PERIODIC AND REVERSE PERIODIC CONTINUED FRACTIONS
E. P. Merkes and W. T. Scott

An important result in the theory of periodic simple continued fractions is a
theorem of Galois [1, p. 2] (see, for example [2, v. 1, p. 76]). This theorem relates
the value of a periodic simple continued fraction to the value of its reverse periodic
simple continued fraction. The purpose of the present paper is to obtain a general-
ization of the Galois theorem which is applicabie to a wider class of periodic con-
tinued fractions.

The general pure K-periodic continued fraction with nonzero partial numerators
is considered in Section 1. The desired theorem is stated in terms of the conjugate
points of the continued fraction which, in this case, are identical with the fixed points
of the associated linear fractional transformation. In Section 2 the result of Section
1 is extended to mixed K-periodic continued fractions.

1. THE PURE PERIODIC CASE

Let

a; ag_1 ax aj

(1.1) bo+ﬁ+"'+m+-ﬁa-+-5—l—+

e (ajf# 0)

be a pure K-periodic continued fraction with nonzero partial numerators. The asso-
ciated linear fractional transformation is

AK-l X+ ag AK-Z

(1.2) T ) = Bg.1x+agBg_p’

where the fundamental recurrence formulas for A, and B, are

An+1 = bn+1 An+ an-l—l An—l’

(1.3)
Bn+1 = bn+1Bn+ aAntl Bn-l (n = 0: 1, 2, "')’

with A_, =1, B_, =0, A, =Db,, B, =1, and with

(1.4) An41 = 540 b, = bj (n = j (mod K)).

The conjugate points for (1.1) are defined to be the fixed points, x, and X,, of the
associated linear fractional transformation (1.2). Since x, and x, are the solutions
of x = Ty(x), or

(1.5) BK-—l XZ + (aKBK_Z - AK—].)X - aK AK—Z = 0,

they are quadratic conjugates relative to this equation. The fact that Tk(x) is non-
singular follows from the condition a; # 0 and the determinant formula
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(1.6) ApBp.1 - Ap 1By = ('l)n-lal az--+dan.

The reverse pure K-periodic continued fraction of (1.1) is defined to be

* * * *
b . 1 3%k kA
0" b¥ + + bk _; + b + b¥ +
(1.1%)
b, + K e _a_z. ﬂ aK
¢ " byg ; + + by + by + by ; + ,

where, subject to (1.4),

(1.7) b;'; = bK—n’ a;‘i‘l = aK_n.
The following theorem relates the conjugate points for (1.1) and (1.1*), and the
values of (1.1) and (1.1*) when these continued fractions are convergent.

THEOREM 1. For suitable ovdering, the conjugate points for (1.1) and (1.1%)
satisfy

Movreover, if both (1.1) and (1.1%) converge, theiv values are respectively x, and
x¥.
Proof. Let An’p and Bn,p denote respectively the n-th numerator and denomi-

nator of

a’Q-i‘l . ak a) ﬂ) ap+1

+ by + by + +bp+bp+1+

b +

P bp+1 +

Then [2, v. 1, p. 11], for n,p =0, 1, 2, :--,

An+1,p = bp An,p+1 * 8p41 An-l,p+2 s

(1.9)

Bn+1,p = bp+1 Bn,p+1 ta52 Bn—I,p+2 ’
and
(1.10) %,p+l = Bn—&-l,p .

For the n-th numerator and denominator, A* and B, of (1.1%) it is readily found
that

AYy =1=B; x A3=b3=b0“31,x-1’
By=1=4A, x Bi=bl=by = 0,K-1
Thus, by (1.9) and mathematical induction,
. A* =B B* = A =0,1, -, K).
(1.11) p-1 p,K-p’ P p-1,K-p ( )

In view of (1.10) this can be rewritten as
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(1.12) A¥ 1=A, 1k opi1r BE=Box o0 (p=0,1, .-, K).

The conjugate points, x¥ and x¥, for (1.1*) are the solutions x* of the equation
= TI*((X*). Formulas (1.3%), (1.11) and (1.12) can be used to show that

A*l(x* b)+A BKO( b)+A
B ,x*-b )+B BKIO(X —-b)+AK_1

xX* = ,
,0

from which it follows by (1.3) that

—aKBK_Z (bo - X*) + a.KAK_Z
By .1 (bg - x¥) - Ag

bO—X*=

since A, o = A, and B, o = B,. Thus b, - x* is a fixed point for the inverse of
T k(x), and the proof of the statement (1.8) is complete in case all conjugate points
are finite.

