THE FOURIER COEFFICIENTS OF AUTOMORPHIC FORMS
ON HOROCYCLIC GROUPS, III

Joseph Lehner

1. INTRODUCTION

In previous papers, we have shown how the circle method can be used to deter-
mine the Fourier coefficients of enfirve automorphic forms on certain horocyclic
groups (Grenzkveisgruppen). In the present paper, we extend the results to auto-
morphic forms that have poles.

Our results are contained in the following theorems. For definitions of symbols,
see [ 2], except as noted; automorphic forms with poles are defined in Section 2 of
the present paper.

THEOREM 1. Let F(z) be an automorphic form of dimension r > 0 on an H-
group T'. Let R, be a fixed fundamental region of T which does not have - as a
vertex, and let py, py, *-, Ps be a complete set of inequivalent vertices of I'. Letl
the expansions of F(z) at the pavabolic points be

Fz) = (Ar2) "t Sht) (= e(Arz/AY),
(1.1)

= » abtm 1<k<s).
m=—“'k

Let F(z) have simple poles at the intevior points zy, z,, -, zg4 of R, with residues
By, '+, Bq. Then, for each k (1 <k < s), the Fouriey coefficients a{k) with m> 0
ave given in teyms of the set of coefficients agl) with m<0 (1<j< s) by the
Jormula '

s ”‘j
(k) _ ( 277) (3) -1
a,’ = Ay e(r/4)?_.) ?la_v Z}C' cjkA(cjk, Vi m, ) L(cjk, my, v; r)
(1.2) e EaEs

q
27 r+2 -r-2
- (-5\;) 2B, 2 eWMel-(m+ o)A Vz /A) (A Vz ) “(czp+ d) " °.
n=1 VeA, (z)
Hevre CJ'.k is the set of positive elements of Cjk, and N, is defined in (4.5).

Poles of higher order can be treated in an analogous manner, but the algebraic
details, into which we do not enter here, become rather complicated.

THEOREM 2. If F(z) is an automovrphic form of dimension zevo on I' having the
expanstons (1.1), then, for m > 1, a&‘) is given by the sevies (1.2) with an evvor
term O(1) (m — =), wheve in the first sevies c ik is furthev vestricted by the
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66 JOSEPH LEHNER
condition cji < B vm/h (8 = constant), and in the second servies we impose the addi-
tional vequivement SAyVz, > 1/8°m (1 <n<q). Here h is defined in (2.17).

THEOREM 3. Let G(z) be an automorphic form of dimension -2 on IT" with
Fourier coefficients bﬁﬁ) which is, moreover, the derivative of a form F(z) (of di-

mension zevo). Then, for m > 1, bgi) is equal to 2mi(m + oy )/N\ times the a(mk) of
Theovem 2, plus an evvor term O(m).
Theorem 3 is, of course, obtained from Theorem 2 by differentiating (1.1).

A special case of Theorem 1 was proved by Zuckerman|[5]. He considered auto-
morphic forms con the modular group, which has a single parabolic cusp (s = 1, in our
notation). He solved a slightly different problem which, however, is equivalent to the
one treated in this paper. For the path of integration, he used a variant of the Farey
series.

Petersson has proved Theorem 1 by another method [3].

2. GROUPS AND AUTOMORPHIC FORMS

In this section, we recall needed material from [2, Sections 2, 3, and 4]. We
also define automorphic forms, which may now have poles, and develop some of
their properties. :

Let T be an H-group [2, Section 2]. Let py (k=0, 1, 2, ---) be a parabolic ver-
tex of I' with p, = «». Let R, be a fundamental region of T" which does not have «
as a vertex. We denote by p;, py, -+, ps a complete set of inequivalent parabolic
vertices of R,. Define >

(2.1) A= (3 :;k) (r#=)  Ao=1=(3 1)

so that A, (py) =«<. Consider the set
ATAR = {X]| X=A5VARL, Ver}  (G,k=0,1, -, 9),
and write

a-k b'k
(2.2) X = ( ! dJ ) .
, Cik %k

Call Cji the set of third entries cji of Ajl"Alzlz

(2.3) Cji ={ x| o (x :) € A;TAR! } (G,k=0,1, -, s),
and call C_'ik the set of positive elements of Cj :

(2.4) - Cle=f{epecyl ey >0t

The set of real numbers Cjy is discvete. (This was proved in [2, Section 2] for the
case j, k # 0, but the proof works for all j, k.) Define

(2.5) Cjk = min Cjk (ch € C;lik) .
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Then
(2.6) ?J;> 0 (,k=0,1,--,s).

