RIGHT-ORDERED GROUPS

Paul Conrad

1. INTRODUCTION

In this note, “order” will always mean linear order. A group is 7ight-ordered
(notation: it is an ro-group) if it is an ordered set and if multiplication on the right
preserves this order (a < b inplies ac < bc). In the process of investigating the
group .« of order-preserving automorphisms of an ordered group ([3] and [4]), it
became apparent that ./ could always be right-ordered. In Section 5 it is shown
that every group of order-preserving permutations of an ordered set can be right-
ordered. Also, every ro-group G is o-isomorphic to a subgroup of the ro-group of
all o-permutations of the set G. In Section 4 (Theorem 4.1), we prove that the fol-
lowing two properties of an ro-group G are equivalent: (a) for each pair of positive
elements a, b in G, there exists a positive integer n such that (ab)® > ba; (b) if C
and C' are convex subgroups of G, and C' covers C, then C is normal in C' and
there exists an order-preserving isomorphism of C'/C into the additive group of
real numbers. In Section 2 it is shown (Theorem 2.1) that a right-ordering of G is
an ordering if and only if a < b implies b™* < a~?! for all a, b in G. We also derive
four properties, each of which is a necessary and sufficient condition for the right-
ordering of a group. In Section 3, some well-known properties of ordered groups
are shown to hold for ro-groups.

2. NECESSARY AND SUFFICIENT CONDITIONS FOR A
GROUP TO ADMIT A RIGHT-ORDERING

Let G be a group with identity e. Then G is an ro-group provided

(1) (G, <) is an ordered set;

(2) if a < b, then ac < bc for all a, b, ¢ in G.

LEMMA 1.1. A group G admits a vight-ovder if and only if theve exists a sub-
semigroup P of G that salisfies
*) eg P; if g+ eand g€ G,then g€ P or g"te P.

The proof is entirely similar to the one for o-groups. For if G is right-ordered,
let P={ge G:g> e}, and if P is a subsemigroup of G that satisfies (*), then de-
fine a<b if ba~! € P. P is the semigroup of positive elements of G.

COROLLARY 1. If G is an ro-group, ther G is torsion-free.

For consider e+ g€ G, If e < g, then e<g<g?< -, andif g < e, then
e < g?f<g<e.

COROLLARY II. If G is abelian, then every right-ovdeving of G is an ovdeving.
Every abelian subgroup of an ro-group is an o-group.
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For an ordering of G is determined by a normal subsemigroup P of G that
satisfies (*), and every subsemigroup of an abelian group is normal.

- Let G be an ro-group with the semigroup P of positive elements. If we define
a—]| b if a~'b € P, then it is easy to show that:

(i) (G, —]) is an ordered set.
(ii) If a—] b, then ca—] cb for all a, b, ¢ in G.

Conversely, if G satisfies (i) and (ii), and if we define Q = {g € G: g|— e}, then Q
is a subsemigroup of G that satisfies condition (*). Thus a subsemigroup of G that
satisfies (*) determines two orderings of G. We shall usually ignore the left-ordering

—.
THEOREM 2.1. Suppose that G is an ro-group. Let P be its semigroup of posi-
tive elements, and let a, b € G. Then the following arve equivalent.

(1) G is an o-group; that is, P is normal in G.
(2) If ba~t€ P, then a~‘be P.

(3) If a <b, then b~1 < a™1,

(4) If a <b, then a—| b.

(5) If ab > b, then ba > b.

Proof. If P is normal and ba-'€ P, then b~'ba-'b = a~'b € P. Thus (1) implies
(2). If (2) is true and a < b, then ba-* € P, and thus a-'!b € P. Therefore b~! < a~},
and (2) implies (3). If (3) is true and a < b, then b~* < a~%, and thus a~'b € P.
Therefore a —]| b, and (3) implies (4). If (4) is true and ab > b, then

a=abb !>bbt=e.

