ON GROUP ALGEBRAS OF p-GROUPS

Gerald Losey

1. INTRODUCTION

Let G be group, and K a field of characteristic $p \neq 0$. The group algebra Γ_G of G over K consists of all formal sums $\Sigma \alpha(g) g$, where $g \in G$, $\alpha(g) \in K$, and $\alpha(g) = 0$ for all but finitely many g. The operations + and \cdot are defined in the natural way. Denote by Δ_G the set of all those sums $\Sigma \alpha(g) g$ for which $\Sigma \alpha(g) = 0$; Δ_G is an ideal of Γ_G , generally called the fundamental ideal. Jennings [2] and Lombardo-Radice [3] have both shown that Δ_G is nilpotent if G is a finite p-group. In this paper, we intend to show that the converse is also true. These results will then be applied to the case where G is a locally finite p-group.

The situation where the fundamental sequence $\triangle_G \supseteq \triangle_G^2 \supseteq \triangle_G^3 \supseteq \cdots$ terminates in a finite number of steps at an ideal different from zero appears to be more difficult to analyze. Here, we shall only consider the case where G has exponent p and K is Z_p , the ring of integers modulo p.

2. NILPOTENCE OF THE FUNDAMENTAL IDEAL

LEMMA 2.1. The elements g - 1 for all $g \neq 1$ in G are a basis for \triangle_G . If $(h_i)_{i \in I}$ is a set of generators for G, then the subalgebra of Γ_G generated by the elements $h_i^{\pm 1}$ - 1 is exactly \triangle_G . In fact, the left ideal of Γ_G generated by the elements h_i - 1 is \triangle_G .

Proof. If $\Sigma \alpha(g) g \in \Delta G$, then $\Sigma \alpha(g) = 0$ and therefore

$$\sum \alpha(g) g = \sum \alpha(g) g - \sum \alpha(g) = \sum \alpha(g)(g - 1).$$

Hence, the elements g-1 span \triangle_G . It is clear that they are linearly independent.

Let $(h_i)_{i \in I}$ be a set of generators for G, and let J be the subalgebra generated by all $h_{\bar{i}}^{\pm 1}$ - 1. Clearly, $J \subseteq \triangle_G$. If $g \in G$, then

$$g - 1 = h_{i(1)}^{\varepsilon(1)} \cdots h_{i(k)}^{\varepsilon(k)} - 1$$
,

where $\varepsilon(j) = \pm 1$. Applying the identity

$$XY - 1 = (X - 1) + (Y - 1) + (X - 1)(Y - 1)$$

to the right-hand side of this equation sufficiently often, we obtain a representation of g - 1 as a linear combination of products of the h_i^{ϵ} - 1. Hence g - 1 is in J, and hence $\triangle_G \subseteq J$. Therefore, $J = \triangle_G$.

Let Λ be the left ideal generated by the elements h_i - 1. Then

Received March 24, 1960.

This paper is based in part on the author's doctoral dissertation, University of Michigan, 1958.

$$-h_i^{-1}(h_i - 1) = h_i^{-1} - 1$$

belongs to Λ . Hence, by the above, $\Lambda = \triangle_G$.

THEOREM 2.2. If \triangle_G is nilpotent, then G is a finite p-group.

Proof. Suppose $\triangle_G^n \neq 0$ and $\triangle_G^{n+1} = 0$. Let $\Sigma \alpha(g) g$ be a nonzero element of \triangle_G^n . Then, for any $h \in G$,

$$\left(\sum \alpha(g)g\right)(h-1)=0$$
 or $\sum \alpha(g)g=\sum \alpha(g)gh$.

Changing indices on the right gives

$$\sum \alpha(g) g = \sum \alpha(gh^{-1})g$$
.

Consequently, $\alpha(g) = \alpha(gh^{-1})$ for every $g \in G$. Taking g = h, we obtain $\alpha(h) = \alpha(1)$ for every $h \in G$. Thus, all the coefficients $\alpha(g)$ are the same, and hence nonzero. But only a finite number of $\alpha(g)$ are nonzero. Therefore G must be finite.

Let $p^k > n$; then $(g-1)^{p^k} = g^{p^k} - 1 = 0$, since K has characteristic p. Hence, $g^{p^k} = 1$ and therefore G is a finite p-group.

If the field K has characteristic 0, then the analogous situation cannot occur, that is, \triangle_G is never nilpotent. For if it were, then G would have to be finite as above. Suppose $g \neq 1$ and $g^m = 1$; then

$$1 = g^{m} = [(g - 1) + 1]^{m} = \sum_{j=0}^{m} {m \choose j} (g - 1)^{j},$$

in other words,

$$g - 1 = -\frac{1}{m} \sum_{j=2}^{m} {m \choose j} (g - 1)^{j}.$$

Since $g-1 \in \Delta_G$, g-1 also belongs to Δ_G^2 and thus to Δ_G^4 , Δ_G^8 , Therefore $g-1 \in \bigcap \Delta_G^n$. But this contradicts the assumption that Δ_G is nilpotent.

