A GENERALIZATION OF THE LOTOTSKY METHOD
OF SUMMABILITY

Amnon Jakimovski

1. INTRODUCTION AND NOTATION

In a recent paper {5], A. V. Lototsky introduced a new method of summability
which possesses interesting and important properties. Later, in [2], R. P. Agnew
gave simplified proofs of Lototsky’s results as well as some further properties of
the new method. In this paper we shall show that many results proved for the
Lototsky (or L) method of summability are valid for a general class of transforma-
tions to which the L transformation belongs.

Corresponding to a sequence {d,} with n > 1 (for all sequences in this paper,
the index denoting the order of the terms assumes the values 0, 1, 2, --*, except
where it is stated othermse), the symbol d,! will denote the product d 1d2 " dp, and
not, as is sometimes the case, the function I"(d + 1). G1ven a sequence {dn} (n> 1),
we shall denote by {ppmt (m =0, +1, +2, «--; n=0, 1, ---) the double sequence de-
fined by

Poo =1,
n n
(1.1) (x+d)! = Il (x+dy) =2 Pamx™,
m=1 m=0
Phm=0 for m>n and m <0O.

It is easy to see that

(1.2) Pn+l,m =~ 9n+1Pnm = Pn,m-1 for m=0,+1, -=-; n=0, 1, .

2. THE [F, d,,] TRANSFORMATIONS

Suppose a fixed sequence {d,} (n> 1) satisfying d,# -1 for n > 1 is given.
Then {t,}, the [F, d,]transform of {s,}, is defined by

tg=8sg.

n

= [(1+ dﬂ)l]'1 2 PnmSm (@m>1).

m=0

The L. transformation was defined as a transformation which, applied to a sequence
{sn} defined for n > 1, yields a transform {t,} defined for n> 1, also. Now for
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dn =n - 1, the [F, dn] transform {tn} with the restriction n > 1 is identical with
the L transform {t,} of s, s,, *-.

It should be remarked here that the numbers {p,,,,} corresponding to the
[F, n - 1] (or the L) transformation are the absolute values of the Stirling numbers
of the first kind (see [4, p. 142]). In fact, some of the properties of the coefficients
{pPnm} for the L transformation proved in[2] are well known (see [4, Chapter 41]).

1+q

The [ F,d,=
formation of order q defined explicitly by

] (q # 0) transformation is the [E, q] (or Euler-Knopp) trans-

H-
=]

|
s

> ()ama-armen @20,

Here we can also permit the value q = 0.

3. REGULARITY

As is well known, a linear transformation T defined by

o0

t,= 27 CamSm (n>0)

m=0

is regular if and only if the three conditioné

o0
(3.1) 2 legm| <K<4o  for n>ny>0,
m=0
[~}
(3.2) lim 2 c, =1,
n—o° m=0
(3.3) limc, =0 for each m > 0,

n-—*oc0

are satisfied. In order to obtain conditions on {d,,} for the regularity of the [F, d ]
transformation, we need the following three lemmas.

LEMMA 3.1. Let {d,} (n_>_ 1, d, #-1, d, # 0) be a fixed sequence such that

(3.4) lim |1+ |1 =+w
n—oo dm
and
1+ [d,i)!?
(3.5) —l——l—l-I—<K<+oo for n> 1;
|1+dn|! - -

then



A GENERALIZATION OF THE LOTOTSKY METHOD 279

(3.6) lim [(1+ du)!] P = 0 for each m > 0.

n—» oo

Proof. Define b6, = d;ll. Obviously, for n> 1,

(3.7 Pn,0 =TiTnan)_! = (1 + ﬁn)!]—l s
and by (3.4),
limp, o = 0.

Define {o,} (n> 1), the T transform of {s.} (n> 1), by

(1+067)0;s; +(1+06))106,8, + (1+6,)1 8383+ +(1+0, 7)106,s,

(n>1).

