforded by M, and U the irreducible F-
representation of A, afforded by N. Then we have proved that

where m U’s occur. In other words, mU is realizable in P. Furthermore, since T
is the unique irreducible P-representation of A, (unique up to P-equivalence), we
have established

COROLLARY. m'U ¢s vealizable in P if and only if m| m'.

We note further that if L is any extension of ¥, then
L®P An = L®F (F®P An) = Lmn’

so that L splits A, and L ®y N is also a minimal left ideal in L@F (FQRp Ap).
This shows that the irreducible F-representation U remains irreducible under all
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extensions of the field F; it is customary to describe this by saying that U is abso-
lutely irreducible.

3. DECOMPOSITION OF THE GROUP ALGEBRA

Since K has characteristic 0, it follows from Maschke’s Theorem [6, p. 179] that
the algebra KG is semi-simple. Let

I
(6) KG= 2, KG-g;
j=1

be the decomposition of KG into simple components (that is, into minimal 2-sided
ideals), where correspondingly

(7) 1:81+c-.+8r

is the unique decomposition of the unit element 1 of KG into the sum of a maximal
number of mutually orthogonal central idempotents. Each component KG - gj isa
simple algebra whose center is a finite extension of K. There are exactly r inequi-
valent irreducible K-representations of G, afforded by minimal left ideals in the
simple components of KG.

Likewise, let

S

i=1
give the decomposition of K* G into simple components. Since also

r

K*G= 2 K*G-¢;,
j=1

and since it is easily proved that every decomposition of K* G into a direct sum of
2-sided ideals is obtainable from (8) by grouping summands, it follows at once that
each g; is a sum of certain of the {e; }, and that each e; is a summand of exactly
one g;. (This proves the last statement in Theorem 2.)

Since K*G-e; is simple, we may write K¥*G-e; = Q_, for some z;, where Q is
1

a division algebra whose center contains K*. However, K* is algebraically closed,
whence @ = K*, Therefore

(9) K*G-e; S K* for some z; (1 <i<s).

1

For each i, choose from K*G:e; a full set of ziz matrix units. In expressing each
matrix unit as a linear combination of the elements of G with coefficients from K¥*,

only finitely many coefficients occur. Hence there exists a finite extension L. of K

such that LG contains the z‘% + e + zi‘ matrix units. Therefore
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S

(10) LG= 2, LG-¢;

i=]
is the decomposition of LG into simple components, and

(11) LG-e; = Ly, 1<i<s).

This implies that the inequivalent irreducible K*-representations of G are already
realizable in L. If these representations are denoted by U, '*-, Ug, then Uj is af-
forded by a minimal left ideal in LG -ej, and is absolutely irreducible. Let {; be
the character of U; (i < i< s). Since {; vanishes on LG-ej for j + i, we see
that {; = {; if and only if i = j. Further, if ¢(LG) denotes the center of LG, then
(10) and (11) imply that (c(LG):L) = s.

On the other hand, let G;, ---, € denote the conjugate classes of G, and set

C;= 2 g (1<i<t).
getC,

It is easy to show that Cj, -+, C{ form an L-basis for c(LG), whence t = s.

Now let gj denote any element of the class G je From the orthogonality relations
one readily obtains [6, p. 189]

S
(12) e =2i(G: 11 L Lgfl)e; (1<i<s).
j=1
If we set K; = K(§;), then e; € c(K,G), and (K;G)e; is a 2-sided ideal in K;G. From

(13) L(K;G)ej= LG-e& = L,

it follows that (K;G)e; is in fact a simple component of K;G. We may therefore
write

(14) (K;G)e; = (Ai)ni )
where A; is a division algebra over K;. Now we have

c(hpy = c((Ai)ni) = c(K;G- ey = c(LG-e)) N (K;G)e; = Le;Nn (K;Ge; = K,e;.

Hence we may identify K; with c(A;), and write
(15) (A:K;) = mZ,

where mj; is the index of A;. Furthermore, (13) and (14) imply that L is a splitting
field for A;, so that by Section 2 we have

(16) L®j; @)n, = Limgn,»

171
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which shows that
(17) Z; = mjn;.
LEMMA. Let F be a finite extension of K such that ¥ c L.. Then U; is realiz-

able in F if and only if F splits Aj.

Proof. We may restrict our attention to those fields F which contain K;. From
c(K;G-e;) = K;ej, we deduce that FG-e; is a simple algebra with center Fe;j.
Therefore

FG-e; S AQy F, for some v,

where A is a division algebra with center F. Let
a=indexof A=v(A:F).

By definition, Uj is the L-representation afforded by a minimal left ideal in
L(FG-e;), and L is a splitting field for A. By the corollary to Theorem 4 it follows
that a is the smallest integer such that aUj is realizable in F. Hence Uj is
realizable in F if and only if a = 1, that is, A = F. But A = F if and only if F splits
Aj, since

AQ®p Fy = FQxk; (Bi)y;- Q.E.D.

From this lemma and Theorem 4, it follows that
m; = Min(F: K]),
the minimum being taken over all fields F over K in which U; is realizable. Hence

mi = mKi(Ui) ’

and there exist such fields F for which (F:Kj) = m;. The corollary to Theorem 4
shows further that mj is the smallest integer such that m;U; is realizable in K.
This completes the proof of Theorem 1.

