RIGHT-ORDERED GROUPS

Paul Conrad

1. INTRODUCTION

In this note, "order" will always mean linear order. A group is right-ordered (notation: it is an ro-group) if it is an ordered set and if multiplication on the right preserves this order (a < b inplies ac < bc). In the process of investigating the group \mathcal{A} of order-preserving automorphisms of an ordered group ([3] and [4]), it became apparent that A could always be right-ordered. In Section 5 it is shown that every group of order-preserving permutations of an ordered set can be rightordered. Also, every ro-group G is o-isomorphic to a subgroup of the ro-group of all o-permutations of the set G. In Section 4 (Theorem 4.1), we prove that the following two properties of an ro-group G are equivalent: (a) for each pair of positive elements a, b in G, there exists a positive integer n such that $(ab)^n > ba$; (b) if C and C' are convex subgroups of G, and C' covers C, then C is normal in C' and there exists an order-preserving isomorphism of C'/C into the additive group of real numbers. In Section 2 it is shown (Theorem 2.1) that a right-ordering of G is an ordering if and only if a < b implies $b^{-1} < a^{-1}$ for all a, b in G. We also derive four properties, each of which is a necessary and sufficient condition for the rightordering of a group. In Section 3, some well-known properties of ordered groups are shown to hold for ro-groups.

2. NECESSARY AND SUFFICIENT CONDITIONS FOR A GROUP TO ADMIT A RIGHT-ORDERING

Let G be a group with identity e. Then G is an ro-group provided

- (1) (G, <) is an ordered set;
- (2) if a < b, then ac < bc for all a, b, c in G.

LEMMA 1.1. A group G admits a right-order if and only if there exists a subsemigroup P of G that satisfies

(*)
$$e \notin P$$
; if $g \neq e$ and $g \in G$, then $g \in P$ or $g^{-1} \in P$.

The proof is entirely similar to the one for o-groups. For if G is right-ordered, let $P = \{g \in G: g > e\}$, and if P is a subsemigroup of G that satisfies (*), then define a < b if $ba^{-1} \in P$. P is the semigroup of positive elements of G.

COROLLARY I. If G is an ro-group, then G is torsion-free.

For consider $e \neq g \in G$. If e < g, then $e < g < g^2 < \cdots$, and if g < e, then $\cdots < g^2 < g < e$.

COROLLARY II. If G is abelian, then every right-ordering of G is an ordering. Every abelian subgroup of an ro-group is an o-group.

Received December 3, 1958.

This research was supported by a grant from the National Science Foundation.

For an ordering of G is determined by a normal subsemigroup P of G that satisfies (*), and every subsemigroup of an abelian group is normal.

Let G be an ro-group with the semigroup P of positive elements. If we define a - b if $a^{-1}b \in P$, then it is easy to show that:

- (i) (G, —) is an ordered set.
 - (ii) If a b, then ca cb for all a, b, c in G.

Conversely, if G satisfies (i) and (ii), and if we define $Q = \{g \in G: g \mid -e\}$, then Q is a subsemigroup of G that satisfies condition (*). Thus a subsemigroup of G that satisfies (*) determines two orderings of G. We shall usually ignore the left-ordering -|.

THEOREM 2.1. Suppose that G is an ro-group. Let P be its semigroup of positive elements, and let a, b \in G. Then the following are equivalent.

- (1) G is an o-group; that is, P is normal in G.
- (2) If $ba^{-1} \in P$, then $a^{-1}b \in P$.
- (3) If a < b, then $b^{-1} < a^{-1}$.
- (4) If a < b, then $a \longrightarrow b$.
- (5) If ab > b, then ba > b.

Proof. If P is normal and $ba^{-1} \in P$, then $b^{-1}ba^{-1}b = a^{-1}b \in P$. Thus (1) implies (2). If (2) is true and a < b, then $ba^{-1} \in P$, and thus $a^{-1}b \in P$. Therefore $b^{-1} < a^{-1}$, and (2) implies (3). If (3) is true and a < b, then $b^{-1} < a^{-1}$, and thus $a^{-1}b \in P$. Therefore $a \longrightarrow b$, and (3) implies (4). If (4) is true and ab > b, then

$$a = abb^{-1} > bb^{-1} = e$$
.