Thus a }— e and ba |— b. If ba < b, then ba—] b, a contradiction. Therefore
ba > b, and (4) implies (5). Finally, suppose that (5) is true. If a € P, then a > e
and ab > b. Thus ba > b, and bab™* > e. Therefore P is normal, and (5) implies (1)

Computation without the use of rule (3) is difficult, and the fact that a® = b? does
not imply that a = b is annoying (see Example I in Section 5).

For each finite subset {x1, coey xn{} of a group G, let (x,, -+, x,) denote the sub-
semigroup of G that is generated by 1e, xj, **-, xn}. Let I(xy, -+, X,) denote the

intersection of the 2" semigroups (xlel, oo xnen), where the e; are +1.
THEOREM 2.2, For any group G the following are equivalent,
(1) G can be right-ordered.
(2) For each finite subset {xl, .ee, xn} of G, I(x;, ==, X ) = e.

(3) For each element a + e in G theve exists a subsemigroup G, of G that con-
tains a but not e, and such that xy € G, implies x € G, or y € G, (o7, equivalently,
G \ G, is a semigroup).

4 I {xl, ceey xn} is a finite subset of G that does not contain e, then there
exist e;=+1 SJor i=1, «--, n such that e does not belong to the subsemigroup of G

that is genevated by {xlel, ee xnen}.

(5) There exists a set S of subsemigroups of G such that e = n @'es 9 and for
each g€ G and G € S either €S or g-*€9.
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Proof. The equivalence of (1), (2) and (3) follows immediately from Ohnishi’s
proof of the corresponding theorem for o-groups [7] (simply omit the word “invari-
ant” wherever it occurs). Suppose that G is an ro-group, and let {x;, -+, X, } be a
finite subset of G that does not contain e. Pick ¢ =+1 for i=1, -+, n, so that

e.
x; *> e. Then all of the elements of the semigroup generated by {x; I, -+, xp "}
are positive. Therefore (1) implies (4). Suppose that G satisfies (4) but not (2).
Then there exists a finite subset {xl, ooy xn} of G such that e # a € I(xy, ***, xp).
Without loss of generality, x; # e for i = 1, -+-, n. For each choice of the ¢;,

a = some product of the xiei and a = some product of the xi—ei.

Thus a™! = some product of the xiei. Therefore {a, x1, --+, X, } does not satisfy (4).
Thus (4) implies (2).

Suppose that G is an ro-group, andlet A={ge G:g>e} and B={ge G: g < e}.
Clearly S={A, B} satisfies (5). Therefore (1) implies (5). Finally suppose that G
satisfies (5). Well-order the elements in S, ¢,—| 9 ,—] +*. For each e # g in G,
let a(g) be the first ¢; in this well-ordering such that g ¢% ;. If a(g) = a(g™),
then there exists a ¢; such that g, g-1 ¢ ¢;, a contradiction. Therefore
a(g) # a(g™?) for all e+ g€ G. Let

P={geGig+#e and a(g — agh}.

Clearly P satisfies condition (*) of Lemma 1.1, and by a straightforward computa-
tion it follows that P is a subsemigroup of G. Therefore (5) implies (1).

Let Q be a subsemigroup of G that does not contain e. As before, define that
a<b in G if ba™* € Q. Then < is a partial ordering of G that satisfies condition
(2) of our definition of an ro-group. Thus Q determines a partial right-ordering of
G. Everett [5] has shown that if G is an abelian group that can be ordered (that is,
is torsion-free), then any partial ordering of G can be extended to an ordering.
Ohnishi [6] derived conditions that are necessary and sufficient for the extension of
any partial ordering of a non-abelian group to an ordering. Ohnishi [7] essentially
shows that the partial right-ordering of G determined by each of the subsemigroups
G, defined in (3) of Theorem 2.2 can be extended to a right-ordering of G, provided
that G can be right-ordered. Thus we have

THEOREM 2.3. If G is an ro-group, Q is a subsemigroup of G thal does not
contain e, and G\ Q is a semigroup, then the partial right-order of G that is de-
termined by Q can be exlended to a vight-ordering of G.