We may remark finally that z;|(G:1) (see [6, p. 189]), and therefore we conclude
from (17) that all Schur indices divide (G:1).

4. CONJUGATE REPRESENTATIONS

Choose L (as in the preceding section) to be a finite normal extension of K such
that (10) and (11) hold, and let ® denote the Galois group of L over K. If X is any
matrix with entries in L, and 0 € ®, define X¥ to be the matrix obtained from X by
applying ¢ to each entry of X. If U is any L-representation of G, and o € ®, then

g— {U@}° (e,

defines another L-representation UY, called a conjugate of U (with respect to K).
Conjugate representations have conjugate characters. Conversely, if U, V are
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irreducible L-representations of G, with characters ¢, n respectively, and if 1 = €9
for some o € ®, then clearly V 1 UC.

Any o0 € @ can be extended to an automorphism of L.G by means of
(Lo, )= 2efg ({og} el).

Each such automorphism leaves KG fixed. Further, an element of LL.G which is un-
changed by all automorphisms from & must lie in KG. Let 0 € 8 be applied to
equation (9); then we see that ¢ just permutes e, -+, e, among themselves. Fur-
ther, if

e; = z;(G:1)"1 25 Ci(gj'l)cj;
j=1

then

S

o _ .1y-1 g; -1

ef = z,(G:1) _Z)l S{Craly
J=

Thereiore ej = ef if and only if €5 = C?. We refer to e; and e‘i7 as conjugale idem-
potents. If e; and e; are conjugate idempotents, say ej = e‘iT, then also o gives a
KG-isomorphism of LG-e; onto LG-e;, which shows that z; = z;, m; = mj,
K; = K;j (K-isomorphism), and that we may take U; = UJ.

Let us concentrate on the idempotent e,, say, and let
p={ocev:el=¢}.

If k=(®:9), then e, has precisely k distinct conjugates in LG, say ej, ---, ex.
Now o € ¢ if and only if ?;’(17 = {,, that is, if and only if o acts as the identity on K,.
Therefore 9 is the Galois group of L over K,, and so k = (K, :K). Furthermore,
e] + --- + ex is invariant under &, hence must be a central idempotent in KG. It
must be some ¢g;j, since in the decomposition of any €; into a sum of e;’s, together
with each e; must occur all of its conjugates. Thus

ey + et =g, say,

which implies (by virtue of (10)) that

(18) L(KG)e; = LG(e; + -+ +e,)=LG-e; D - ® LG-e¢.
If we write

(19) KG-g) A,

where A is a simple algebra whose center contains K, then comparison of dimen-
sions of the two sides of (18) gives

(20) n?‘(A:K)=z%+ ---+z1?;=km"{‘n€‘.
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Next, let d; be a primitive idempotent in K, G- e,, that is, an idempotent such
that K, G-d, is a minimal left ideal in K;G. If ¢ € § carries e, into ej, let it map
d, onto d;; then d; is a primitive idempotent in K;G - ej, and dj, -+, dx are dis-
tinct conjugates over K. If we set

(21) 6=d1+"‘+dk,

the reasoning used in the preceding paragraph shows that 6 is a primitive idempo-
tent in KG-¢,. From (21) we obtain

L(KG)6 = LG(dy + =+ + dy) = L(K1 G- d}) @ * ® LKk G- dy) .

Now K; G-d; affords the K;-representation mj Uj, since each minimal left ideal in
(K;G)e; splits into mj minimal left ideals over L. If T is the irreducible K-
representation afforded by (KG)d, the above implies that

T]: mj Uy + *=- + my Uy

Furthermore, Uy, -+, Uk are conjugate irreducible K*-representations of G, and
ml = see = mk = mK(Ul) = sese == mK(Uk) .

We have already shown that k = (K;:K) (1 <i < k), and therefore the proof of
Theorem 2 is complete.

Keeping the above notation, extend T to a K-representation of KG. Then T is
faithful on KG-¢,, but annihilates the other simple components of KG, so that the
algebra A defined by (3) is in fact K-isomorphic to KG-¢,. The notation of Theorem
3 is thus consistent with that of equation (19). Setting P = c(A), we shall show that
P=K; (1 <i<k). We have

n

c(A) 2 ¢(KG-e1) = KGNc(LG-gp)

Il

KGNce(LG-e1® @ LG-e) = KGN (Le; (D - @ Ley) .

However, if ai, ***, ¢k € L are such that aj e + -+ + @k ex € KG, then it is clear
that oz(lT =q; forall o0 € , whence o, €K,. It follows readily that a4, -+, ¢y are
conjugate with respect to K, and that v ey + *** + areyx — a; maps

KGN (Ley + *** + Ley)
isomorphically onto K,. This shows that P = K; (K-isomorphism). Therefore
(22) (A:K) = (A:P)(P:K) =k(A:P).

From (21) we see that the number n of minimal left ideals into which KG-¢g,
splits is the same as the number n;, of minimal left ideals into which K, G-e, splits.
The substitution in (20) then yields

k(A : P) = km?n?,

whence
(A:P)=mf = {my(U)}* (1<i<Kk).

This completes the proof of Theorem 3.
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