Corresponding to each pg, there is a subgroup I'y of I' that leaves py fixed.
There exists a positive number Aj such that the cyclic group I'y is generated by

1+ APx  -AxPE (1 Ao
(2.7) S, = v 1-npy) €0 So={g o)

We note that
(2.8) Sk = Af(l U-AkAk, Sin = Alzl U mAkAk (k =0,1, 2, '") ’

where m is an integer, U = (§ 1), and we write, symbolically, Uk = (') for
real K.

We proceed to the definition of an automorphic form. Let z be a complex vari-
able and o the upper half-plane Sz > 0. Write e(z) = exp 27iz. By an admissible
multiplier system &(T, r) for the group I' and the (real) dimension r, we shall mean
a complex-valued function £(V) defined for V € I" such that

1) len)] =1,
2) e(V,V,)/e(Vy)e(Vy) = m(V,, V, z)m(V,, z)/m(V,V,, z)

for z€ o¢ and V,, V, e I". Here m(V, z) = (cz+ d)™F for V = (2 2 , and the branch

of the many-valued function is specified in [2, (1.2)] (note that if it were not for many-
valuedness, the right-hand member of 2) would be identically 1).

We now define an automorphic form of (real) dimension r on I to be a function
F(z) such that '

1) F(z) is meromorphic in 4,

2) F(z) tends to a definite limit, finite or infinite, as z tends to a parabolic
vertex from within a fundamental region of I",

(2.9) 3) F(Vz) = e(V)m(V, z)f(z) for each V€ T.

We now show that these conditions lead directly to the existence of an expansion
for F(z) around a parabolic vertex.

LEMMA 1. Corvesponding to each finite parabolic vertex py (k > 0), theve exists
a number T, > 0 such that

(2.10) (A 2)T 0Kk F(2) = £,(t)  (t = e(A z/0),
(2.11) 0= » a®e™  (u finite),
m==- [J.k

the series converging for |t| < Tk
Proof. We first show that f (t) is single-valued. If t = e(Akzl/hk) = e(Akzz/)\k),
then Ay z; = A, z, + m);, (m an integer). Hence A, z; = Um)’Lk Az, = Akslzmzz,or
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z; = Sg™z, (see (2.8)). Denoting the left member of (2.10) by ¥(z), we have
Ir
Y(z,) = (A SPPz1) e(-axAxSK'z1/M) F(SK z1)

A

= (UT™MA 2 ) e(e UM A 21 /00) (S m(SP, z)) F(z ),

where we have used (2.9). But

e('ak) = 8(%() [29 (32)] ’
(2.12)

- -mA
m(Sf{n, zl) = ((Akz1 - mhk)/Akzl) (U™ kAkzl/Akzl) -r,

Hence,

Y(z 2) e(akm) e(-akAkz 1/>‘k) e(S{™) (Ay z D F(z l)

]

(Akzl)re(—akAkzl/Ak) F(z,) = ¥(z,).

Thus fy (t) has the same value regardless of what solution z of t = e(Ay z/A}) we
choose.

From (2.10) it is clear that fy(t) is regular at t = t* # 0 if and only if F(z) is
regular at z = z*# p., where t* = (A z*/A;). Suppose that F(z) has a pole at
z*e o ; then |F(z)| — = as z — z*. This is possible if and only if |, ()| — = as
t — t*; hence, f1(t) has a pole at t*. The function f1(t), then, is meromorphic in
|t| < 1 except possibly at t = 0, and the poles of fi(t) correspond in a one-to-one
way with the poles of F(z) in a fixed fundamental region R having the parabolic
vertex pi.

Suppose f,(t) has infinitely many poles in a neighborhood of t = 0. Then F(z)
has infinitely many poles z, in a neighborhood of py, and, on a certain subsequence,
z, — py. Hence, |F(z,)| — = as z, — py. Moreover, fi (t) approaches every value
as t — 0. Consider a sequence {v,} (v, — 0) on which fi (t) — 0. According to
(2.10), F(w,) — 0, where v, = (Axw,/A}), w, € R. Clearly w, — px as n — co.
Thus, on the sequences {zn} and {wn} , which both approach py, F(z) has different
limiting values, which violates the second condition of the definition of an automorphic
form.

The argument shows not only that fk(t) has only a finite number of poles in
\tl <1 (and therefore that F(z) has at most finitely many poles in a fundamental
region), but also that f, is regular or has a pole at t = 0. This proves (2.11).