Proof. Let & be the set of all subsemigroups T of G suchthat e¢ T, QC T,
and G \T is a semigroup. By Zorn’s lemma there exists a maximal element P in
&. Suppose (by way of contradiction) that there exists e # a € G such that a, a~'¢ P,
Pick a semigroup G, that satisfies (3) of Theorem 1.2. Let

T=Pu{xe G x,x1¢ P}.
It follows by a routine computation that T € &. Thus, since a€ T\ P and P is

maximal in &, we have a contradiction. Therefore P determines an extension of
the partial right-order of G to a right-order of G.
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3. SOME PROPERTIES OF ro-GROUPS

Throughout this section, we assume that G is an ro-group and that P is its
semigroup of positive elements.

3.1, If x,y€ P and x < ym for some positive integer n, then xyx~* € P.

Proof. Let n be the least positive integer such that x < y2. If xyx~! < e, then
xy < x and x < yB, hence xy < y?. But then x < y2-1, a contradiction.

3.2. If x,y€ G, be P, x <y and there exists a positive integer n such that
b < (yx-1)n, then bx < by.

Proof. By 3.1, e < b(yx~1)b~! = by(bx)~!. Therefore bx < by.

A subgroup C of G isconvex if x€ G and e<x < c€ C imply that xe C. If G
is an o-group, then this definition is equivalent to the usual one (if g € G and
Cy, C; € C, then ¢, < g < c, implies that g € C).

3.3. The set of all convex subgroups of G is ordered by inclusion, and closed
with respect to intersections and joins.

Proof. Let C and C' be convex subgroups of G and suppose that ¢'e€ C'\ C.
Without loss of generality, c' € P. Pick c€ CNnP. Then e < c¢ < c¢', because C is
convex and c' ¢ C. Thus ce€ C' and CN P c C'. But since C' is a group, C C C'.

3.4. If C is a convex subgroup of G and a € (G\C)n P, then aC c (G\ C)n P.

Proof. Pick c € C. Then c~! < a, for otherwise e <a < c~!, hence a € C. Thus
e=clc<ac. Ingeneral, Ca¢ (G\C)NP.

3.5. Suppose that C is a normal convex subgroup of G. Define that X € G/C is
positive if X = aC, where a € (G\ C)NP. This definition right-ovders G/C.

Proof. If X =aC =bC, where a€ (G\ C)Nn P, then b = ac, where c € C. Thus
by 3.4,-b € (G\ C)n P. Therefore this definition is independent of the particular
choice of the representative a. If C # X € G/C, then either X contains a positive
element, or X contains a negative element. Therefore either X is positive or X!
is positive. If the elements X and Y of G/C are positive, then X = aC and Y = bC,
where a, be (GN\C)NP. Thus abe P, and if abe C, then X =Y =b"1C, But
then X is not positive, a contradiction. Thus abe (G\ C)n P, and XY = abC is
positive. Therefore G/C is right-ordered. In particular, if C is a normal convex
subgroup of G and a€ (GNC)N P, then Ca=aCc (GNC)nP.

Let G' be another ro-group with identity e' and positive semigroup P'. A
homomorphism 7 of G onto G' is an o-kornomorphism if Prc P'U{e'}. Thus 7
is an o-homomorphism if and only if a <b in G implies ar < b7 in G' for all
a,b in G. If C is a normal convex subgroup of G, and G/C is right-ordered as in
3.5, then the natural homomorphism of G onto G/C is an o-homomorphism.

3.6. If m is an o-homomorphism of G onto G' and C is a convex subgroup of
G, then Cn and the kernel K(m) of w are convex subgroups.

