ON THE STRUCTURE OF SEMIGROUPS WITH IDENTITY ON
A NONCOMPACT MANIFOLD

Anne Lester

This paper deals with a problem concerning the structure of a semigroup with
identity whose space is a noncompact n-dimensional manifold (n > 2), and which has
an (n - 1)-dimensional compact connected group containing the identity. This prob-
lem is analogous to the one considered by Mostert and Shields in [7].

Definition 1. A threadis a semigroup whose space is homeomorphic to an open
interval.

Definition 2. An M-thread is a semigroup with identity whose space is homeo-
morphic to a half-open interval and such that the endpoint acts as a zero (see [6]).

The term “isomorphism?” will be used to denote a function which is simultane-
ously an algebraic isomorphism and a homeomorphism. - For further definitions and
background material, the reader is referred to [7] and [10].

THEOREM. Let M be an n-dimensional noncompact manifold (n > 2) which is
a semigroup with identity, 1, and assume that M is not a group. Suppose there
exists a compact connected (n - 1)-dimensional gvoup G containing 1 and contained
in M. Then theve exists eithey a thvead with identity, or else an M-~thvead, T, such
that M = TG and tg = gt whenever t € T and g € G.

The proof of the theorem is divided into two main cases. If G is allowed to act
on M by right multiplication, then the orbit space with respect to this action is
either an open interval or a half-open interval. The cases in the proof correspond
to the two kinds of orbit space. In the following twenty-two lemmas that comprise
the proof, the hypotheses of the theorem are assumed to hold throughout.

LEMMA 1. Define 6: MX G — M by 6(x, g) = xg for x € M, g € G. Then G is
a Lie group acting effectively on M. If S denotes the ovbit space with respect to G,
then S is homeomorphic to a half-open interval or an open interval.

Proof. By assumption, M is an n-dimensional manifold and a semigroup with
identity. By Mostert and Shields [8], H(1), the maximal subgroup of M containing 1,
is an open subset of M and is a Lie group. G, being a closed subgroup of H(1), is
therefore also a Lie group.

From the definition of 6 given above it follows quite easily, since multiplication
in M is continuous and associative, that G acts as a transformation group on M.
To see that G acts effectively, it is sufficient to note that G acts by right multiplica-
tion, and that the identity for G is also an element of M.

This proves that G is a compact connected Lie group acting effectively on an n-
dimensional manifold. To prove that the orbit space is as stated, it suffices to
establish the existence of at least one (n - 1)-dimensional orbit. This follows
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however from the fact that G itself is an orbit, for G = 6({ 1} X G). Hence, by
Mostert [5], the space of orbits is one of the following: (i) a circle; (ii) a closed
interval; (iii) an open interval; or (iv) a half-open interval. In cases (i) and (ii),
however, it follows that M is compact, and since this is contrary to the assumption
that M is noncompact, the space of orbits must be as stated in the lemma.

The following notation will be used: S will denote the space of orbits under 6,
and 7 the natural map from M to S. That is, for x € M, 7(x) = 6({x} X G) = xG. It
is known [4] that 7 is open and continuous and that S is a locally compact Hausdorff
space.

For a point x in M, the isotropy group of x, denoted by Gy, is defined by
Gx= {g € G| 6(x, g) = x}. Mostert shows in [5] that, in the case where S is homeo-
morphic to an open interval, Gx is conjugate to Gy for all x and y in M. Since G,
is obviously the single element 1, it follows that in this case Gx = {1} for all x € M.
For the other case, where S is homeomorphic to a half-open interval, Mostert shows
in the same paper that there is a unique singular orbit, and that for p in this orbit,
G, is nontrivial. Also, for x and y not in the singular orbit, Gx is conjugate to Gy,
so that G, = {1} if x is not in the singular orbit.

LEMMA 2. For x and y in M, define a relation < by x 4Ly if and only if
x £ yG and n(x) < n(y), where < is the natural ovder of S. Then x <y for x and y
in M implies that xg <yg and gx <Lgy for each g in G.

Pyroof. Since x ¢ yG, xg ¢ (yg)G for each g in G. Hence, if 7(x) < n(y), it fol-
lows that n(xg) = 7(x) < n(y) = n(yg), so that xg < yg for each g in G.