1+ |dm| 1+ |64

|1+dm| - |1+5m| ’
mation is regular. We shall complete the proof in two steps.

that the Z transfor-

From (3.4) and (3.5) it follows, because

a) In (3.8), choose sy} =(1+03)~! and s, =py_1,0 for n> 1. Then, from the
regularity of the = transformation and (3.7), we obtain

01 +°** + On

(3.9) Gn:W = pn,l — 0 as n — oo,
b) For n>k>0,
d, 1
Pk=("_")! 2 d - do
A T g <ipee<esn G T Y
— —1 .- LR}
= [(1 + 8,)!] 2 85, -+ 85, -

1<, <§poor<jp<n
If in (3.8) we choose
0 for 1 <n <k,
Pn-1,k for n >k,

then, for n> k,
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n

On=[0+6 )11 2 1+ 61! 6mPm-1.x

m=k
-1 -
= [(1 + & )1] Z) M+ 8, N6 [a+0_ 1™ .z 65,05,
m=k 1< j1< < jp<m-1
n
-1
=[(@+8 )1 20 6, . Z} ﬁjlméjk
m=k 15 Jl<---<_]k_§m—1
_ -1 R S
= [(1 + 6)1] 22 8, " Oy =P er-

1<) < ey <m
From (3.7), (3.9), the regularity of the = transformation, and by induction, we see
that (3.6) is satisfied. Q. E. D.

LEMMA 3.2. If a fixed sequence {dn,} (n>1;d, #-1for n>1; d, #0 for
n> n,) satisfies (3.4) and (3.5), then it satisfies (3 6)

Proof. Denote by n, the largest integer m such that d,, = 0. Then necessarily
n, <ng If there are n, values of n such that d, = 0 then, as a simple consideration
shows,

(3.10) =0 for 0<m<n, and n> n;.

pnm
Now for m > n, and n > n,, we have

(3.11) rd)l=x" II (x+d),

m=1

where by II'7_, (x + d,,) we denote the product of all the factors (x + d,) with
1 < m < n and such that d,;, # 0. The relation (3.11) and Lemma 3.1 complete the
-proof.

The following is a simple consequence of the proof of Lemma 3.2.

LEMMA 3.3. If {da} (n> 1, d, = -1) is a sequence with d, = 0 for infinitely
many n, then (3.6) is true.

From (1.1) it follows that

n

2 | pamx™ < (x| + [dp])t for n>1,
m=0
and in particular, with x = 1, that

n
2 |ppml <@+ fa )t for n> 1.
m=0

Hence
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1+ |dnl)!

-1 2
(3-12) [|1+dn|!] Eh::’nmls I1+dn|l

m=0

(n>1).

From (3.12) it follows that if (3.5) is satisfied, then the [F, d,] transformation satis-
fies (3.1). We leave open the question whether the validity of (3.1) implies that of
(3.5).

The following propositions are 1mmed1ate consequences of the preceding three
lemmas and (3.12).

THEOREM 3.1. Suppose that dn+ -1 for n> 1. Then: (i) if only a finite num-
ber of terms of {d,} (n> 1) are zero and (3.5) is satisfied, then [F, d,]is regular
if and only if (3.6) is satisfied; (ii) if an infinite number of tewns of {d } are zevo,
then [F, d,] is vegular if and only if, for the coefficient set belonging to
[F, d'] (where {dn} is the sequence of the nonzevo teyms of dﬁ arranged in the
same ovder as in {d,}), we have

n
(3.13) [1+ar1]-! 22 |p, | <K<+e forn>ng>1.
m=0

Phm

THEOREM 3.2. If {d,} (n > 1) is a sequence with d,, # -1 for n> 1 and
d, >0 for n> n,, then [F, d,,] is vegular if and only if

o0

(3.14) T 1/dpm = 4o,

m=1

where the summation is taken over all the nonzevo d,,’s, in case theve are infinitely
many.

A consequence of Theorem 3.2 is that the [F, d,=n- 1] (or the L) transforma-
tion is regular. This result is due to Lototsky, and was proved by him in [5] and by
R. P. Agnew in [2].

4. POWER SERIES

In the application to power series, a certain subclass of the family of [F, d ]
transformations is both potent and simple. We begin with the geometric series
1+ z+ z%+ +-, where z is a complex number (z # 1).

THEOREM 4.1. Suppose that, for the real sequence {d,} a>1),
lim,, _,dpy =+, dy# -1 for n> 1 and Tdg 2L 40, If the [F, d ]transfomatzon
is vegular, then it sums the sevies 1 + z + z* + +-+ to 1/(1 - z) for all complex z
with Wz < 1, and uniformly in each bounded domain inside the half-plane R z < 1.
It does not sum 1+ z + 22+ -+ at all points z with RNz > 1.