Remark. The preceding reasoning justifies the statement made in [2], lines fol-
lowing (1.1): “The last condition is equivalent to the following: F(z) has at most a
pole (not an essential singularity) in the local variable appropriate to a given para-
bolic point.”

At the parabolic point «, the discussion is similar, but we find it convenient to
use the definition

(2.13) ela,) = €(S,) e(-r) 0<a,<1)

instead of (2.12). Then we find easily that
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(2.19)  Fl@) =eleg /Moty (0= T a@t™ t)=el2/ry),

rn=—[uL0

the series converging for |t| < 1o (179> 0).

The transformation formula (2.9) for F(z), when expressed in terms of the func-
tions f;, takes the form:

£ le(w/A)) = e-1(V) m'l(AjVAil, w) e(aj w'/)tj - akw/)\k) fj(e(w'/)\j))
(2.15)
(W = A VA w; 3, k=1, 2, ),

provided A; VA1;1 does not have « as a fixed point. (See [2, (3.6)].) If j =0, we get

2.16 f (e(w/A)) =n-e 1(V)m-Y VAL, w)ela, w'/xy - a, w/N )i (e(w!/Ay))
2.16
(W' = VAL 'w, k=1, 2, =),

where |17| = 1.

Let R, be a fixed fundamental region of I" which does not have « as a vertex.
For purposes of 1ntegrat1on we shall use a partition of the segment L(N, k) = L
0 < x <X, y=N-2 similar to the one employed in [2, Section 4]. Define

Li(V, N) = (V) = {we Ly| A;VAL!w e Int E} (Ww=x+ iy),
(2.17) E= {z| Sz>h},

h= max (1/cj, - (2m) 124 log 74/2).
1<j,k<s

The proof in [2] that the IJk(V) do not meet in interior points applies word-for-word
to the present case, since the essential property used in that proof was the inequality
h > l/c kx for 1 < j, k< s. The set MJk(N) of elements V of I'" on which Ik is not
empty can be characterized by

( ) M (N) = {ver|o< ik < Nh“l/2 -k/N < -dj/eqe <M+ & /N, 0 < ajk/cjk<)¢j}
2.18
(j’ k=1, 2, -, S),

where « = (1/6;122h - N’Z)l/z, and where ajy, -+ are defined in (2.2).
Let

L =Ln- U U 5.m.

j=1 V€ My

Define D, to be the part of R, exterior to the discs D; (1 <j< t) of diameter h™?!
tangent to the real axis at Pj, where P1, P2, ***, Pt is a complefe set of parabolic
vertices of R,. The vegion D lies between two hovizontal lines at heights

hy, h; (hy > hl) above the real axis.

Let
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(2.19) Io.1(V) = {we Ly| VAL we Do} .
We have

S
(2.20) ne=-U U g m,

Mo,k(N) being the set of V on which I (V) is not empty. This is the desired par-
tition of Ly; into nonoverlapping sets. An immediate consequence is that, for each
N,

(2.21) 2 2 LW =2 @ <k<s),
j=0 V€Mjk(N)

where |Ijkl denotes the measure of Lie -

3. INTEGRATION

Our object is to determine the coefficients ag,l‘) (m > 0) of (1.1) from a knowledge
of the principal parts of F at the full set of parabolic vertices, that is, of the
agl) (m <0, 1<j<s), together with the principal parts at the singularities of F.
Since fy(t) is regular for 0 < ltl < Tk, we have, by Cauchy’s theorem,

(x) -1 S -m-1
ay =5 ka(t)t dt,

where K is the circle of radius 7, /2 about the origin. Making the change of vari-
able t = e(w/x) (W= x+ iy), we get

a2l XL. £1e(w /Ap) e(-mw/N) dw,

L' being the segment 0 < x < Ay, y = y, = -(27) "} Ay log (T/2). We now shift the
path of integration downwards to the segment Ly;: 0 < x < Ay, y =y1 = N-2, The
contributions to the integral from the vertical sides of the rectangle (x = 0, Ay;
y1 <y < y2) cancel, for the integrand is periodic with period Ax. Hence,

(3.1) N a(mk) = S‘L fi (e(w/ry)) e(-mw Ay ) dw - 27i 2+ Res= P;(N) - P,(N),
N G(N)

where G(N) = Gi(N) is the rectangle bounded by L', Ly, and the vertical sides just
mentioned.