To prove that x < y implies gx < gy for each g € G, define 6(g) = n(gx) and
a(g) = n(gy) for g € G. Then & and @ are continuous functions from G to S, which
is either a half-open interval or an open interval. By assumption, 7(x) < w(y), hence
6(1) = m(x) < n(y) = ¢ (1). Also, 6(g) # a(g) for each g, as is easily seen from the fact
that x ¢ yG. But G is a connected space, and hence 6(g) < a(g) for each g in G,
since this relation holds for one element of G. This completes the proof of Lemma
2.

LEMMA 3. For x € M, xG = Gx.

Proof. Let x be an element of M. In this proof it will be shown that x < gx and
gx £x cannot hold for any g in G. This will prove that gx € xG for each g € G, in
other words, that Gx € xG. A dual argument proves that xG C Gx.

To show that x <gx and gx <x cannot hold, let us assume, to the contrary, that
there exists an element g, in G such that x <g,x. By Lemma 2, it follows that
gox '—<g(7jx/\ --- X gpx, for all positive integers n. If I'(g,) denotes the smallest
closed subsemigroup of G containing g, then for each a € I'(g,) it is true that
x < ax. Since G is compact, however, it follows from [2] that 1 € I'(g,), contrary
to the fact that 1x = x and x - x. This contradiction shows that x < gx cannot hold
for any g € G. The proof that gx <'x cannot hold is similar. Thus it is true that
gx € XxG for each g in G, and by the remarks at the beginning, the lemma is estab-
lished.

LEMMA 4. Define L: SX S — S by p(n(x), n(y)) = n(xy) for x and y in M.
Then S is a semigroup undev ..

Proof. The fact that p is continuous and associative follows immediately from
Lemma 3. Since S is a Hausdorff space, S is a semigroup.

LEMMA 5. #(H(1)) = H(w(1)). H(w(1)) is isomorphic to (-=, 0) U (0, ) or to
(0, ©) under real multiplication.
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Proof. 1t is clear from the definition of y that 7 is a homomorphism from M
onto S. Since this is true and since H(1) is a group, 7(H(1)) c H(w(1)), for the latter
is the maximal subgroup of S containing w(1).

_ Conversely, let x € H(n(1)). Then x = 7(x) for some x € M, and there exists
y € S such that xy = 7(1) = yx. Let y € M be such that #n(y) = y. Then

m(xy) = n(x) w(y) = xy = w(1)

and, similarly, 7(yx) = #(1). From this it follows that xy € G and yx € G, so that, for
some g and g, in G, xy = g and yx = g,. Thus x(yg~!) = (xy)g-! = 1, and also
(g5'y)x = 1, so that x € H(1). This shows that x = n(x) € 7(H(1)), and since x was
arbitrary in H(w(1)), that H(w(1)) < #(H(1)). This completes the proof of the claim
that H(w(1)) = #(H(1)).

By Mostert and Shields [8], H(1) is open in M, hence H(w(1)) is open in S, since
the function 7 is open. By Storey [9], H(#(1)) = S, H(w(1)) = m(1), H(w(1)) consists of
exactly two elements, H(w(1)) is isomorphic to (0, =) under real multiplication, or
H(w(1)) is isomorphic to (-«, 0) U (0, ) under real multiplication. By assumption,
M is not a group, hence H(w(1)) is not all of S. By the preceeding, H(n(1)) is open
in S, so that H(w(1)) is one of the last two cases stated, and the proof of the lemma
is complete.

LEMMA 6. K is the minimal ideal of M if and only if w(K) is the minimal ideal
of S.

Proof. 1t is easily seen that the image of an ideal of M is an ideal of S, and
conversely, that if I is an ideal of S, then 7=}(I) is an ideal in M.

First assume that K is the minimal ideal of M. Then by the above remark,
#(K) is an ideal of S. To see that w(K) is the minimal ideal of S, suppose I is an
ideal and I ¢ #(K). The claim is now made that 7-*(I) = K. To see this, suppose
x € 7-}(I). Then #(x) € I C w(K), so that there exists k in K with #n(x) = w(k). Hence
x € kG c KM C K, so that x € K, and therefore 7~}(I) c K. But K is the minimal
ideal of M, hence 7~ (I) = K, and the claim is true. From this it follows that
7= (I) = 7(K), that is, I = 7(K), which shows that #(K) is the minimal ideal of S.

For the converse, let K be the minimal ideal of S, and let K = 771(K). Then K
is an ideal of M, by the above remarks. Now suppose that I is an ideal of M con-
tained in K. Then 7(I) C 7(K) = K, so that #n(I) = K, since K is minimal. By an
argument similar to the one given above, it can be shown that 7-%K) C I, so that
K =1 is the minimal ideal of M.