Thus $a \vdash e$ and $ba \vdash b$. If ba < b, then $ba \multimap b$, a contradiction. Therefore ba > b, and (4) implies (5). Finally, suppose that (5) is true. If $a \in P$, then a > e and ab > b. Thus ba > b, and $bab^{-1} > e$. Therefore P is normal, and (5) implies (1)

Computation without the use of rule (3) is difficult, and the fact that $a^2 = b^2$ does not imply that a = b is annoying (see Example I in Section 5).

For each finite subset $\{x_1, \cdots, x_n\}$ of a group G, let (x_1, \cdots, x_n) denote the subsemigroup of G that is generated by $\{e, x_1, \cdots, x_n\}$. Let $I(x_1, \cdots, x_n)$ denote the intersection of the 2^n semigroups $(x_1^{e_1}, \cdots, x_n^{e_n})$, where the e_i are ± 1 .

THEOREM 2.2. For any group G the following are equivalent.

- (1) G can be right-ordered,
- (2) For each finite subset $\{x_1, \dots, x_n\}$ of G, $I(x_1, \dots, x_n) = e$.
- (3) For each element $a \neq e$ in G there exists a subsemigroup G_a of G that contains a but not e, and such that $xy \in G_a$ implies $x \in G_a$ or $y \in G_a$ (or, equivalently, $G \setminus G_a$ is a semigroup).
- (4) If $\{x_1, \dots, x_n\}$ is a finite subset of G that does not contain e, then there exist $e_i = \pm 1$ for $i = 1, \dots, n$ such that e does not belong to the subsemigroup of G that is generated by $\{x_1^{e_1}, \dots, x_n^{e_n}\}$.
- (5) There exists a set S of subsemigroups of G such that $e = \bigcap_{\mathscr{G} \in S} \mathscr{G}$ and for each $g \in G$ and $\mathscr{G} \in S$ either $g \in \mathscr{G}$ or $g^{-1} \in \mathscr{G}$.

Proof. The equivalence of (1), (2) and (3) follows immediately from Ohnishi's proof of the corresponding theorem for o-groups [7] (simply omit the word "invariant" wherever it occurs). Suppose that G is an ro-group, and let $\{x_i, \dots, x_n\}$ be a finite subset of G that does not contain e. Pick $e_i = \pm 1$ for $i = 1, \dots, n$, so that $x_i^{e_i} > e$. Then all of the elements of the semigroup generated by $\{x_1^{e_1}, \dots, x_n^{e_n}\}$ are positive. Therefore (1) implies (4). Suppose that G satisfies (4) but not (2). Then there exists a finite subset $\{x_1, \dots, x_n\}$ of G such that $e \neq a \in I(x_1, \dots, x_n)$. Without loss of generality, $x_i \neq e$ for $i = 1, \dots, n$. For each choice of the e_i ,

 $a = some product of the <math>x_i^{e_i}$ and $a = some product of the <math>x_i^{-e_i}$.

Thus $a^{-1} = \text{some product of the } x_i^{e_i}$. Therefore $\{a, x_1, \dots, x_n\}$ does not satisfy (4). Thus (4) implies (2).

Suppose that G is an ro-group, and let $A = \{g \in G: g \ge e\}$ and $B = \{g \in G: g \le e\}$. Clearly $S = \{A, B\}$ satisfies (5). Therefore (1) implies (5). Finally suppose that G satisfies (5). Well-order the elements in S, $\mathscr{G}_1 \longrightarrow \mathscr{G}_2 \longrightarrow \cdots$. For each $e \ne g$ in G, let $\alpha(g)$ be the first \mathscr{G}_i in this well-ordering such that $g \notin \mathscr{G}_i$. If $\alpha(g) = \alpha(g^{-1})$, then there exists a \mathscr{G}_i such that $g, g^{-1} \notin \mathscr{G}_i$, a contradiction. Therefore $\alpha(g) \ne \alpha(g^{-1})$ for all $e \ne g \in G$. Let

$$P = \{g \in G: g \neq e \text{ and } \alpha(g) \longrightarrow \alpha(g^{-1})\}.$$

Clearly P satisfies condition (*) of Lemma 1.1, and by a straightforward computation it follows that P is a subsemigroup of G. Therefore (5) implies (1).