Pyroof. For the series 1+ z + z®+ -+, we have
s,=(1- z)-1 - gntl(g - z)-1,

Therefore, for the [F, d,]transform {t,},
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) n ) z (z + d)!
ty=[(1+ d!] 1m§0pnmsm= M-27 -7 5T d )1
=(1—z)‘1-1fz(1+1z+_d1n)’ 0>0).

There is an n, such that d, > 1 for all n > n,. From the condition 7.3 =n dp -2 < 4o
we obtain (see [6, p. 224, Theorem 10 and a slight improvement of it]) that there is a
constant ¢ = c(z) # 0 such that

ﬁ (1+1—zfal—)~cexp (z—l)5 (1+dm)'1}

m=n, m m=ng
—cexp{(x- l)mzzlo(1+d m 1} eXp{IY Z)nc(1+d -k 1}

if z = x+ iy. Hence

0 if x<1,

ﬁ(1+z

~ 1+
m—no

exp{(x-l) E (1+4d,)" 1}

m=n, +00 if x>1.

A simple additional argument completes the proof.
The following proposition is an improvement over Theorem 4.1.

THEOREM 4.2. Suppose that, for the real sequence {d, } (n>1),
lim _,,d, =+%, d, #-1for n> 1, and

Z} drn(p+1) < 400

m=

Jfor some nonnegatwe mteger p. If the [F, d ]transformatwn is regular, then it
sums the sevies 1 + z + z2 + ++- to (1 - z)~?! for all complex z with %z < 1, and uni-

Jformly in each bounded domain inside the half-plane Rz < 1. If does npt sum
1+ 2+ 2%+ --- at all the points z with %z > 1.

In the proof of Theorem 4.2, we need the following two lemmas.

LEMMA 4.1. I {dn} (n> 1) is a real sequence with d,,> 0 for n > n,,
lim,_,,d, =+ and

o0
27 dl=
m=n°
then, for each fixed integey p (p > 1),

n
Zd;p=o )asn—»oo

m=no
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Lemma 4.1 is a consequence of a well-known proposition (see [7, page 11, para-
graph 1.72 ]).

LEMMA 4.2. If {dn} (n > 1) is a real sequence with 1im Ay, = +x, then for
each positive integer p the two sevies 'ZdP and Z(1 + d,,) P converge or diverge
together.

Proof of Theorem 4.2. As in the proof of Theorem 4.1, we have

tn:“'z)_l‘lf (1+1+d1 )'

Suppose that d, > 1 for n > n,. We can write

M (1 fia) = I { (1o ) o[- frd o S (Ea0) T )
mmo m=
13' e""{1z+_dlm Tt (_;)p (1z+-d1m)p}
=exp{(z_1) 23 (A + D71 - o "1) (z - 1P E 1+dy) p}

m=n, m=n,
n
-1 z-1 (-1 (z-1 \P
II {(1+—z——— e [— + cee ( ) ]}
mmn, 1+dm) ®|-Tra, p \T+d_

Now (see [3, p. 130]), as n — «, the second factor of this product converges (uni-
formly for all z belonging to any fixed bounded domain) to an integral function. In
the first factor of the product all the terms in the exponent are small compared with
the first term (z - 1) Zm_no (dpy + 1) (uniformly for all z belonging to any fixed
and bounded domain). The argument in the proof of Theorem 4.1 now completes the
proof.

By combining Cauchy’s integral formula for analytic functions and Theorem 4.2,
we obtain the following proposition.

THEOREM 4.3. Suppose that, for the real sequence {dn,} (n> 1), d, # -1 for
n>1, lim,_,,d, =+, Zdj )’< 400 fo'r some nonnegative integer p, cmd the

[F dn] transformation is vegular. If E =0 an 20 IS a power series with a positive

" vadius of convevgence, and if F(z) is the analytic function which is generated by
analytic extension along vadial lines from the ovigin of the complex plane, then

T a, z™ is summable [F, d,,] to F(z) at each point inside the Bovel polygon of F(z).