The remainder of the proof is divided into the two cases that occur in the orbit
space S.

CASE 1. S is homeomorphic to [0, «)

LEMMA 7. Let K= 7"%0). Then K is the minimal ideal of M, and it is a group.
If e is the idempolent in K, then the function o:G — eG defined by o(g) = eg is a
homeomorphism.

Proof. The proof of this lemma is given by Mostert and Shields [7], for an
analgous situation.

LEMMA 8. S is an M-thread.
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Proof. By Lemma 7, 7~(0) is the minimal ideal of M, hence by Lemma 6,
7(m~1(0)) = 0 is the minimal ideal of S. Thus 0 is a zero for S, and since 7(1) is
the identity for S, S is an M-thread.

LEMMA 9. Theve exists in M an M-thvead T such that M= TG and T is
isomovphic to S. Furthermove, for x in T and g in G, xg = gx.

Proof. The construction of T is given by Mostert and Shields in [6].

Let us note that with Lemma 9, the proof of the theorem in Case 1 is complete.

CASE 2. S is homeomorphic to (-«, «).

Here two subcases will be considered, first that where H(w(1)) is isomorphic to
(=0, 0) U (0, =), then that where H(w(1)) is isomorphic to (0, «).

Case 2.1. H(w(1)) is isomorphic to (-«, 0) U (0, =) under real multiplication.

By Storey [9], there exists an element 6 < m(1) such that, if T, = {s € S| s >4},
then T, is an M-thread, ¢ is a zero for all of S, and the structure of S is as fol-
lows:

There exists an idempotent e € [0, #(1)) such that S\ [0, e] = H(w(1)) and [6, e]
is an I-semigroup.

LEMMA 10. Let f be an idempotent in S. Then 7-1(f) = G for some idempotent
f in M. Furthermore, {G is isomorphic to G under the mapping g — 1ig.

Proof. Let x and y in M be such that #(x) = f = #(y). Then
a(xy) = n(x) n(y) = ff = I,

so that xy belongs to #~'(f). This shows that #-}(f) is a compact subsemigroup of
M and therefore (see [2]) contains an idempotent, say f. Since xG = fG = Gf = Gx
for all x in 7-f), it follows that f is a two-sided identity for 7~}(f) = fG. This,
however, holds for every idempotent in #~*(f); hence f is the unique idempotent. By
Wallace [10], it follows that #~*(f) is a group. Clearly, the mapping g — fg is con-
tinuous and is a homomorphism. Since Gf = {1} , this mapping is also one-to-one,
and therefore it is an isomorphism, since both G and fG are compact.

LEMMA 11. K= 77%8) is the minimal ideal of M, and K is a group and is iso-
movphic to G under the mapping g — eg, wheve e is the identity for the group K.

Proof. This lemma follows immediately from Lemmas 6 and 10, since 6 is the
zero for S and hence the minimal ideal and an idempotent.

LEMMA 12. For an idempotent £ in M, define T(f) = {x € M[ fx = x}. Then
T(f) is a closed subsemigroup of M. If u(f) is a lef (ov right) zevo for S, then T(f)
meets each ovbit of G in exactly one point. Furthevmove, if fg = gf for each g in
G, then xg = gx for x in T(f) and g in G.

Proof. Clearly T(f) is a closed subsemigroup of M. Assuming that #(f) is a
left zero for S, let x belong to M. Then 7{f) = #(f) 7(x) = w(fx), which implies that
G = (fx)G, that is, f = (fx)g for some g € G. From this equality it follows that
xg € T(f), so that T(f) meets each orbit of G. To see that T(f) can meet an orbit of
G in at most one point, let us assume that x and y belong to T(f) and that xG = yG.
Then x = yg for some g in G and, therefore, f = fx = f(yg) = (fy)g = fg, so that g=1,
since G¢= {1}. Hence x=yl =y.
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To complete the proof of this lemma, assume that fg = gf for all g in G, and let
x € T(f). Then for g in G, xg = g,x for some g, € G, since xG = Gx. But then

fg = (fx)g = f(xg) = (g, %) = (fgo)x = (g, D)X = go(fx) = gof = fg,,

so that g = g, and xg = gx.

LEMMA 13. If T is a closed subsemigroup of M meeting each ovbit of G in
exactly one point, then w vestricted to T is an isomovphism from T onto S.