THEOREM 2.3. G is a locally finite p-group if and only if \triangle_G is locally nilpotent.

Proof. Let G be a locally finite p-group, and Λ a subring of \triangle_G generated by finitely many elements $A_i = \sum \alpha_i(g)(h-1)$ ($i=1,2,\cdots,k$). Let S be the set of all g such that $\alpha_i(g) \neq 0$ for at least one $i=1,\cdots,k$. Then S is finite, and hence the subgroup H generated by S is a finite p-group. \triangle_H is the subring of \triangle_G generated by all $g^{\pm 1}$ - 1 for $g \in S$, by Lemma 2.1. Therefore $\Lambda \subseteq \triangle_H$ By the converse of Theorem 2.2, \triangle_H is nilpotent. Hence, Λ is also nilpotent.

Conversely, assume that \triangle_G is locally nilpotent. Let H be a finitely generated subgroup of G, generated by h_1, h_2, \cdots, h_n . Then \triangle_H is finitely generated by $h_1^{\pm 1}$ - 1. Consequently, \triangle_H is nilpotent, and therefore H is a finite p-group. Therefore G is a locally finite p-group.

3. THE FUNDAMENTAL SEQUENCE FOR GROUPS OF EXPONENT p

In this section, we shall assume that G is a group of exponent p (in other words, that every element has order p) and that the field of coefficients is Z_p .

THEOREM 3.1. Let G be a group of exponent p, and let \triangle_G be the fundamental ideal of the group algebra of G over Z_p . If $\triangle_G^n = \triangle_G^{n+1}$, then

$$G_{2n+2} = G_{2n+3}$$
,

where G_i is the ith subgroup in the lower central series of G.

The proof of this theorem will be based on a modification of a construction due to Grün [1]. We set

$$A_{m} = G_{m+1}/(G_{m}, G_{m+1}),$$

where by (H, K) we mean the subgroup of G generated by all commutators (h, k) = $h^{-1}k^{-1}hk$ (h \in H, k \in K). Since $(G_{m+1}, G_{m+1}) \subseteq (G_m, G_{m+1})$, A_m is an abelian group of exponent p. We shall therefore regard A_m as an additive Z_p -module; that is, if we set $h_0 = h(G_m, G_{m+1})$, then

- i) $1_0 = 0$,
- ii) $(gh)_0 = g_0 + h_0$,
- iii) $(h^{-1})_0 = -h_0$,
- iv) $(h^n)_0 = nh_0$ for $n \in \mathbb{Z}_p$.

We allow the elements of G to operate on A_m in the following manner: $h_0 \cdot g = (g^{-1}hg)_0$. It is not difficult to show that the operation is well defined and that G acts as a group of operators on A_m . Since A_m is already a Z_p -module, an operation of Γ_G on A_m may be defined:

$$h_0 \cdot \left(\sum \alpha(g)g \right) = \sum \alpha(g)(h_0 \cdot g).$$

LEMMA 3.2. If $h_0 \in A_m$ and $g_1, g_2, \dots, g_k \in G$, then

$$(h, g_1, \dots, g_k)_0 = h_0 \cdot (g_1 - 1) \dots (g_k - 1)$$
.

By (h, g_1, \dots, g_k) we mean the left normed commutator $((\dots((h, g_1), g_2), \dots), g_k)$. *Proof.* If k = 1, then

$$\begin{aligned} (h, g_1)_0 &= (h^{-1}g_1^{-1}hg_1)_0 = (h^{-1})_0 + (g_1^{-1}hg_1)_0 \\ \\ &= -h_0 + h_0 \cdot g_1 = h_0 \cdot (g_1 - 1) . \end{aligned}$$

The induction step is trivial.

LEMMA 3.3.
$$A_m \cdot \triangle_G^n = (G_{m+n+1})_0$$
; in particular, $A_m \cdot \triangle_G^m = 0$.

Proof. If we recall that $h_0 \in A_m$ implies that $h \in G_{m+1}$, this follows immediately from the preceding lemma.

We can now prove Theorem 3.1. If $\triangle_G^n=\triangle_G^{n+1}$, then $A_{n+1}\cdot\triangle_G^n=A_{n+1}\cdot\triangle_G^{n+1}=0$. Hence, $(G_{2n+1})_0=0$, that is, $G_{2n+2}\subseteq (G_{n+1},\,G_{n+2})\subseteq G_{2n+3}$. Therefore $G_{2n+2}=G_{2n+3}$.

REFERENCES

- 1. O. Grün, Zusammenhang zwischen Potenzbildung und Kommutatorbildung, J. Reine Angew. Math. 182 (1940), 158-177.
- 2. S. A. Jennings, The structure of the group ring of a p-group over a modular field, Trans. Amer. Math. Soc. 50 (1941), 175-185.
- 3. L. Lombardo-Radice, Intorno alle algebre legate ai gruppi di ordine finito, II, Rend. Sem. Mat. Roma 3 (1939), 239-256.

The University of Wisconsin