Let Q be a subsemigroup of G that does not contain e. As before, define that a < b in G if $ba^{-1} \in Q$. Then < is a partial ordering of G that satisfies condition (2) of our definition of an ro-group. Thus Q determines a partial right-ordering of G. Everett [5] has shown that if G is an abelian group that can be ordered (that is, is torsion-free), then any partial ordering of G can be extended to an ordering. Ohnishi [6] derived conditions that are necessary and sufficient for the extension of any partial ordering of a non-abelian group to an ordering. Ohnishi [7] essentially shows that the partial right-ordering of G determined by each of the subsemigroups G_a defined in (3) of Theorem 2.2 can be extended to a right-ordering of G, provided that G can be right-ordered. Thus we have

THEOREM 2.3. If G is an ro-group, Q is a subsemigroup of G that does not contain e, and $G \setminus Q$ is a semigroup, then the partial right-order of G that is determined by Q can be extended to a right-ordering of G.

Proof. Let \mathscr{G} be the set of all subsemigroups T of G such that $e \notin T$, $Q \subseteq T$, and $G \setminus T$ is a semigroup. By Zorn's lemma there exists a maximal element \overline{P} in \mathscr{G} . Suppose (by way of contradiction) that there exists $e \neq a \in G$ such that $a, a^{-1} \notin P$. Pick a semigroup G_a that satisfies (3) of Theorem 1.2. Let

$$T = P \cup \{x \in G_a: x, x^{-1} \notin P\}$$
.

It follows by a routine computation that $T \in \mathcal{S}$. Thus, since $a \in T \setminus P$ and P is maximal in \mathcal{S} , we have a contradiction. Therefore P determines an extension of the partial right-order of G to a right-order of G.

3. SOME PROPERTIES OF ro-GROUPS

Throughout this section, we assume that G is an ro-group and that P is its semigroup of positive elements.

3.1. If $x, y \in P$ and $x < y^n$ for some positive integer n, then $xyx^{-1} \in P$.

Proof. Let n be the least positive integer such that $x < y^n$. If $xyx^{-1} < e$, then xy < x and $x < y^n$, hence $xy < y^n$. But then $x < y^{n-1}$, a contradiction.

3.2. If $x, y \in G$, $b \in P$, x < y and there exists a positive integer n such that $b < (yx^{-1})^n$, then bx < by.

Proof. By 3.1, $e < b(yx^{-1})b^{-1} = by(bx)^{-1}$. Therefore bx < by.

A subgroup C of G is *convex* if $x \in G$ and $e < x < c \in C$ imply that $x \in C$. If G is an o-group, then this definition is equivalent to the usual one (if $g \in G$ and $c_1, c_2 \in C$, then $c_1 < g < c_2$ implies that $g \in C$).

3.3. The set of all convex subgroups of G is ordered by inclusion, and closed with respect to intersections and joins.

Proof. Let C and C' be convex subgroups of G and suppose that $c' \in C' \setminus C$. Without loss of generality, $c' \in P$. Pick $c \in C \cap P$. Then e < c < c', because C is convex and $c' \notin C$. Thus $c \in C'$ and $C \cap P \subset C'$. But since C' is a group, $C \subset C'$.

3.4. If C is a convex subgroup of G and $a \in (G \setminus C) \cap P$, then $aC \subset (G \setminus C) \cap P$.

Proof. Pick $c \in C$. Then $c^{-1} < a$, for otherwise $e < a \le c^{-1}$, hence $a \in C$. Thus $e = c^{-1}c < ac$. In general, $Ca \not\subset (G \setminus C) \cap P$.

3.5. Suppose that C is a normal convex subgroup of G. Define that $X \in G/C$ is positive if X = aC, where $a \in (G \setminus C) \cap P$. This definition right-orders G/C.

Proof. If X = aC = bC, where $a \in (G \setminus C) \cap P$, then b = ac, where $c \in C$. Thus by 3.4, $b \in (G \setminus C) \cap P$. Therefore this definition is independent of the particular choice of the representative a. If $C \neq X \in G/C$, then either X contains a positive element, or X contains a negative element. Therefore either X is positive or X^{-1} is positive. If the elements X and Y of G/C are positive, then X = aC and Y = bC, where a, $b \in (G \setminus C) \cap P$. Thus $ab \in P$, and if $ab \in C$, then $X = Y^{-1} = b^{-1}C$. But then X is not positive, a contradiction. Thus $ab \in (G \setminus C) \cap P$, and XY = abC is positive. Therefore G/C is right-ordered. In particular, if C is a normal convex subgroup of C and C are positive.