Proof. Let 7, denote the restriction of 7 to T. Since 7 is continuous and is a
homomorphism, and since T is a subsemigroup of M, 7, is also continuous and is a
homomorphism. #, is clearly one-to-one and onto, since T meets each orbit of G
in exactly one point.

It remains only to show that 7, is open. For this, let p belong to T, and suppose
that U is open in T and contains p. Then there exists an open set O in M such that
U= TN O. Also, since G = {1} and G is a compact Lie group, there exists a com-
pact set F containing p and a neighborhood V of p such that V is homeomorphic to
FG [1]. Hence #(F) is a compact neighborhood of #(p), so that there exists an open
interval I, € S and I* c 7(F). Now A = 77(I¥) NT is a closed subset of FGNT, and
since F and G are compact and T is closed, A is a compact subset of T. By the
statements above, 7, restricted to A is one-to-one and continuous, hence a homeo-
morphism. The claim is now made that #,;(A) = I¥. This follows immediately from
the definition of A and the fact that T meets each orbit of G. For the remainder,
let U, =ONA. U, isopenin A, and thus ,(U,) is open in I¥. Hence 7(p) belongs
to the interior of w,(U,), and therefore, by the definition of U,, to the interior of
7,(U). This completes the proof of the claim that =, is open, which proves that =,
is, in fact, an isomorphism.

LEMMA 14. Theve exists in M a thvead T such that M= TG and T is iso-
movphic to S under the vestriction of ®# to T. Furthermove, fort in' T and g in G,
tg = gt.

Proof. Let e be the identity of K = 7-1(8). Then, by Lemma 12, T(e) is a closed
subsemigroup of M meeting each orbit of G in exactly one point. By Lemma 13, T
is isomorphic to S under the restriction of 7 to T. By Koch [2], since K is a group
and the minimal ideal of M, ex = xe for each x in M and, in particular, for each x
in G. Thus, by Lemma 12, tg =gt for t € T and g € G. T is clearly a thread, since
it is isomorphic to the thread S.

With Lemma 14, the proof for Case 2.1 is complete.

Case 2.2. In this case the assumption is made that H(w(1)) is isomorphic to the
real interval (0, ) under multiplication. Here, however, two further subcases
arise: 1) the minimal ideal K of S is not empty, and 2) K is empty.

Case 2.2.1. The general assumptions for this case are as follows: S is homeo-
morphic to an open interval, H(7(1)) is isomorphic to the real interval (0, «) under
multiplication, and K, the minimal ideal of S, is not empty.

In [9], Storey proves that, for some idempotent e in S, (H(w(1))* = [e, ) is an
M-thread, also that K consists entirely of left (or rlght) zeros for S, and that there
exists an element k; € K such that K C (-, k,], k, < e < (1), and [kl, «) is an M-
thread. Let us assume in this argument that K cons1sts of left zeros.

LEMMA 15. Theve exists a thread T in M satisfying the conditions that T is
closed, T meets each ovbit of G in exactly onepoint, T is isomovphic fto S, and
tg=gt for teT and g € G.
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Proof. Let T = T(k,), where k, is the idempotent in #~(k,). The lemma follows
immediately from Lemmas 12 and 13, if it can be shown that k, g = gk, for all g in
G. To see this, let M, = n~([k,, ©)). Then M, is a subsemigroup of M with mini-
mal ideal n~(k,), as can easily be proved. Thus, by Koch, k, x = xk, for each x in
M,, since the minimal ideal is a group. Clearly, G is contained in M,, so that
k,g = gk, for each g in G, and the proof of Lemma 15 and Case 2.2.1 is complete.

Case 2.2.2. K, the minimal ideal of S, is empty.

LEMMA 16. An elemeni 0 may be adjoined to S as a minimal element so that
So =S U8 is an M-thread. Also, an element ¢ may be adjoined to M so that
M, = MU¢ is a semigroup with zevo,d, and M is a subsemigroup of M,. Finally,
a function w, can be defined from M, onto S, in such a way that 1ro| M =7, and 7,
ts an open continuous homomovphism.

Pyroof. Since the minimal ideal of S is empty and e is, by assumption, less
than 7(1), by Storey [9], a zero 8 may be adjoined to S so that Sp=SU@ is an M-
thread.

Now let ¢ be an element with ¢ ¢ M, and let M, = MU¢. Inorder to make M,
into a topological space, define the neighborhood system % at ¢ by the condition that
P € % if and only if P = 7-1(V)U¢, where V = (9, a) for some a € S. The topology on
M, is to be that generated by the open sets of M and the collection %. Clearly, M,
is a locally compact Hausdorif space.