5. RELATION BETWEEN THE [F, d;,] TRANSFORMATIONS
AND THE EULER-KNOPP TRANSFORMATIONS

In this section we shall obtain inclusion relations between a certain class of
[F, d,]transformations and the [E, q] transformations. It is known that if {e{®)}

is the [E, q] transform of {s,}, then {s.} is the [E, q-1] transform of {e{a)}.
Our first result:
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THEOREM 5.1. Suppose {dn} (n> 1) is a sequence with dy, #-1 for n> 1.
Then the [ F, dn]transformation includes the [E, q] transformation (q + 0; q @ veal
or complex number) if and only if the transformation [F, d! = q(d, + 1) - 1] is
regular.

The following two propositions are consequences of Theorem 5.1 and the results
of Section 3.

THEOREM 5.2. Suppose that, for the real sequence {dn} (n > 1), dn # -1 for
n>1 and d; > 0 for n>n, If [F dn] is vegular, then for each real q such that
a(d, + 1) > 1 for all n > nyq), [F, d,] includes [E, q].

THEOREM 5.3. Suppose that {dn} (n> 1) is a real sequence with dn # -1 for
n> 1 and limy_,edy = +w. If [F, dy, | is vegular, then it includes all the [E, q]
transformations with q > 0.

In the proof of Theorem 5.1 we use the following lemma.

LEMMA 5.1. The [F, dnltransform {tn} of {sn} is the [F, d% = q(dp+ 1) - 1]
transform of {e;3} (q #0).

Proof. Denote by E the ‘displacement operator’ applicable to sequences; that is,
let
Eu,=u,,;; Elu,=u,; E"!-E®EY.
Now, for q # 0,

eglq) =(1-q+qE)"s,,

= [(1+d )11 (E+ da)! sq,

n
= (1-—1-+—1-Ek>
q q
Hence

ta= [+ a1 (1 —?11+%E*+dn) teld)

= {[a(1 + d] 1} "1 [E* + qldy+ D) - 1]t e,

Q. E. D. Theorem 5.1 now follows immediately from Lemma 5.1, since the [E, q]
transformation has an inverse for q # 0. We can improve Theorem 5.3 as follows,

THEOREM 5.4. Suppose that {dn} (n > 1) is a real sequence with dy + -1 for
n>1 and lim,_,.,d, = +. If the [F, d ] transformation is rvegular, then it in-
cludes the [ E, q] transformation if and only if q> 0.

The particular case d, =n - 1 for n > 1 was proved in [2, Section 8]. In the
proof of the theorem, we need the following lemma.

LEMMA 5.2. Suppose that {dn} (n> 1) is a real sequence with dn # -1 for
n> 1, lim, ,eod, = +o and Zdzl =+, Then the [F, d! = q(d, + 1) - 1] tvansforma-
tion is not regular for all q < 0.

Proof. For q < 0, we write q=-p, so that p> 0. If
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O [x+dd,+1)-1= IH[x-(@d, +p+1]= 27 Py, X
m=1 m=0

m=1
and
n n
II [x+ (pd,, +p+ 1) = 2 pX ., x™,
m=1 m=0
then

n n
E ‘pnm|= E |p;;m| °

m=0 m=0

Now, if d, > 0 for n > n,, then

(1+pdn+p+1)!'_ nn" p(dm + 1) + 2} J?I [1+ 2 ]
(1-pdy-p-DI 5| pldpy+ 1) mengt1 p(d,+1) 1°
Therefore
1+ +p+ !
lim pdﬂ '=+oo

n -— co (l-pdn—p" 1)!
By Theorem 3.2, the [F, d'n= p(d, + 1) + 1} transformation is regular, and therefore

n

0<C<{[t+pdy+ 1) +1]1}"1 27 |pr | <K<+ for n>n;.

m=0
Hence
2 Pyl 2 x| II [1+pld,+1)+1]
m=0 m=0 me=1
= | — +o0
H [1+aqd,+1)-1] O MD+pd,+D+1 | O [1+ald,+1)-1]
m=1 m=1 m=1

as N — oo,

Thus the [F, d}, = q(d,, + 1) - 1] transformation is not regular. @, E. D,

Proof of Theorem5.4. By Theorem 5.3, the [F, d,] transformation includes the
[E, q] transformation for each q > 0. By Lemma 5.2, [F, d,] does not include [E, q]
for each q < 0. K q is a complex number, then the [E, q] transformation sums the
power series 1+ z + z%+ --- inside the circle with center at 1 - 1/q and passing
through the point 1 (see [2, p. 121]). The interior of this circle includes points z
with 9%z > 1. On the other hand, by Theorem 4.1, the [F, d,] transformation does
not sum 1+ z + z%+ --- at all points z with %z > 1. Therefore [F, d,] does not
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include [E, q] for complex q. The [E, 0] transform {e{®)} of {sn} satisfies
e&o) = s8¢ for n > 0. Therefore each sequence is summable [E, 0]; but there are

sequences which are not summable [F, d,] (for example, 1+ z + z2+ +-- for %z > 1);
thus [F, d,] does not include [E, 0]. Q. E. D.