Proof. If e <a<beK(), then e < arm <bw =e'. Thus a € K(7) and hence
K(m) is convex. Suppose that e' < a' < b' € Cr. Then a' = ar and b' = b7, where
a€ GNP and be CNP. I a¢ C, then b < a, and hence b' = br < ar = a', a contra-
diction. Thus a€ C and a' = ar € Cnv. Therefore Cr is convex.

I C is a convex normal subgroup of G, then it follows from 3.5 and 3.6 that
there exists a one-to-one order-preserving correspondence between the convex sub-
groups of G/C and the convex subgroups of G that contain C.
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3.7. Suppose that N is a normal subgroup of a group H, and that N and H/N are
ro- groups. Define that e+ h € H is positive if either h € N and h is positive in N
or else he€ H\N and hN is positive in H/N. This definition right-orders H so that
N is a convex subgroup and the natuval homomorphism n of H onto H/N is an o-
homomorphism.

For it follows by straightforward grinding that the definition right-orders H.
Clearly 7 is an o-homomorphism. Thus by 3.6, N = K(1) is convex.

G is archimedean if for every pair a, b € P there exists a positive integer n
such that a < b™,

3.8. If G is archimedean, then G is an o-group. Thus G is o-isomovrphic to a
subgroup of the additive group N of real numbers.

Proof. I x,y € P, then there exists an n such that x < y». Thus by 3.1,
xyx~! € P, Therefore P7 C P, where 7 is the inner automorphism of G that is in-
duced by x (g7 = xgx~?! for all g € G). Suppose (by way of contradiction) that
x~'ax < e for some a € P. Then e < {(x~'ax)~!=x"'a3"!'x. But then

e < x(x"'a"lx)x"'=a"?!,

a contradiction. Thus P77! c P. Hence P7 =P, and P is normal in G. Therefore
G is an o-group. The last part of this proposition is the well-known result of
Holder (see [8, p. 6] for a proof).

In this section we have shown that an ro-group has many of the properties of an
o-group. In fact, in some ways ro-groups are easier to deal with. In particular, note
3.7 and the examples in Section 5. But some of the fundamental properties of o-
groups are not possessed by ro-groups. For example, if C and C' are convex sub-
groups of G and C' covers C, then C is not necessarily normal in C'. In the next
section we deal with this and related problems.

4. A STRUCTURE THEOREM FOR ro-GROUPS
Throughout this section we assume that G is an ro-group, and that P is its semi-
group of positive elements.

LEMMA 4.1. Let a and b belong to P. Then the following three properties of
G are equivalent:

(i) there exists a positive integer n such that (ab)™ > ba;
(ii) if a < b, then there exists a positive integer such that abPa-! > b;
(iii) there exists a positive integer n such that a™b > a.
Proof. If a <b, then a, ba~' € P. Thus by (i) there exists an n such that
abna-1 = (aba-1)n> ba-la = b.

Therefore (i) implies (ii). Since e < a, b < ab. Thus by (ii) there exists an n such
that (ba)® = b(ab)™b-1 > ab. Therefore (ii) implies (i). If (i) is false, then

(ba)* b < a(ba)® b = (ab)*t! < ba

for all n. Thus (iii) is false, and hence (iii) implies (i). If a <b, then a < b < ab.
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¥ a> b, then a = cb, where ¢, b € P. Thus by (i), (cb)® > bc for some n. There-
fore

ab = (cb)2b > becb = ba > a.

Therefore (i) implies (iii).

LEMMA 4.2, Suppose that G has the properties in Lemma 4.1. Let x € G and
a,ye P. If x<am and y < an for some positive integers m and n, then theve
exists a positive integer q such that xy < ad.

Proof. Without loss of generality, let m = n. Then xy < amy, K there exists
an integer r such that a™ < a¥y-1, then amy < a¥*. Thus xy < ar. Suppose (by way
of contradiction) that aTy -T< am for all r. Then amtay-1 < am for all q > 0. But
y < am, hence yad < am+q and ya?y-l < amt+qy-1, Thus yady-1 < am for all
q> 0. Therefore y(a.m)tly-1 <am forall q>0. Nowlet z=am Then e<y<z
and yz4y-1 < z for all q > 0. This contradicts property (ii) of Lemma 4.1.

