ON GROUP ALGEBRAS OF p-GROUPS

Gerald Losey
1. INTRODUCTION

Let G be group, and K a field of characteristic p # 0. The group algebra I'g of
G over K consists of all formal sums X a(g) g, where g € G, a(g) € K, and ag) = 0 for
all but finitely many g. The operations + and - are defined in the natural way. Denote
by AG the set of all those sums Z a(g)g for which X ag) = 0; Ag is an ideal of T'g,
generally called the fundamental ideal. Jennings [2] and Lombardo-Radice [3] have
both shown that AG is nilpotent if G is a finite p-group. In this paper, we intend to
show that the converse is also true. These results will then be applied to the case
where G is a locally finite p-group.

The situation where the fundamental sequence AgG =} AG > AG D ... terminates
in a finite number of steps at an ideal different from zero appears to be more diffi-
cult to analyze. Here, we shall only consider the case where G has exponent p and
K is Zp, the ring of integers modulo p.

2. NILPOTENCE OF THE FUNDAMENTAL IDEAL

LEMMA 2.1. The elements g - 1 for all g+ 1 in G are a basis for Ng. If
(hi)ie1 is a set of genevators for G, then the subalgebra of T' g genevated by the
elements h:it - 1 is exactly Ag. In fact, the left ideal of T genevated by the ele-
ments h; - 1 is Ag.

Proof. If Za(g)g € AG, then Z ag) = 0 and therefore
Zial@eg=2a(geg - o) = 2Lalg)lg - 1).

Hence, the elements g - 1 span Ag. It is clear that they are linearly independent.

Let (h,)lEI be a set of generators for G, and let J be the subalgebra generated
by all h+ - 1. Clearly, JC Ag. If g €G, then

- pe(1) | ek
g-t=hgy iy -1

where £(j) = +1. Applying the identity
XY -1=X-1D+(Y-1D+X-1)(Y -1)

to the right-hand side of this equation sufficiently often, we obtain a representation
of g - 1 as a linear combination of products of the h8 - 1. Hence g -1 isin J, and
hence A5 C J. Therefore, J = Ag.

Let A be the left ideal generated by the elements h; - 1. Then
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belongs to A. Hence, by the above, A = Ag.

THEOREM 2.2. If Ag is nilpotent, then G is a finite p-group.

Proof. Suppose AL #0 and AB' = 0. Let Za(g)g be a nonzero element of AG.

Then, for any h € G,
(Ea(g)g)(h -1)=0 or 2a(gg= 2ialgh.
Changing indices on the right gives
2ia(g)g = Lia(gh-g.

Consequently, a(g) = a(gh-!) for every g € G. Taking g = h, we obtain a(h) = a(1)
for every h € G. Thus, all the coefficients a(g) are the same, and hence nonzero.
But only a finite number of a(g) are nonzero. Therefore G must be finite.

k . pk pk . s s
Let p*>n; then (g - 1) =gP_ - 1= 0, since K has characteristic p. Hence,
ng = 1 and therefore G is a finite p-group.

If the field K has characteristic 0, then the analogous situation cannot occur,
that is, A g is never nilpotent. For if it were, then G would have to be finite as
above. Suppose g # 1 and g™ = 1; then

e = [(g - mo 3 (MY (1)
1=g®=[(g- 1 +1] jzzo(j)@ 1,

in other words,

Since g - 1 € Ag, g - 1 also belongs to A(Z; and thus to Aé, A?;, +«-. Therefore
g -1€] |A%. Butthis contradicts the assumption that Ag is nilpotent.

THEOREM 2.3. G is a locally finite p-group if and only if NG is locally nil-
potent.

Proof. Let G be a locally finite p-group, and A a subring of Ag generated by
finitely many elements A; = T aij(g)(th - 1) (i=1, 2, -, k). Let S be the setofall g
such that «a;(g) # 0 for at leastone i=1, ---, k. Then S is finite, and hence the sub-
group H generated by S is a finite p-group. Ap is the subring of Ag generated by
all gl - 1 for g € S, by Lemma 2.1. Therefore A C AH By the converse of
Theorem 2.2, Ay is nilpotent. Hence, A is also nilpotent.

Conversely, assume that Ag is locally nilpotent. Let H be a finitely generated
subgroup of G, generated by h;, hy, ---, h,,. Then Ay is finitely generated by
hiil - 1. Consequently, Ay is nilpotent, and therefore H is a finite p-group. There-
fore G is a locally finite p-group.
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3. THE FUNDAMENTAL SEQUENCE FOR GROUPS OF EXPONENT p

In this section, we shall assume that G is a group of exponent p (in other words,
that every element has order p) and that the field of coefficients is Zp.

THEOREM 3.1. Let G be a group of exponent p,ﬁnd let A be the fundamental
ideal of the group algebra of G over Zp. I Ag = Arcl; , then

Gantz = G2n+3 s

wheve G; is the ith subgvoup in the lowev central series of G.

The proof of this theorem will be based on a modification of a construction due
to Griin [1]. We set

Ay = Gm-i—l/(Gm, Gm+l1),
where by (H, K) we mean the subgroup of G generated by all commutators
(h, k) =h~'k7*hk (h € H, k € K). Since (Gm+l, Gm+D € (Gm, Gm+1), Am is an
abelian group of exponent p. We shall therefore regard A,, as an additive Zj, -
module; that is, if we set hy = (G, G,;+1), then
i) 1,=0,

ii) (gh) = go + hy,

iii) (h™Y), = -h,,

. n -

iv) (h )0 = nh, for n € Zp.

We allow the elements of G to operate on Am in the following manner:

hy g = (g~thg),. It is not difficult to show that the operation is well defined and that
G acts as a group of operators on Ap,. Since A, is already a Zp-module, an
operation of ' on A, may be defined:

by (Z ale)g ) = Sy o).
LEMMA 3.2. If hyg € A, and g,, g2, ***, 8k € G, then
(h, g1, =, g o =ho - (g1 - 1)~ (g - 1) .

By (h, g3, -+, gx) we mean the left normed commutator ((---((h, g1), g2), ***), gK-
Proof. If k = 1, then

(h, g1)o = (h=tgithg,), = (h™), + (g7 hg,),
=-hy+ hy-g; = hy- (g, - 1).
The induction step is trivial.

LEMMA 3.3. A, A& = (Gmaint1)o; in particular, Amy - AG = 0.

Proof. If we recall that hg € Ay, implies that h € G,+1, this follows immediate-
ly from the preceding lemma.
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We can now prove Theorem 3.1. If A?; = AEH, then A, 4;- AG = Anyre Ag+ = 0.

Hence, (G2n+1)0 = 0, that iS, G2n+2 _C_ (Gn+l’ Gn+2) E G2n+3. Therefore
Gant2 = Goni3-
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