6. SERIES-TO-SERIES VERSION OF [F, d,]

Suppose that tg, t,, *** is the [F, d,] transform of the sequence s,, Sy, *++. Let

(6.1) S, =0g+ 0y + =+ +0,,
(6.2) . ta=Tg+ Tp+ *=*+ Tp
We see that

(6.3) Tg=ty=85=0g.

For n > 0, we have 7, = t, - t, _; and hence, for n > 0,

= Ph_1,x
n EO[(M a)! " @+d, I ] E"

1 n - 1N

and by (1.2),

T = dn)! E{Z [By-1,k-1 = Pa- l’k]}aj'

Thus

n
(6.4) mzpnl_]la mzpnlmmﬂ

From (6.1), (6.2), (6.3) and (6.4) we see that m=0 0 m is summable [F, d,] to s if
and only if Z; -0 7, is convergent to s. When the series 0, + 0, + 0, + +-+ is sum-
mable [F, d,], we may denote the sum by the left member of the formula

n-1

~ 1
(6.5) [F d ]{ E Om =0g + El_m—(inﬁk?o pn_l’k0k+1 .

The particular case [F, d,] = L of (6.5) was proved in [2, Section 6].
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7. THE SEQUENCE 0, s,, 5y, ***

We shall see that for a certain class of {F, d, ] transformations the relation be-

tween the [F, d, ] transforms of the sequence 0, s,, S,, **- and s,, S,, S, *** is quite
simple.

Denote by {t,} the [F, d,] transform of s, s,, S;, **+, and by {t{1)} the [F, d,]
transform of 0, s,, s;, ***. Multiplying the recursion formula (see (1.2))

Pnt1,x = dny1Pnk - Pn,k-1

s
by _(]—,ETJIW , and summing over 1 <k < n+ 1, we obtain
n+1p n+1p s n+1p s
n+l,k Sk-1 nk k-1 n,k-15k-1
(1 + dn+1) E (1 + dn+l)! = n+1 E n) E (1 + dn)! )
and hence
(7.1) 1+ d'n+1) tn+1 = n+l t(l’}) + ty.
From (7.1) we obtain
d --d d
(1) 1 . nt+l M2 n+l ]
(7.2) bl STy gy lTvay ~asap 0t " *Tra,tn-1*ta]-

It is easy to see that

(7.3) 1+d,,; =

dn+1"'d1 + [ dppyee-dy + dn+1 +1 ]
1+ dy)--(1+dy) (1+dy--(1+dy) 1% d

Suppose now that d, > 0 for n> 1. It is easy to see by (7. 3) that, in the case d,>0
for n > 1, the transformation from {t,} to t£1+)1 defined by (7.2) is regular if and
only if

33

n ( 14 _di ) = 4o,
1 m

where I[I' denotes the product of all terms (1 + 1/d,,,) .with d,, # 0 if there is only a
finite number of zero terms in {d,}. Otherwise it is always regular. By Theorem
3.2 and the consideration above, we obtain the following proposition.

THEOREM 17.1. Suppose that {d,} (n > 1) is a real sequence with dyn >0 for
n>n, Ther (i) if [F, dn] is regular and theve are only a finite number of zevo
terms in {dn}, then the [F, d,]summability of s,, s,, +-- implies the [F, d,]| sum-
mability of 0, s,, s,, **- to the same sum. (ii) If there are infinitely many zevo
terms in {dn} then the [F, dn] summability of s,, s,, *++ implies the [F, dn] summa-
bility of 0, sy, s,, *** to the same sum.