LEMMA 4.3. Suppose that G satisfies the conditions in Lemma 4.1. If C and
C' ave convex subgroups of G such that C' covers C, and if a,be (C'\ C)NnP,
then there exists a positive integer n such that an > b. In particular, if G contains
no proper convex subgroup, then G is o-isomorphic to a subgroup of N.

Proof. Suppose (by way of contradiction) that am? < b for all positive integers n.
Let S= {x€ G: e <x< a® for some n}. Clearly S is a convex set, and by Lemma
4.2, S is a semigroup. Let T = SUS-'y {e}, where S!= {s™!: s€ S}. We next
show that T is a subgroup of G. ' -

If xe T,then x=e or X€ S or x€ S™%, thus x™! =e or x"*€ 87! or x"'€ S.
Therefore x-*€ T. Consider x,y€ T. If x=e or y=e or Xy =e, then xye€ T. If
X,y€ S,then xye SCT. If X,y€ S}, then y,x"*€ S. Thus y~'x"!= (xy)"t€ S,
and xy € S~'c T. Next suppose that x€ S™! and ye€ S. Then x<e and xy<y. I
e<xy,then e<xy<yeS,and xye SCT. If xy<e, then e < (xy)~! =y 'x"! and
y ! < e. Thus

e<(xy)yl=yilxl<x'es.

Therefore (xy)-'*€ S and xy € S C T. Finally, suppose that x€ S and y € S™% If
Xy, yx € P, then by (i) of Lemma 4.1,

x=ylyx<(yxy-)n=yxny-1

for some n. Thus e<xy<yx2<xMe€ S,and xye SCT. If xy and yx are nega-
tive, then y-1x"!, x~'y~l€ P, y~*€ S and x~! € S~!, Thus, by the last argument,
(xy)~* =y~ x~'€ S. Therefore xy€ ST*.c T. If yx < e < Xy, then x and x~*y™* be-
long to P. Thus by (iii) of Lemma 4.1, x < xn(x-1 y-1) for some n. Therefore
e<xy<xt-lesS, and xye SCT. If xy <e<yx, then X'y *<e<y'x}

y-t€ S, and x! € S-!. Thus, by the last argument, (xy)~* =y !'x '€ S.

Therefore T is a convex subgroupof G. If c€ Cn P, then c¢ < a, for otherwise
e<a<ceC, hence a€ C. Therefore CN Pc T, and since T is a group, CC T.
C# T because a€ T\C. If te TNP, then e <t<a™e€ C', hence te€ C'. There-
fore Tc C'. T#C' because be C'\T. Therefore CCTcCC' and C# T # C/;
but this contradicts the fact that C' covers C. This completes the proof of the first
assertion of the lemma. If G has no proper convex subgroup, then clearly G is
archimedean. Thus, by 3.8, G is o-isomorphic to a subgroup of 9.
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COROLLARY. Suppose that G satisfies the conditions in Lemma 4.1. Then G
is avchimedean if and only if G contains no proper convex subgroup.

LEMMA 4.4. Suppose that G satisfies the conditions in Lemma 4.1. If C and C!
are convex subgroups of G such that C' covers C, then C is normal in C'.

Proof. Pick b€ (C'\ C)nP. Define xm = bxb~? for all x € G. We first show
that ymr < b for all y € C. For by 3.4, by-*€ (C'\ C)nP. Thus by Lemma 4.3,
(by-1)n> b for some n. Hence by 3.1, b(by~Y)b~! > e, and b(yb~!)b-! < e. Therefore
ym = byb~* < b. Consider c € C and suppose that cr € C'\ C. I cmre (C'\ C)N P,
then by Lemma 4.3, co = (cm)2 > b for some n. But cr € C, hence cnr < b. If
(em)"l=c re (C'\C)NP, then c 7 = (c-! a)» > b. But c-"€ C, hence c-27 < b.
Therefore Cm c C.