It is easily seen that (1.2) has an infinite fixed point if and only if Bg_; = 0, and
that (1.2) has two or one infinite fixed points according as ag Bk _» - Akg_] isor is
not zero. Since B} _; = By _; = 0 by (1.12), it follows from the fundamental recur-
rence formulas and (1.12) that

ak Bk , - Ak _; = -(ag By _, - Ak 1),

and hence that (1.2) and (1.2*) have the same number of infinite fixed points. In
case xf =« and x¥ = ak%A} ,/(af Bk _, - A% _,) (finite), it follows as before that
by - X¥ = x, = and

by - X3 = ag Ag_p/(agBg_, - Ag 1) =% .
Thus (1.8) holds formally in the case of infinite conjugate points.

By a well-known theorem on convergence of pure K-periodic continued fractions
[2, v. 2, p. 86], the condition By _; # 0 is necessary for convergence of (1.1); more-
over, if x, = x,, (1.1) converges to x,. In this case, (1.8) shows that x¥ = x¥ and
(1.1%) must converge to x¥ = b, - x;. In the remaining case, if (1.1) converges, its
value x, must satisfy

(1.13) |Bg-1%1 +agBg_2| > [Bx_1 % + ax By ..
From (1.5%) and (1.7),
xf+x¥= (A% ; -a B ,)/BE_ 1,
and this, together with (1.3), (1.7), (1.8), (1.11) and (1.12), yields
B (x*+afBf , =B, ;x +a, B, , i=1,2).

When both (1.1) and (1.1%) converge, it follows from (1.13) that their values are x,
and x¥, respectively, and the proof of the theorem is complete.

It might be expected that the convergence of (1.1) implies the convergence of
(1.1%*), but this is not the case. The reason is that, although (1.1) converges to x,,
it is possible for (1.1*) to exhibit Thiele oscillation (see [2, v. 2, p. 87]) by having
the condition A¥X - x3BX # 0 fail for one or more indices n=0, 1, ---, K - 2. For
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example, the periodic continued fraction (1.1), where K =2, by =0, b, = 1, and

0< | a1| < |a2 , converges to 0 while the corresponding reverse periodic continued
fraction diverges (A¥ - x(¥B¥ = 0).

COROLLARY 1 (Galois). If a quadratic irvational x, has the simple continued
Jfraction expansion

X,=Db +—1—-
-0 b1+'"+bK

then

= bK—l +

1 1
3 bg z+  +bg+bg g+ 7
where X, is the quadvalic conjugate of X,.

Pyoof. Since (1.1) and (1.1*) are simple continued fractions, both converge and,
by Theorem 1, x¥ = b, - x,, where

X =Byt 5o b B 4 B
K-1 ¥ + Dy + By +

The proof may now be completed by noting that

1 1 __1
x¥ - by X, X,

COROLLARY 2. Let 2(x) have the perviodic C-fraction expansion
o] @K @)

a) X ag x ar x
(1.14) e~ 1+ 20— .. Eo - o

in which a;+ 0 and the j are positive integers. Then Q(x) = [P(x) + VD(x)]/2Q(x),
where P, Q, D are polynomials for which P(0) = Q(0) = D(0) = 1, and D is not
square of a polynomial. Also

o
ay x%K a;x 1 ag x%K
1 + + 1 + 1 +

(1.14%) 1- ?z‘(x) ~ 1+

where Q(x) = [P(x) - VDX)l/2Q(x) is the quadratic conjugate of QUx).

Proof. The statement concerning the form of Q(x) follows from a result on
periodic C-fractions [2, v. 2, p. 113]. In a sufficiently small neighborhood of
x=0, Iajxa3| < 1/4, and the uniform convergence of (1.14) and (1.14%*) to x, = Q(x)
and to x¥ is assured near x = 0. Application of Theorem 1 completes the proof,
since x¥ =1 - x, = 1 - Q(x).

A similar argument suffices to prove the following result for J-fractions.