Define my: My — S, by

m(x) if xe M,

'”a(X)={
2] if x=9.

The claim is now made that 7, is an open continuous homomorphism of M, onto
Sy, where we define ¢x = ¢ = x¢ for all x in M,,.

Clearly, 7, is continuous and open at each point x in M, so that it suffices to
show that 7, is open and continuous at ¢. This, however, follows immediately from
the definition of 7,, N, and the neighborhoods of 6. It also is obvious that 7, is a
homomorphism onto, and that #, restricted to M is 7.

In order to prove that M, is a semigroup under the definition of multiplication
given above, it must be shown that multiplication is continuous and associative. It is
trivial to show associativity. For the continuity of multiplication, let us consider
the diagram

So X 8, Ho, So

'”oX“oI IWO

M, X My -9 M,

where m, is the multiplication function in M,. Since the diagram is analytic, 7, is
open, and u, is continuous, it follows that m, is continuous. Clearly M is a sub-
semigroup of M, so that the proof of Lemma 16 is complete.

Lemma 17. If theve exists a sequence {en} of idempotents in S such that
e <epyp<ep< - <ey<m(l) and lim,_, e, = 6, then T=TU{T(e,)|n=1, 2, --.},
wheve ey, is the idempotent in n-Ye,), is a closed subsemigvoup of M meelting each
orbit of G in exactly one point. Also, xg = gx for X €T and g € G, and 7 resivicted
to T is an isomovphismof T onto S.
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Pyoof. For each n, let Mp = 7-1([én, ©)). Then, clearly, M, is a closed sub-
semigroup of M, and T(en) N M, is a closed subsem1group of M,. Since, further-
more, 7-1(e,) = e, G is the minimal ideal of M,, it follows as before that e,g=ge,
for each g in G, since G C M, for each n. Since e, acts as an identity for [o, en),
it follows quite easily that T(en) C My for each n.

Define T as in the statement of the lemma. In order to prove that T is a closed
subsemigroup of M, meeting each orbit of G in exactly one point, let us first prove
two statements concerning the idempotents of M. The first statement is that if e is
an idempotent of M, and x € T(e), then xe = e. Since n(e) = n(e) 7(x), and S is an
M-thread, it follows that w(e) < m(x), so that it is also true that w(e) = #(x) 7(e). Now,
since x € T(e), ex = e, so that exe = ee = e and xexe = xe. But now, xe € e@G, a
group, and xe is an idempotent. Since e is the unique idempotent in eG, the claim
that e = xe is true.

The second claim concerning idempotents of M is this: if e and f are idempo-
tents and e < f, then T(f) is contained in T(e). To see this, let x € T(f). By as-
sumption, e < f, so that n(e) < w(f), and therefore w(e)w(f) = m(e), hence e = ef.
From this it follows that ex = (ef)x = e(fx) = ef = e, so that x does belong to T(e).

With these two claims established, it is easily seen that T is a subsemigroup of
M, since it is the union of a tower of subsemigroups. T clearly meets each orbit of
G in M; for if x € M, then by hypothesis there exists an idempotent e, with e, <x.
Hence T(e,)n x G # O, and therefore TN xG # [J. Also, T cannot meet xG in more
than one point, since the same is true for each set in the tower of which T is the
union.

To see that T is closed in M, suppose {x,} is a sequence of elements of T
such that x,— x, x € M. Since 7 is continuous and since X ,— X, it follows that
7(x,) converges to m(x) # 6. Now the sequence w(e,) converges monotonically to 6,
and 7(x) > 6, so that there exists an integer N such that 7(ey) < 7(x). But 7(x,)
converges to 7(x), hence there exists an integer N, such that w(ey) < n(x,) for all
n> N, Thus x,€ T(epn) for all n > N,. Since T(ep) is closed and x ,— X, we have
x € T(eyn), hence x € T, which proves that T is closed. Clearly, tg =gt for t € T
and g € G. The application of Lemma 13 to T now establishes Lemma 17.

LEMMA 18. Suppose that theve exists an idempotent £ in S such that, if g® =g
for g € 8, then < g, in other wovds, such that T is a minimal idempotent for S.
Then the interval [0, I] is a subsemigroup of S, isomorphic to the unit interval
under real multiplication, and [f, ) is an M-thread.