Let G' be another ro-group with identity e' and positive semigroup P'. A homomorphism π of G onto G' is an o-homomorphism if $P\pi \subset P' \cup \{e'\}$. Thus π is an o-homomorphism if and only if a < b in G implies $a\pi \le b\pi$ in G' for all a, b in G. If C is a normal convex subgroup of G, and G/C is right-ordered as in 3.5, then the natural homomorphism of G onto G/C is an o-homomorphism.

3.6. If π is an o-homomorphism of G onto G' and C is a convex subgroup of G, then $C\pi$ and the kernel $K(\pi)$ of π are convex subgroups.

Proof. If $e < a < b \in K(\pi)$, then $e' \le a\pi \le b\pi = e'$. Thus $a \in K(\pi)$ and hence $K(\pi)$ is convex. Suppose that $e' < a' < b' \in C\pi$. Then $a' = a\pi$ and $b' = b\pi$, where $a \in G \cap P$ and $b \in C \cap P$. If $a \not\in C$, then b < a, and hence $b' = b\pi \le a\pi = a'$, a contradiction. Thus $a \in C$ and $a' = a\pi \in C\pi$. Therefore $C\pi$ is convex.

If C is a convex normal subgroup of G, then it follows from 3.5 and 3.6 that there exists a one-to-one order-preserving correspondence between the convex subgroups of G/C and the convex subgroups of G that contain C.

3.7. Suppose that N is a normal subgroup of a group H, and that N and H/N are ro-groups. Define that $e \neq h \in H$ is positive if either $h \in N$ and h is positive in N or else $h \in H \setminus N$ and hN is positive in H/N. This definition right-orders H so that N is a convex subgroup and the natural homomorphism η of H onto H/N is an o-homomorphism.

For it follows by straightforward grinding that the definition right-orders H. Clearly η is an o-homomorphism. Thus by 3.6, N = K(η) is convex.

G is archimedean if for every pair a, $b \in P$ there exists a positive integer n such that $a < b^n$.

3.8. If G is archimedean, then G is an o-group. Thus G is o-isomorphic to a subgroup of the additive group \Re of real numbers.

Proof. If $x, y \in P$, then there exists an n such that $x < y^n$. Thus by 3.1, $xyx^{-1} \in P$. Therefore $P\tau \subset P$, where τ is the inner automorphism of G that is induced by x ($g\tau = xgx^{-1}$ for all $g \in G$). Suppose (by way of contradiction) that $x^{-1}ax < e$ for some $a \in P$. Then $e < (x^{-1}ax)^{-1} = x^{-1}a^{-1}x$. But then

$$e < x(x^{-1}a^{-1}x)x^{-1} = a^{-1}$$

a contradiction. Thus $P\tau^{-1} \subset P$. Hence $P\tau = P$, and P is normal in G. Therefore G is an o-group. The last part of this proposition is the well-known result of Hölder (see [8, p. 6] for a proof).

In this section we have shown that an ro-group has many of the properties of an o-group. In fact, in some ways ro-groups are easier to deal with. In particular, note 3.7 and the examples in Section 5. But some of the fundamental properties of o-groups are not possessed by ro-groups. For example, if C and C' are convex subgroups of G and C' covers C, then C is not necessarily normal in C'. In the next section we deal with this and related problems.

4. A STRUCTURE THEOREM FOR ro-GROUPS

Throughout this section we assume that G is an ro-group, and that P is its semigroup of positive elements.

LEMMA 4.1. Let a and b belong to P. Then the following three properties of G are equivalent:

- (i) there exists a positive integer n such that $(ab)^n > ba$;
- (ii) if a < b, then there exists a positive integer such that $ab^n a^{-1} > b$;
- (iii) there exists a positive integer n such that $a^nb > a$.

Proof. If a < b, then $a, ba^{-1} \in P$. Thus by (i) there exists an n such that

$$ab^{n}a^{-1} = (aba^{-1})^{n} > ba^{-1}a = b$$
.