By Lemma 4.3, for each a € (C'\ C)NP there exists a positive integer n such
that an > b. By (11) of Lemma 4.1, there exists a positive integer q such that
(ba®™b-1)2 > a®, Therefore

wab )™ e (c'\NC)NP, bable (' \NC)NP,
[(C'\C)NPlmc (C'\C)NP, (C'\C)nc C'\C,

and C C Cn. Therefore Crm = C and C is normal in C'.
THEOREM 4.1. The following properties of an ro-group G are equivalent.
(i) For each pair a, b € P theve exists a positive integer n such that (ab)" > ba.

(ii) If C and C' are convex subgrvoups of G and C' covers C, then C is normal
in C' and C'/C is o-isomorphic to a subgroup of 9.

Pyroof. The fact that (i) implies (ii) follows from Lemmas 4.1, 4.3 and 4.4. Con-
versely, suppose that G satisfies (ii), and consider a, b € P. First assume that
b < a. Let G2 be the intersection of all convex subgroups of G that contain a, and
let G, be the join of all convex subgroups of G that do not contain a. Then G2 and
G, are convex subgroups of G and G2 covers G, (see 3.3). Thus G*/G, is o-
isomorphic to a subgroup of 9. By the properties of 9 it follows that there exists
a positive integer n such that

G, (ab)” = [(G,2)(G;b)]™ > (Gab)(G,a) = G, ba.

Thus G, (ab)"™ (ba)~! is positive in G2/ G,. Therefore (ab)?(ba)-! > e and (ab)™ > ba.
An entirely similar proof takes care of the case where a <b.

Remark. We show in Example III that not all ro-groups have property (i). In
Example I we construct an ro-group which has property (ii) but cannot be ordered.

Let €« be the class of all ro-groups that have property (i) in Theorem 4.1, and
let Ge €. The set T of all pairs of convex subgroups GY, G, of G such that GY
covers is ordered by inclusion. Moreover, by Theorem 4.1, each Gy is normal
in G?, and each G?/ G, is o-isomorphic to a subgroup of 5. Let S be a subgroup
of G. Then G is an a-extension of S if for every e < g in G there exists an
e < s in S and a positive integer n such that g" < s < gttl G is a c-extension of
S if for each yeI', GY = G (S NGY). G is a-closed (c-closed) if it does not admit
any proper a-extens1on (c—extensmn) in €. The proof of Lemma 1.1[1, p. 323] is
valid for any group in ‘€. Thus, corresponding to Corollary II [1, p. 324] we have

THEOREM 4.2. If G€ ¥, then there exists an a- closed a- extension (c- closed
c-extension) of G in €.
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Once again, let G be an arbitrary ro-group. An element a € G is a left-keeper
if x <y implies ax < ay for all x, y in G. Clearly the set K of all left-keepers in
G contains the center of G. Let H be the greatest subgroup of G that is convex and
ordered.

THEOREM 4.3. K s an ordeved subgroup of G and K D H.

Proof. It is easy to show that K = {a € G:aPa~!'= P} . Thus it follows at once
that K is a group, and hence an o-group. To prove that HC K it suffices to show
that HN P C K. Consider q€ HN P and %, y € G such that x <y. Then y = zx,
where z € P, and qy = qzx = qzq~'gx. Thus it suffices to show that qzq-*€ P. If
q< z, then by 3.1, qzq~* € P. K z < q, then since H is convex and ordered, qzq™* € P.

Let S be the set of all normal abelian convex subgroups of G. Let M =U Aes A.
Then M is the greatest normal abelian convex subgroup of G, and M is an o-group.
There exists a unique (to within an isomorphism) rational vector space D that con-
tains M, such that for any d in D, nd € M for some positive integer n. This is a
straightforward generalization of the usual construction of the rationals. D is called
the d-closure of M, and the order of M can be extended to an order of D in one and
only one way.