Proof. Since 6 is a zero for I, =[8, f], and f is a unit for I,, and since these
two elements are exactly the idempotents of I, it follows from [7] that I, is either
isomorphic to the unit interval under real multiplication, or else isomorphic to the
real interval [1/2, 1] under the multiplication x oy = max(1/2, xy), where xy
denotes the real product of x and y. In the latter case, however, each element is
nilpotent, which is clearly not the case here, for if x € (8, f], then x™ € S for each
n, and therefore x® # g for any n. From this the lemma follows.

LEMMA 19. Let f be as in Lemma 18, and let D = n51([0, f]). Then Dis a
compact connected subsemigroyp of M,. If £ denotes the idempotent of n~*(f), then
iG is a Lie group with identity f, and if x and y ave in D, with xy = f = yx, then x
and 'y both belong to 1G.

Pyroof. Clearly, D is compact and connected, and it is a subsemigroup of M,.

By Lemma 10, fG is isomorphic to G, hence fG is a Lie group with identity f. Now
suppose that x and y in D are such that xy = f = yx. Then
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n(xy) = 7(x) 7(y) = 7(f) = £ = 7(y) 7(x) .

But [, f] is isomorphic to the unit interval under real multiplication, hence
n(x) = f = n(y), so that x and y both belong to fG.

LEMMA 20. Let Z = {x € D| xg = gx for g € fG}, where £ is the idempotent
defined in Lemma19. Then Z is a compact subsemigroup of D meeting each orbit
of fG in D.

Proof. This lemma is due to Mostert and Shields, and the proof is to be found in

[7].

LEMMA 21. There exists in D an I-semigroup J,with endpoints f and ¢, such
that w vestricted to J is an isomovphism onto [0, f].

Proof. The first step in the construction of J is the construction of a one-
parameter semigroup in Z. The proof of the existence of this one-parameter semi-
group proceeds as follows. By Lemma 20, Z is a compact semigroup, and it is an
adequate local semigroup whose maximal subgroup C = Z N iG is the center of G
(see [7]). Clearly, C is not open in Z, and there exists a neighborhood of f contain-
ing only the idempotent f. Hence, by Mostert and Shields [7], there exists a one-
parameter semigroup 6: [0, 1] — Z such that 6(0) = f and 6(t) ¢ C for t> 0. (Here
[0, 1] denotes the real unit interval.)

Now, for a positive real number r = n + a, where n is an integer and 0 < a <1,
define a(r) = 6(1)"6(a). In [3], the author proves that such a function @ is a homo-
morphism from the nonnegative reals under addition to M. Also, as in [3], there
exists a real number t, > 0 such that o is either one-to-one on [0, t,) or else one-
to-one on [0, ). In either case, ([0, ty)) U¢ = (@([0, t,))*, where t, is real or
ty = ©, so that « is one-to-one on [0, t;). Thus J = (@([0, ty)))* is an I-semigroup.

Clearly, J is connected, f € J, and ¢ € J; thus 7,(J) is connected and contains 6
and f, and therefore it must equal [9, f]. To see that m, restricted to J is an iso-
morphism, it is necessary only to show that 7, is one-to-one on J, or that J meets
each orbit of fG in at most one point. For the proof of this fact, suppose, for real
numbers s and t with s> 0 and t > 0, that a(s) = a(t) (fg) for some g € G. Since
f is an identity for J, this implies that a(s) = a(t)g. Then, if t = s + r for some
real number r > 0, it follows. that

a(s) =at)g=a(s+r)g=a(s)a(r)g.

This implies that m(a(s)) = m(a(s)) n(a(r)), and by the multiplication in [0, f], that
m(a(r)) = f. Hence a(r) € fG, and therefore r = 0 and s = t. This completes the
proof of the lemma.

LEMMA 22. Theve exists a thrvead T in M, such that My = TG, T is isomorphic
to S, and tg =gt for t € T and g € G.

Proof. Let T = T(f)UJ, where J is as in Lemma 21. Since f is a zero for
[f, ), and #(f) = {, we see that T(f) meets each orbit of G in exactly one point, for
each x such that w(f) < 7(x); also, 7 restricted to T(f) is an isomorphism from T(f)
onto [f, »). By Lemma 21, 7 restricted to J is an isomorphism onto [, f], and
since T(f)nJ = {f}, 7 restricted to T is an isomorphism onto S,. Thus T has the
desired properties.

With Lemma 22, the proof of the theorem is complete.
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