Therefore (i) implies (ii). Since e < a, b < ab. Thus by (ii) there exists an n such that $(ba)^n = b(ab)^nb^{-1} > ab$. Therefore (ii) implies (i). If (i) is false, then

$$(ba)^n b < a(ba)^n b = (ab)^{n+1} < ba$$

for all n. Thus (iii) is false, and hence (iii) implies (i). If $a \le b$, then $a \le b < ab$.

If a > b, then a = cb, where $c, b \in P$. Thus by (i), $(cb)^n > bc$ for some n. Therefore

$$a^n b = (cb)^n b > bcb = ba > a$$
.

Therefore (i) implies (iii).

LEMMA 4.2. Suppose that G has the properties in Lemma 4.1. Let $x \in G$ and $a, y \in P$. If $x < a^m$ and $y < a^n$ for some positive integers m and n, then there exists a positive integer q such that $xy < a^q$.

Proof. Without loss of generality, let m=n. Then $xy < a^my$. If there exists an integer r such that $a^m \le a^ry^{-1}$, then $a^my \le a^r$. Thus $xy < a^r$. Suppose (by way of contradiction) that $a^ry^{-1} < a^m$ for all r. Then $a^{m+q}y^{-1} < a^m$ for all $q \ge 0$. But $y < a^m$, hence $yaq < a^{m+q}$, and $ya^qy^{-1} < a^{m+q}y^{-1}$. Thus $yaqy^{-1} < a^m$ for all $q \ge 0$. Therefore $y(a^m)^qy^{-1} < a^m$ for all $q \ge 0$. Now let $z = a^m$. Then e < y < z and $yz^qy^{-1} < z$ for all q > 0. This contradicts property (ii) of Lemma 4.1.

LEMMA 4.3. Suppose that G satisfies the conditions in Lemma 4.1. If C and C' are convex subgroups of G such that C' covers C, and if $a, b \in (C' \setminus C) \cap P$, then there exists a positive integer n such that $a^n > b$. In particular, if G contains no proper convex subgroup, then G is o-isomorphic to a subgroup of \Re .

Proof. Suppose (by way of contradiction) that $a^n < b$ for all positive integers n. Let $S = \{x \in G: e < x < a^n \text{ for some n}\}$. Clearly S is a convex set, and by Lemma 4.2, S is a semigroup. Let $T = S \cup S^{-1} \cup \{e\}$, where $S^{-1} = \{s^{-1}: s \in S\}$. We next show that T is a subgroup of G.

If $x \in T$, then x = e or $x \in S$ or $x \in S^{-1}$, thus $x^{-1} = e$ or $x^{-1} \in S^{-1}$ or $x^{-1} \in S$. Therefore $x^{-1} \in T$. Consider $x, y \in T$. If x = e or y = e or xy = e, then $xy \in T$. If $x, y \in S$, then $xy \in S \subset T$. If $x, y \in S^{-1}$, then $y^{-1}, x^{-1} \in S$. Thus $y^{-1}x^{-1} = (xy)^{-1} \in S$, and $xy \in S^{-1} \subset T$. Next suppose that $x \in S^{-1}$ and $y \in S$. Then x < e and xy < y. If e < xy, then $e < xy < y \in S$, and $xy \in S \subset T$. If xy < e, then $e < (xy)^{-1} = y^{-1}x^{-1}$ and $y^{-1} < e$. Thus

$$e < (xy)^{-1} = y^{-1}x^{-1} < x^{-1} \in S$$
.

Therefore $(xy)^{-1} \in S$ and $xy \in S^{-1} \subset T$. Finally, suppose that $x \in S$ and $y \in S^{-1}$. If xy, $yx \in P$, then by (i) of Lemma 4.1,

$$x = y^{-1}yx < (yxy^{-1})^n = yx^ny^{-1}$$

for some n. Thus $e < xy < yx^n < x^n \in S$, and $xy \in S \subset T$. If xy and yx are negative, then $y^{-1}x^{-1}$, $x^{-1}y^{-1} \in P$, $y^{-1} \in S$ and $x^{-1} \in S^{-1}$. Thus, by the last argument, $(xy)^{-1} = y^{-1}x^{-1} \in S$. Therefore $xy \in S^{-1} \subset T$. If yx < e < xy, then x and $x^{-1}y^{-1}$ belong to P. Thus by (iii) of Lemma 4.1, $x < x^n(x^{-1}y^{-1})$ for some n. Therefore $e < xy < x^{n-1} \in S$, and $xy \in S \subset T$. If xy < e < yx, then $x^{-1}y^{-1} < e < y^{-1}x^{-1}$, $y^{-1} \in S$, and $x^{-1} \in S^{-1}$. Thus, by the last argument, $(xy)^{-1} = y^{-1}x^{-1} \in S$.