COROLLARY 3. Let w(z) have the periodic J-fraction expansion

2
a% af{ 4

w(z) ~ z + by -

Zz+b] -  -zZ+by -2zZ+by -
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where aj # 0. Then w(z) is a quadratic irrational function whose quadratic con-
jugate function w(z) has the J-fraction expansion

_ ax a] ag
@@ ~ g b, - -7Z¥by -zFbgg -

2. THE MIXED PERIODIC CASE

Let Cp and Dy denote the p-th numerator and denominator of the mixed K-
periodic continued fraction

G4 .. % Ganr L Sk Ganl
’
dy + + dy + dpyy + + dy o+ dyyg +

where n > 1 is the smallest integer for which

(2.1) dy +

(2.2) g 4+ ol Sark oyl

N
dn+1 + + dn + dn+1 +

is pure K-periodic. Since (2.2) can be identified with (1.1), it is convenient to re-

write (2.1) in the form
€1 ¢, 1 i

(2.8) do+d1+ +53+b1+ + by + by + )

The conjugate points fqr (2.3) are defined to be the images W, and W, of the con-

jugate points, x; and x,, for (1.1) by

2.4) W - Ch1x+c¢,CL >

D,.1x+c¢c, D, > ‘

The following theorem relates the conjugate points for (2.3) to the conjugate
points for the continued fraction (2.3) obtained from (2.3) by replacing

c a a a
(2.5) dn—]. -+ b—n —b—-]'—- see bK-l .'_bE s
ot Pt +Pg_1 B F
with
@5 (4o - ®oPk-1) | i1/ k2 M 8 %K.
-1 ax by + by 3 + + by + bg_; + bg 5 +

THEOREM 2. For suitable orvdering, the conjugate points for (2.3) satisfy
(2.6) —“—/1 =W, Wz =W,
where W, and W, are the conjugate points for (2.3). If (2.3) and (2.3) both con-

vervge, theiv values arve rvespectively W, and W,.
Proof. By (2.4) and Theorem 1,

W = Cn-l (bO B XE) +Ch Cn—Z

n - "n-2
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where x¥ and x¥ are the conjugate points for (1.1*). Since the conjugate points for
(1.1*) and

b .4 K-z 21 3%& 3k
K-2" bg 3+  +Dbg+ by j+bg,+

(2.7)

are related by

aK aK-l .
* - =
(2.8) x¥ = by + 5 - 5 (i=1,2),

it follows that

—a-Cn-2

n-

Cn bk - 1 . CnaK 1
Ca-1 - aK n 2)
Can 1 c,a
( -1 Dn—Z) vy - —————K D, _;

akg

The fundamental recurrence formulas for (2.3) and (2.3) may now be used to write
this last equation as

Cnle"'CnCnZ —
Wl—Dn IY*"'cn =W2'

Similarly, W, = W,, and the proof of (2.6) is complete.

The proof of the statement about the values of (2.3) and (2.3) when both are con-
vergent begins with the observation that (1.1) must converge or else diverge to «
(that is, its reciprocal converges to 0), and that a similar remark applies to (1.1%).
When both (1.1) and (1.1*) converge, it follows from (2.4), (2.8) and Theorem 1 that
the values of (2.3) and (2.3) are respectively W, and W,. When (1.1) diverges to =,
the fact that B ;, = B, ; = 0 plus the prior knowledge that (1.1*) converges or di-
verges to « shows that (1.1*) must also diverge to . Theorem 1 shows that all
conjugate points of (1.1) and (1.1*) are infinite in this case, and again the form of
the linear fractional transformations (2.4) and (2.8) leads to the desired result,
namely, that the values of (2.3) and (2.3) are respectively W, and W,.

It should be noted that Theorem 2 remains true in case n is not the smallest
integer for which (2.2) is pure K-periodic, since the proof of the theorem does not
use the requirement that at least one of the conditions ¢, = ag, d,_; = bg_; shall
fail to hold.

Results analogous to Corollaries 2 and 3 may be obtained from Theorem 2. For
example, if

cy x'1 c ¥  a;x™ ag x*K g x*1

i+ 77+ 1+ 1+ o+ 1+ 1+

Qx) ~ 1 +

and if y, = ag and ¢, #agk, then the C-fraction expansion for Q(x), the quadratic
conjugate of Q(x), can be obtained from the expansion for (x) by replacing

c X a;x°! ag x*K g x*!

1 + 1 + T+ 1 + 1 + 7

1+
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with
CndK_1_ Oy o
L. Cn —ag X K-1 aK_ZxaK“z a,lxa1 a,x K
( Tag/ T 1 + 1 + + 1 + 1 +
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