The particular case [F, d,] = L of Theorem 7.1 was proved in [2, Section 7].
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8. THE INVERSE OF THE [F, d,] TRANSFORMATION

If f(x) is a function defined at least for x = x,, x,, *--, and if all the xv are dif-
ferent, we define the divided differences of f(x) by means of the relations

[f(xv)] = f(xv) ’
[£(x)] - [£(xy4 )]
Xy = Xyl

[f(xy), *=os H(xy)] - [I&Xv41), =25 £Xui1)]

Xy = Xyt

8.1) ¢ [f(xy), f(xy 1) =

b

[£(xy), =+, £xyy1)] =

By Newton’s expansion, each polynomial f(x) satisfies the relation
(8.2) £(x) = [£(x)] + (x - x)[£(x), £(5)] + (x - x)(x - K)NE(x), -, £(x5)] + ==~

(see [4, Section 23, p. 74]).

Suppose that xj, x5, ***, X, are real and lie on the closed interval <a, b>. Itis
known (see [8, Section 2. 7]) that if f(z) is a regular analytic function at each point of
<a, b>, then, for 1 <k <n, there isa £ such thata < £ <b and

(8.3) [£x), =+, 20501 = oyr £ D) -

In particular, [x]%, +++, x{?]=0 if k> m+ 1.

Choosing x, = dy (v > 1), where we suppose all the d, different, we obtain from
(8.2)

= [a2)+ (x - a)[a% a8]+ (x - d)(x - d,)[a, a3, a5+ -

Replacing x by -x in the last identity, we obtain

(8.4) (-1 xn=[dp] - (x+d )[d dn]+ (x+d)x+ dz)[d az, dg]+ e,
Now write
(8.5) Upm = (1772 [d7, -, a5 ]

From (8.3) we see that if d,,> 0 for n> 1, then
(8.6) -0*"™q, =la, | =[af, -, df )] > 0.
I {tn} isthe [F, d,] transform of {sn} and all the {dy} are different, then, by
(8.4) and (8.5),
n
(8.7) Sy = 22 A+d Naymty, (here (1+dg!=

m=0

From (8.7) and (9.6) we obtain
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THEOREM 8.1. Suppose that {dn} (> 1) is a real sequence with dn >0 for
n> 1 and with all the dy distinct. If {sn} is summable [F, dn|, then

n

(8.8) s, = 0(d1+ T 1+ d )@y -, d;;lﬂ]) as n— oo.

m=1

As we have seen, [d’l‘, ceey dgl] =0 if m>n+1 in case dy > 0; thus Theorem 8.1
can be stated in the following alternative form.

THEOREM 8.2. Under the suppositions of Theorvem 8.1,

(8.9) 50 = O (d}+ > 1+ d)! [A5 -+, d%yy] ) as n — o,
m=1
In the case dy =v -1 (v > 1), the expression inside the brackets on the right of
(8.8) can be simplified in the following way.

n n
di+ 2 1+ dp)taf, =, dneil = imJdi + 2 (1+ dg)![d], =, d;’rl]xm}

m=1 x T1 m=]

(8.10)

limJ d5+ Z) (1+dyt[d], -, dﬁlﬂ]xm}

xT1 m=1

]

lim E(l)mme)(l)l( )

xT1 m=0

From the inequality Eff._lo ( nla ) i* < mi2™, we see that for |x| <1/2 we may change

the order of summation in the last line of (8.10), and we obtain (for |x| < 1/2)

o m
D ™ T o (PR E (iR T (- p= () =™
m=0 i=0 1 m=i
o0 o0
_ .n _1)F r+i r+i _ 1 -n -i
_Eol I.Zjo(l) ( - )x =1+ = (1+x)t.
By the principle of analytic continuation, we see that
n 0 : ® n
(8.11)  d%+ X A+ d[d], o, dpyyl =D P+ D=2 DI
m=1 i=0 i=12

(8.11) is (5.6) of [2]. But here the proof is direct.
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Added in proof. After this paper had been submitted for publication, I received
from Prof. J. Karamata a reprint of his paper Théorémes sur la sommabilité
exponentielle et d'autves sommabilités s'y vattachant, Mathematica, Cluj 9 {1935),
164-178. There what we have called the Lofoisky method was defined (and called
the Stivling method), together with what in the notation of our paper are the

[ F,d, = %(n - 1) ] methods (k = fixed = 1, 2, ---). In Prof. Karamata’s paper,

Abelian and Tauberian inclusion theorems between the Euler, Stirling-Karamata-
Lototsky, and Borel methods are proved.
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