To treat the term P,(N), we make use of the dissection of Ly explained in Sec-
tion 2, namely (2.20). The integral over Ly is then a sum of integrals over the sets
I (V). In each of these integrals, we apply the transformation equation (2.15) or
(2.16), according as j > 0 or j = 0, and then replace f; (j > 0) by the series (2.11).
The result is
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Py(N) = 2 e~ l(v) 2 m‘l(AjVAl-{l, w) 23 ag) e{(n+ aj)w' /)\j - my W} dw
j=1 VGMjk Ijk(v) n=-p;j
(3.2) + 1 2. e W) S m”l(VAEI, w)e(@ow'/Ag - my W) fg(e(w'/rg)) dw

VeMy 1 Iy, (V)
where a; is defined in (2.12) and my = (m + @)/,
The structure of T,;(N) is exactly the same as that of the sum T, in [2, (5.4)]. In
fact, the only difference in the two terms lies in the value of h; compare (2.17) and

[2, (4.10)]. An examination of the argument of [2] reveals the fact that only two prop-
erties of h were used in the evaluation of T,, namely,

1) h>1/eg (1<), k<s),

2) the series 2, [agj) | exp (-2r(n + ozj)h/hj) converges.
n

In the present case, 1) holds by (2.17). Moreover,
exp (-2n(n + aj)h/x;) < exp ((n + 1) log (3/2)) = (ry/ ™",

again by (2.17), and Z Iagj)l ('rJ-/Z)n+l converges (see Lemma 1). Hence, both require-

ments on h are met, and we can take over the value of T, given in the lines following
[2, (6.3)]:

Kj
— 1 _ (3) -1
(3.3) T; = 1\171m Ty (N) = 21re(r/4).2 22 ald Z. ek Al ¥55 mk)L(cjk, m, Vs, r).
°° j=1v=1 cjk(-.'Cjk

(The new symbols in (3.3) are defined in [2, Section 1].) The absolute convergence of
the series follows from estimates in [2, Section 7].

We now take up T,(N). As we saw in Section 2, the image of Io,k(v) under VA121
lies in the region D,, and D, lies between two horizontal lines at heights hy, h,
(hy > h,) above the real axis. However, the image path might pass through one or more
poles of the integrand. Since the integrand equals a regular function times F(w'),
where w' = VAlj:l w, we are here concerned with the poles of F(w'). Only a finite
number of such poles lie in D,, since D, is compact. Surround each pole w 3
i=1, 2, ---,q) in D, by an open disc C_% of radius &' small enough so that these
discs lie entirely in D, and do not intersect. The quantity &' does not depend on N.

If the image path J = VAlzl(IO’k(V)) meets C}, say, denote by w, the intersection
of J and Cj, and by C, the inverse image of C}. The point w) divides the boundary
of C,; into two arcs; let K, be that arc whose inverse image is the smaller arc of C,.
Call w, and K, the inverse images of w) and Kj; w, is then an interval in Ly, while
K, is a circular detour connecting the endpoints of w,. The set obtained from Io,k(V)
by replacing all w’s by K’s will be called Ib’k(V).

Since K, is not more than a semicircle, we have ‘Kl ‘/ le\ < w/2. This shows
that |I}) (V)] < 2-17|1, ,(V)]; hence,
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(3.4) o] <2tr B || <27tay =c,

Ve€Mg 1 VeM, .
where we have used (2.21), and where C denotes a general constant which is inde-
pendent of N but may depend on m or on any of the other parameters.

Moreover, if K, lies below Ly, then Yw < N-? when w € IO k(V). Suppose that
K, lies above Ly. S1nce C, lies entirely in &, the radius & of C1 is less than N2,
Hence when w is on K,, SWS N"2 + ¢ < 2N-2, In all cases, then, we have

[ -2 1
Sw< 2N (we Io,k(v)) .

We continue with the estimation of To(N). First, replace the paths Iy (V) by
Io V). When we I0 V), w'= VA w lies, independently of N, in a fixed compact

subreglon of D, which is free of singularities of F, namely, the part of D, exterior
to the discs C'l, ooy Cc';' Hence,

|[Fw)| <C  (we 1y (V).

Also, we have 3w < 2N7%, and since w'€ D,, it follows that

| m-1(VALL, w)|? = |yw + 8|27 = [Sw/sw'|* < @N"2hihT < oN~27,

Now the integrand of T,(N) equals m‘l(VAlgl, w) e(-my w) F(w') (see (3.2) and (2.14)).