THEOREM 4.4. There exists an a-extension H of G such that (i) H contains the
d-closure D of M; (ii) H is generated by D and G; and (iii) if K is any a-extension
of G that satisfies (i) and (ii), then K is equivalent to H.

The proof is the same as the proof of Theorem 3.1 [2, p. 518] except that “o-
automorphism?” is replaced by “automorphism” whenever it occurs.

5. EXAMPLES OF ro-GROUPS

I. Every normal extension of an ro-group by an ro-group can be right-ordered.
This is merely a restatement of 3.7. Thus it is easy to construct ro-groups that
cannot be ordered. For example, let G = IXI, where I is the group of integers. De-
fine

(a', a) + (b', b) = (@' + b, a(-1)?' + b),

and define that (a', a) is positive if a' > 0 or a' =0 and a> 0. Then G is an ro-
group, but G cannot be ordered because -(1, 0) + (0, 1) + (1, 0) = -(0, 1). Thus (0, 1)
cannot be positive or negative. Moreover, (1, 1) + (1, 1) = (2, 0) = (1, 0) + (1, 0).

L. The unvrestricted divect product of a set of ro- groups can be right-ordered.
For let S be a set, and for each element s € S, let G; be an ro-group. Let G be

the set of all mappings @ of S into U ses Gg such that sa € Gg for all s€ S. For
s€ S and @,8 € G, define s{aB) = sasB. Let 6 be the identity of G. Well-order

S: s, — 8,—] **-. For each 0+ a € G, let L(a) be the first element in the well-
ordering such that L{a)x # e, where e is the identity of G L(a) Define @ to be
positive if L(a)a > e. Then G is an ro-group, and G is an o-group if and only if
every Gy is an o-group.

1. Every group of ovder-preserving permutations of an ovdered set can be vight-
ordered. For let S be an ordered set, let G be a group of o-permutations of S, and
let ¢ be the idéntity permutation of S. Well-order S: s, —| s, —| ***. For each
¢ # m € G, let L(m) be the first element in this well-ordering such that L(m)w # L{n).
Define 7 to be positive if L(m)w > L(w). This definition right-orders G (see the
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proof of Theorem 3 [3, p. 388] for the details). In particular, the group of all o-
automorphisms of an ro-group can be vight-ovdered.

Suppose that S itself is an ro-group, and let the first elemernt s, in the above
well-ordering be the identity e of S. Then the mapping of s € S upon the right
multiplication s' of S (xs'= xs for all x € S) is an o-isomorphism of S into G.
Therefore, every ro-group S is o-isomovphic to a subgroup of the ro-group of all
o-permulations of the set S.

Finally we use this method to construct an ro-group that does not have property
(iii) in Lemma 4.1 and hence does not have properties (i) or (ii) of Theorem 4.1. Let
S be the set of real numbers with their natural order, and let G be the group of all
o-permutations of S. We distinguish two particular elements a and 8 of G:

X+ 1/2 for all x <0,

xa = ¢ (x+1)/2 forall 0<x<1,
b 4 for all 1 <x,
x/2 forall x<1,
- |
x-1/2 for all 1 < x.

Well-order S so that 0 is the first element and -1 is the second. Then

L(a) = 0— - 1 = L(g).
L@)B = (-1)8=-1/2> -1 =L(g).
Thus 8> ¢. L(a)a = 0a = 1/2> 0 = L(a). Thus a > ¢.
0anga-l = [(20 - 1)2-1lga-1 = [(2n - 1)2-n-1]a-1 = (2° - 127271 - 2-1 = 2-n-1,

This means that L(a®Ba-1) = 0 and a®Ba-1 < ¢ for all positive integers n. Thus
a™ B < a, and G does not have property (iii).
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