Therefore T is a convex subgroup of G. If $c \in C \cap P$, then c < a, for otherwise $e < a < c \in C$, hence $a \in C$. Therefore $C \cap P \subset T$, and since T is a group, $C \subset T$. $C \neq T$ because $a \in T \setminus C$. If $t \in T \cap P$, then $e < t < a^n \in C'$, hence $t \in C'$. Therefore $T \subset C'$. $T \neq C'$ because $b \in C' \setminus T$. Therefore $C \subset T \subset C'$ and $C \neq T \neq C'$; but this contradicts the fact that C' covers C. This completes the proof of the first assertion of the lemma. If G has no proper convex subgroup, then clearly G is archimedean. Thus, by 3.8, G is o-isomorphic to a subgroup of \Re .

COROLLARY, Suppose that G satisfies the conditions in Lemma 4.1. Then G is archimedean if and only if G contains no proper convex subgroup.

LEMMA 4.4. Suppose that G satisfies the conditions in Lemma 4.1. If C and C' are convex subgroups of G such that C' covers C, then C is normal in C'.

Proof. Pick $b \in (C' \setminus C) \cap P$. Define $x\pi = bxb^{-1}$ for all $x \in G$. We first show that $y\pi < b$ for all $y \in C$. For by 3.4, $by^{-1} \in (C' \setminus C) \cap P$. Thus by Lemma 4.3, $(by^{-1})^n > b$ for some n. Hence by 3.1, $b(by^{-1})b^{-1} > e$, and $b(yb^{-1})b^{-1} < e$. Therefore $y\pi = byb^{-1} < b$. Consider $c \in C$ and suppose that $c\pi \in C' \setminus C$. If $c\pi \in (C' \setminus C) \cap P$, then by Lemma 4.3, $c^n\pi = (c\pi)^n > b$ for some n. But $c^n \in C$, hence $c^n\pi < b$. If $(c\pi)^{-1} = c^{-1}\pi \in (C' \setminus C) \cap P$, then $c^{-n}\pi = (c^{-1}\pi)^n > b$. But $c^{-n} \in C$, hence $c^{-n}\pi < b$. Therefore $C\pi \subset C$.

By Lemma 4.3, for each $a \in (C' \setminus C) \cap P$ there exists a positive integer n such that $a^n > b$. By (ii) of Lemma 4.1, there exists a positive integer q such that $(ba^n b^{-1})^q > a^n$. Therefore

$$(bab^{-1})^{nq} \in (C' \setminus C) \cap P, \quad bab^{-1} \in (C' \setminus C) \cap P,$$

$$[(C' \setminus C) \cap P]_{\pi} \subset (C' \setminus C) \cap P, \quad (C' \setminus C)_{\pi} \subset C' \setminus C,$$

and $C \subset C\pi$. Therefore $C\pi = C$ and C is normal in C'.

THEOREM 4.1. The following properties of an ro-group G are equivalent.

- (i) For each pair a, b \in P there exists a positive integer n such that (ab)ⁿ > ba.
- (ii) If C and C' are convex subgroups of G and C' covers C, then C is normal in C' and C'/C is 0-isomorphic to a subgroup of \Re .

Proof. The fact that (i) implies (ii) follows from Lemmas 4.1, 4.3 and 4.4. Conversely, suppose that G satisfies (ii), and consider a, b \in P. First assume that b \leq a. Let G^a be the intersection of all convex subgroups of G that contain a, and let G_a be the join of all convex subgroups of G that do not contain a. Then G^a and G_a are convex subgroups of G and G^a covers G_a (see 3.3). Thus G^a/G_a is o-isomorphic to a subgroup of \Re . By the properties of \Re it follows that there exists a positive integer n such that

$$G_a(ab)^n = [(G_aa)(G_ab)]^n > (G_ab)(G_aa) = G_aba$$
.