The above estimates then give

T < 22 |1} , (V)] CN-T exp (Cm/N?) < CN-*
VEMg

in view of (3.4). It follows that

(3.5) T, = lim T,(N) = 0.
N~ co
Combining (3.2), (3.3), and (3.5), we get
s Hj

(3.6) P, = lim P (N) = 27me(r/4) Z} E all V Z} cJ’lg A(cjk, Vs, m,) L(cjk, m,, v, r).

4, THE SUM OF THE RESIDUES
We now have to treat the term B,(N) of (3.1), that is, 27i times the sum of the

residues of fi(e(w/Ax)) e(-mw/Ay) in the rectangle Gk(N) The limit of P,(N) as
N — o is then the series

(4.1) P, = 2mi 22 Res fi(e(w/\y)) e(-mw/ry),
Gk

where Gy is the region 0 < 9iw <2, Jw< (-27) "1 Ak log (71./2). The series con-
verges by virtue of (3.1) and of the existence of lim P,(N) = P,
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We shall evaluate P, under the assumption that F has a simple pole of residue 1
at an interior point of the fundamental region R, and is otherwise regular in R,. Let
this pole be located at z,; then F has simple poles at Vz, (V€ I'). Now, by (2.10),
fk(e(w/hk)) e(-mw/x ) = w¥e(-(m + a )w/Ay) F(Alz1 w).

This expression is therefore singular when Al'{l w = Vzg, and its residue is

(4.2) (A Vzo) T e(-(m + oy )A, Vz,/A) Res F(Alzlw).
kY40 k/“k 0/ *k
w=ALrVzg

To calculate the residue of F, we write

Res FAL W)= lim (A Vz - A Vz,) F(Vz)
w=Asz0 z—z

lim (A, Vz - Aszo)s(V) (cz + d) T F(z)

z—3z(

=g(V)(czy + d)~F lim (z - z,) F(z)
0 — Z - Zg 0
= g(V) (cz0 +d) " (g— Asz) - Res F(z).
Z z=zg z=zQ
But
d d dv -2 -2
Hence,
(4.3) Res F(Alzl w) = e(V) (czg + d) 'r_Z(Vzo - PR -2,

w=Aszo

However, as we saw in (4.1), the summation must be extended only over those
poles which lie in the region Gyi. This involves a restriction on both the real and
imaginary parts of the pole. However, the imaginary part fulfills the required condi-
tion automatically. For if Ayl w is a pole of F, then e(w/Ay) is a pole of fy, so that
0 < |e(w/Ar)| < Ty, or Iw < (-21)"! A log 7). The required condition is therefore
satisfied. On the other hand, with regard to the real part, we have the restriction

(4.4) 0 S 9EAkVZO < Ak'
Since A S[PVzy, = U mM‘AIJIZ = AxVzgy - mAy, we must confine V to a set of

representatives of the right cosets of I' . in I' such that each representative satisfies
(4.4). Let A (z,) denote such a system:

(4.5) Az ) = {Ve T|T = 2 IV, 0< %A, Vzy< Ak}.
ven,

From (4.1) to (4.3) we then obtain
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(4.6) P, (zo) =2m 2 e(V)e(-(m + o )AszO/Ak) (Aszc,)’-'+2 (czg + d) -r-2
VED, (zg)

where we have used the relation A Vz = (Vz - pk)'l.

This series converges absolutely. To prove this, remember that both the real and
imaginary parts of A, Vz, are less in absolute value than constants independent of m
and N. Hence |Aszo| < C. Also,

le(-(m + ay) Ay Vzo/M)| = exp {2r(m + @) SAL Vz/2 } < exp Cm ,
and we see that the series (4.6) is majorized by
exp (Cm)- 25 |czg + d|"F-2.

By a result of Poincaré, this series certainly converges, since r > 0 (see [4, pp. 201-
206] and the remark in[2, top of p. 191]).

If F(z) has several simple poles at zj, ***, zq with residues B;, - the term
analogous to P, is obviously Eq 1 B Pz(z ). Now from (3.1), (3.6), and (4 6q) we get
Theorem 1.

If r = 0, the error term CN-F of Section 3 no longer tends to 0 as N increases,
and in general, the series (4.6) does not converge. However, in the preceding devel-
opments, we can choose N = 8vVm (8 = constant), as we did in[2]. The error term
E(m, N) (see[2, line following (5.3)] ) then becomes O(1). The series (4.6) is sum-
med over the set of V for which Ve Ar(zg) and SAVzg > 1/82m. Theorem 2
follows from (3.1).
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