A GENERALIZED MANIFOLD
Kyung Whan Kwun

INTRODUCTION

While generalized manifolds share many of the properties of classical manifolds,
there has been a general question: How far can a generalized manifold get away
from classical manifolds? In particular, it does not seem to have been settled
whether or not there exists a generalized manifold that is not locally euclidean at
any point. A generalized manifold that fails to be locally euclidean at a single point
can easily be obtained by shrinking a bad arc in S® to a point [3]. This being the
case, one readily suspects that a generalized manifold that is not locally euclidean at
any point can be obtained by putting bad arcs densely in S® and shrinking each to a
point. In the present note, we show that this is indeed the case. In the course of the
construction, however, care must be taken so that the decomposition space is still a
Hausdorif space and is also finite-dimensional. The first requirement is fulfilled if
we put in arcs such that the arcs together with the points not on any of the arcs form
an upper-semicontinuous decomposition (see [8] for definition) of S3.

1. THE CONSTRUCTION OF AN UPPER-SEMICONTINUOUS
DECOMPOSITION G

We denote by E2® and S3 the euclidean 3-space and 3-sphere, respectively. By a
3-cell we mean a homeomorph of the unit sphere together with its interior in E3. By
the boundary and the interior of a 3-cell we mean the parts that correspond to the
unit sphere and its interior, and they will be denoted, sometimes, by Bd and Int, re-
spectively.

It is known [4] that there exists an arc A in E3? such that E3 - A is not simply
connected. It is easy to see that such an A can be put into any pre-assigned open
subset of E3,

Let u%={u9, Ug, Uk } be an open covering of S* such that each U is the

interior of a 3-cell U of d1arneter less than 1. Let F° be the union of Bd UO In

each UO we can find an arc Ai such that (1) the arcs A0 are pairwise disjoint,

(2) each A0 is situated in Uo in the same manner as A is in E3 and (3) no A0 meets
F°. There emsts a positive number d; < 1/2 such that no 3d,-neighborhood of any
A meets F° or any other AJ.

Let ul = {Ull, U%., Ulg } be an open overing of S® such that each Uil is the

interior of a 3-ce11 U1 of diameter less than d,. Let F! denote the union of the

Bd U1 In each U we can flnd an arc A such that (1) the arcs A and A are
pairvnse disjoint, (2) each A1 is sxtuated in U in the same way as A is in E3 and
(3) no A]L meets ¥° or ¥!, There ex1sts a positive number d, < min (dl, 1/4) such
that no 3d,—ne1ghborhood of any Ap or A meets any other Aon or A + and no 3d,-
neighborhood of Al meets F° or FI,
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Let 12 = {U2 Z Uﬁ } be an open covering of S* such that each U? is the

interior of a 3-cell U2 of d1ameter less than d,. In each U we can fmd an arc A
such that (1) the arcs A A and A are pairwise disjoint, (2) each A1 is sﬂ:uated
in U in the same manner as A is in E3, and (3) no A2 meets F°, F! or F?, where

F2 denotes the union of the Bd U2 There exists a positive number d; < min(d,, 1/8)
such that no 3d -nelghborhood of any A0 A1 or A2 meets any other Ag., A(ll. or A%n
and no 3d;-neighborhood of A meets F"’

Continuing in this manner, we have a sequence of coverings

uP = {UY’ Ugs "ty Uﬁp} (p= 0, 1,2, -ee)

and arcs
Ap (q=1’ 2’ ...,k ; p=0’ 1’ 2’ ."),

and positive numbers d > dy; > d3 > -+« (d; < 27Y) such that (1) the arcs Ap are
pairwise disjoint, (2) each AP is situated in Up in the same manner as A 1s in E3,
(3) no Ag meets Fp the umon of the Bd UP for p! <p, and (4) no 3dp,)-neighbor-

hood of Ao Alll, , Or Ap meets any other Alc;’ A ij» *"» OT AR ity and no 3dp+1_

ne1ghborhood of Ap meets F° F1, ---, or FP, Observe that our choice of the dj, im-
plies that (5) each element of uP conta,ms an element of ypPt! whose boundary
meets no arcs.