Thus $G_a(ab)^n (ba)^{-1}$ is positive in G^a/G_a . Therefore $(ab)^n (ba)^{-1} > e$ and $(ab)^n > ba$. An entirely similar proof takes care of the case where a < b.

Remark. We show in Example III that not all ro-groups have property (i). In Example I we construct an ro-group which has property (ii) but cannot be ordered.

Let $\mathscr C$ be the class of all ro-groups that have property (i) in Theorem 4.1, and let $G \in \mathscr C$. The set Γ of all pairs of convex subgroups G^γ , G_γ of G such that G^γ covers G_γ is ordered by inclusion. Moreover, by Theorem 4.1, each G_γ is normal in G^γ , and each G^γ/G_γ is o-isomorphic to a subgroup of \Re . Let S be a subgroup of G. Then G is an a-extension of G if for every G in G there exists an G is an a positive integer G in such that G is a c-extension of G if for each G is a c-extension of G if for each G is a c-extension (c-extension) in G is a-closed (c-closed) if it does not admit any proper a-extension (c-extension) in G. The proof of Lemma 1.1 [1, p. 323] is valid for any group in G. Thus, corresponding to Corollary II [1, p. 324], we have

THEOREM 4.2. If $G \in \mathscr{C}$, then there exists an a-closed a-extension (c-closed c-extension) of G in \mathscr{C} .

Once again, let G be an arbitrary ro-group. An element $a \in G$ is a *left-keeper* if x < y implies ax < ay for all x, y in G. Clearly the set K of all left-keepers in G contains the center of G. Let H be the greatest subgroup of G that is convex and ordered.

THEOREM 4.3. K is an ordered subgroup of G and $K \supset H$.

Proof. It is easy to show that $K = \{a \in G: aPa^{-1} = P\}$. Thus it follows at once that K is a group, and hence an o-group. To prove that $H \subset K$ it suffices to show that $H \cap P \subset K$. Consider $q \in H \cap P$ and $x, y \in G$ such that x < y. Then y = zx, where $z \in P$, and $q = qzx = qzq^{-1}qx$. Thus it suffices to show that $qzq^{-1} \in P$. If q < z, then by 3.1, $qzq^{-1} \in P$. If z < q, then since H is convex and ordered, $qzq^{-1} \in P$.

Let S be the set of all normal abelian convex subgroups of G. Let $M = \bigcup_{A \in S} A$. Then M is the greatest normal abelian convex subgroup of G, and M is an o-group. There exists a unique (to within an isomorphism) rational vector space D that contains M, such that for any d in D, $nd \in M$ for some positive integer n. This is a straightforward generalization of the usual construction of the rationals. D is called the d-closure of M, and the order of M can be extended to an order of D in one and only one way.

THEOREM 4.4. There exists an a-extension H of G such that (i) H contains the d-closure D of M; (ii) H is generated by D and G; and (iii) if K is any a-extension of G that satisfies (i) and (ii), then K is equivalent to H.

The proof is the same as the proof of Theorem 3.1 [2, p. 518] except that "o-automorphism" is replaced by "automorphism" whenever it occurs.

5. EXAMPLES OF ro-GROUPS

I. Every normal extension of an ro-group by an ro-group can be right-ordered. This is merely a restatement of 3.7. Thus it is easy to construct ro-groups that cannot be ordered. For example, let $G = I \times I$, where I is the group of integers. Define

$$(a', a) + (b', b) = (a' + b', a(-1)^{b'} + b),$$

and define that (a', a) is positive if a' > 0 or a' = 0 and a > 0. Then G is an rogroup, but G cannot be ordered because -(1, 0) + (0, 1) + (1, 0) = -(0, 1). Thus (0, 1) cannot be positive or negative. Moreover, (1, 1) + (1, 1) = (2, 0) = (1, 0) + (1, 0).