Our G will consist of the arcs Ag and the points not on any of these arcs.

2. THE UPPER-SEMICONTINUITY OF G

A subset T of S® will be called saturated if every element of G that meets T
is in T. Thus a saturated set is one that does not contain an element of G partially.
We shall establish the upper-semicontinuity of G by showing that each element of G
has arbitrarily close saturated neighborhoods.

Let g € G be an arc P For each q'> p, the union U of the elements of 11 q'
that meet Ag is a d4r-neighborhood of g. The set U is saturated, and Bd U does
not meet any arc, by (4) of the preceding section. If g is a point and d is any posi-
tive number, there exists an integer i such that d; < d. Let e be a positive number
such that no e-neighborhood of g meets any arc Ar (r < i), and let t be an integer
such that d{ < min(d;, e). Let U be an element of ut that contains g. Then Bd U
does not meet any arc Ar (r<ior r>t). Let V be the union of the elements of
1% that meet some arc that meets U. Then V is a saturated 3d-neighborhood of g
such that Bd V does not meet any arc. Thus each element of G has an arbitrarily
close saturated neighborhood whose boundary consists entirely of degenerate ele-
ments of G. This shows that G is upper-semicontinuous, and that moreover the
decomposition space is at most 3-dimensional, since a saturated open set is mapped
onto an open subset.
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3. THE DECOMPOSITION SPACE

We shall denote by X and f the decomposition space and the quotient map of G,
respectively. From the preceding section and the mapping theorem of Wilder [10],
it follows that X is a sphere-like closed generalized 3-manifold. We want to show
that X is not locally euclidean at any point. Suppose this were not the case. Then
there would exist an open set U of X which is homeomorphic to E3, Since the ele-
ments of all the U P form a basis for open sets of S3, it follows that V = {~}(U) con-
tains an element U~ -1 of 19-1 for some q. By our construction, there exists an
element U of 14 Whlch is contained in Ud- 1 and whose boundary Bd U? meets no
arc. Since Uq is saturated, U'= f(Uq) is an open subset of X contained in U. Hence,
U' must be locally euclidean. Moreover by a theorem due to Smale [6], it follows
that U' is simply connected. Let x = f(A?) € U', and let W be a 3-cell in U’ such
that x € Int W. The space U'= Int W becomes the space U' when W is attached to
U' - Int W along Bd W by means of the identity map. By the proof of Theorem 2.10.1
of [7], U' - Int W has its fundamental group isomorphic to that of U' and is therefore
simply connected. But U' - Int W is a deformation retract of U’ - x, and consequent-
ly U' - x is simply connected. Again by the above-mentioned theorem of Smale, this
would imply that U;-l - A? is simply connected, contrary to our construction.

4. SOME REMARKS

In a joint paper with F. Raymond [ 5], we have demonstrated similarities between
generalized cells in generalized manifolds and euclidean cells in classical manifolds
(see [9] for the definition of the generalized cells). In this connection, it would be
interesting to know whether or not there exists an orientable spherelike generalized
manifold that cannot be covered by the interiors of generalized closed cells. (It is
easy to find one that cannot be covered by “arbitrarily small” generalized cell
neighborhoods.) Our most non-euclidean space X is covered by the interiors of

generalized 3-cells f(U(l)), f(Ug), cee, f(Uﬁo).

Although we have here used a countable number of wild arcs, it is possible to use
uncountably many tame arcs. If in our construction we put into each Up instead of
AP Bing’s Cantor set of tame arcs [1] and proceed similarly, we get the decomposi-

tlon space Y. Then Y has no locally simply connected neighborhood at any point.
To see this, we use the above-mentioned theorem of Smale and a result due to M. L.
Curtis [2].

It would be interesting to know whether X X R (or Y X R), where R is the real
line, is topologically equivalent to S% X R.
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