II. The unrestricted direct product of a set of ro-groups can be right-ordered. For let S be a set, and for each element $s \in S$, let G_s be an ro-group. Let G be the set of all mappings α of S into $\bigcup_{s \in S} G_s$ such that $s\alpha \in G_s$ for all $s \in S$. For $s \in S$ and $\alpha, \beta \in G$, define $s(\alpha\beta) = s\alpha s\beta$. Let θ be the identity of G. Well-order S: $s_1 \longrightarrow s_2 \longrightarrow \cdots$. For each $\theta \neq \alpha \in G$, let $L(\alpha)$ be the first element in the well-ordering such that $L(\alpha)\alpha \neq e$, where e is the identity of $G_{L(\alpha)}$. Define α to be positive if $L(\alpha)\alpha > e$. Then G is an ro-group, and G is an o-group if and only if every G_s is an o-group.

III. Every group of order-preserving permutations of an ordered set can be right-ordered. For let S be an ordered set, let G be a group of o-permutations of S, and let ϕ be the identity permutation of S. Well-order S: $s_1 - |s_2| \cdots$. For each $\phi \neq \pi \in G$, let $L(\pi)$ be the first element in this well-ordering such that $L(\pi)\pi \neq L(\pi)$. Define π to be positive if $L(\pi)\pi > L(\pi)$. This definition right-orders G (see the

proof of Theorem 3 [3, p. 388] for the details). In particular, the group of all o-automorphisms of an ro-group can be right-ordered.

Suppose that S itself is an ro-group, and let the first element s_1 in the above well-ordering be the identity e of S. Then the mapping of $s \in S$ upon the right multiplication s' of S (xs' = xs for all $x \in S$) is an o-isomorphism of S into G. Therefore, every ro-group S is o-isomorphic to a subgroup of the ro-group of all o-permutations of the set S.

Finally we use this method to construct an ro-group that does not have property (iii) in Lemma 4.1 and hence does not have properties (i) or (ii) of Theorem 4.1. Let S be the set of real numbers with their natural order, and let G be the group of all o-permutations of S. We distinguish two particular elements α and β of G:

$$x\alpha = \begin{cases} x + 1/2 & \text{for all } x \leq 0, \\ (x + 1)/2 & \text{for all } 0 \leq x \leq 1, \\ x & \text{for all } 1 \leq x, \end{cases}$$

$$x\beta = \begin{cases} x/2 & \text{for all } x \leq 1, \\ x - 1/2 & \text{for all } 1 \leq x. \end{cases}$$

Well-order S so that 0 is the first element and -1 is the second. Then $L(\alpha) = 0 - | -1 = L(\beta)$.

$$L(\beta)\beta = (-1)\beta = -1/2 > -1 = L(\beta)$$
.

Thus $\beta > \phi$. L(α) $\alpha = 0\alpha = 1/2 > 0 = L(\alpha)$. Thus $\alpha > \phi$.

$$0\alpha^{n}\beta\alpha^{-1} = \left[(2^{n}-1)2^{-n}\right]\beta\alpha^{-1} = \left[(2^{n}-1)2^{-n-1}\right]\alpha^{-1} = (2^{n}-1)2^{-n-1} - 2^{-1} = -2^{-n-1}.$$

This means that $L(\alpha^n \beta \alpha^{-1}) = 0$ and $\alpha^n \beta \alpha^{-1} < \phi$ for all positive integers n. Thus $\alpha^n \beta < \alpha$, and G does not have property (iii).

REFERENCES

- 1. P. Conrad, On ordered division rings, Proc. Amer. Math. Soc. 5 (1954), 323-328.
- 2. ----, Extensions of ordered groups, Proc. Amer. Math. Soc. 6 (1955), 516-518.
- 3. ——, The group of order preserving automorphisms of an ordered abelian group, Proc. Amer. Math. Soc. 9 (1958), 382-389.
- 4. ——, A correction and an improvement of a theorem on ordered groups, (to appear).
- 5. C. J. Everett, Note on a result of L. Fuchs on ordered groups, Amer. J. Math. 72 (1950), 216.
- 6. M. Ohnishi, On linearization of ordered groups, Osaka Math. J. 2 (1950), 161-164.
- 7. ——, Linear order on a group, Osaka Math. J. 4 (1952), 17-18.
- 8. O. F. G. Schilling, *The theory of valuations*, Mathematical Surveys, No. 4 (1950), Amer. Math. Soc.