SEQUENCES OF LINEAR FRACTIONAL TRANSFORMATIONS

Paul Erdéds and George Piranian

A point set E in the extended z-plane will be called an SD (set of divergence)
provided there exists a sequence of transformations

T,(2z) = (a,z + by)/(chz + dy)

that diverges at each z in E and converges at each z in the complement of E. In
the present paper, we give a topological characterization of the SD’s that lie on a
straight line.

We also characferize the denumerable SD’s. But for this purpose, topological
ideas are not sufficient (see [1, p. 133]), and we introduce a geometric analogue to
the concept of a limit point.

1. SETS OF DIVERGENCE ON A STRAIGHT LINE

THEOREM 1. If a set E lies on a straight line, il is an SD if and only if it is of
type Ggg-

The necessity of the condition follows immediately from the fact that the trans-
formations T, are continuous, in the extended plane.

In proving the sufficiency, we may assume, without loss of generality, that the
set E lies on the extended real axis. If E coincides with the extended real axis, it
is of type Gp; this case is covered by Theorem 3 of [1]. In the other case, we may
assume that the point z = o does not belong to E, so that E can be represented in
the form

00 0
E= UEj, Ej: nEjk’
j=1 k=1

where for each j the family {Ejk}°1:=1 constitutes a decreasing sequence of open sets

on the segment (-j/2, j/2) of the real axis. (Even if E is empty, we may assume

that none of the sets Ejx is empty.) For each index pair (j, k), we denote by {Ejkp}

the finite or denumerable family of components (ajkp, bjkp) of Ejk. With each inter-

gai Ejkp, we associate a domain Bjkp bounded by E;jx, and by arcs of the two para-
olas

(1) y = (ko) (x - ap)?, ¥ = (kp) ' (x - bjip) .

We construct a denumerable set of circular disks Djkpq (see Figure 1) with centers
Zjkpq = Xjkpq * iyjkpq! subject to the following three requirements:
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(i) each disk Djkpq lies in Bjxp, and its boundary is tangent to Eji,;
(ii) the sequence {ijpq}o,;:l has ajkp and bjkp as its only limit points;
(iii) each point of Ejixp lies on the orthogonal projection of one of the disks
D.
jkpq-

We observe that conditions (i) to (iii) are consistent with the further requirement
that

. 5 A |
(2) Yikpg < 0jkp - ajkp)(Jkaq) < (jkpq) ,

@,

and we shall assume that this condition is also satisfied. Now let the family of
transformations

jkp jkp

Fig. 1

!

Yikpq
Tooo(Z) = 7——
k -7
J5pPq ](Z kapq_)
be arranged into a simple sequence {T,}. We shall prove that the sequence { T (z)}
diverges everywhere in E and converges to 0 everywhere in the complement of E.

Note first that the value of lTjkpq(Z)l is 1/j on the boundary of Djkpqs and that
it is inversely proportional to |z - zjkpq|. By (2), no point z lies in infinitely many
of the disks Djkpq, and it follows immediately that

lim inf | T (z)| = 0,"

n-— o0
for each z in the plane. Also, if z € E;j, then |Tn(z)| > 1/2j, for infinitely many n.
This establishes the divergence of {Tn(z)} on E.

Suppose next that z = x + iy £ E, andlet € > 0. If y# 0, then yjkpq < |y|/2, ex-
cept for finitely many index sets (j, k, p, q). For all except these finitely many index
sets, condition (2) gives the inequalities

Yjkpq 2yix 2 1
T | <= <—7"Jf3<2 “kpq)”" .
| jkpq I ]Iy _ ijpql ily (|Y|] Pad

Since the last member is less than £, with at most [initely many exceptions,
T, (x+iy) — 0 if y # 0.
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If y=0, then z lies outside of each of the disks Djkpq, and therefore the in-
equality IT jkpq(X)l < j'1 holds for each index set (j, k, p, q). Hence the inequality
| Tjkpq(x)| <& holds for each index set (j, k, p, q) with j > 1/e. For each of the
exceptional values j = 1, 2, -+, [1/¢], there exist at most finitely many index pairs
(k, p) for which x € Ejx,. Condition (2) implies that if z € Ejp, then

(i%kpq) !
T andX)| <
l jkpq l |X-Xj ql

and the right member clearly approaches 0 as q — «. Therefore it remains only to
deal with the index sets (j, k, p, q) for which j <1/ and x¢ E;xp- Here we note
that \

b4

| T j1cpg@)| < max { | Tjipq(@jp) s | Tirpajp)| -

By symmetry, it is sufficient to show that the first of the expressions in the braces
is less than ¢ for all except finitely many of the index sets (j, k, p, q) with j <1/e.
By the construction of the parabolas (1),

Yjkpq .
3) T apd@io) | <= < (2kp) ! Kjppg = Aixp)
( | jkpg*“ikp ‘ J(xjkpq - ajkp) 17kp ( jkpq jkp/»
and by condition (2),
.2 -1 -1
4 lTjkpq(a’jkp)l < (bjxp - 2jxp) (1°kPA) ™ (Xjipq - 2jKp) -

For those index sets (j, k, p, q) for which Xjkpq lies in the left half of E jkp, the last
member of (3) is less than &, with at most finitely many exceptions. For those index
sets for which Xjkpq > (ajkp + bjkp)/2, the second member of (4) is not greater than
2(j%pq)~*. This concludes the proof of Theorem 1.

DENUMERABLE SETS OF DIVERGENCE

Corresponding to any point set E in the plane, we define the set gd(E) by the
rule that z € gd(E) provided, for each € > 0, there exists a 6 > 0 with the following
property: if |t - z| < 6, then some w in E satisfies the inequality |W - tl <el|t- z|.
Roughly speaking, z € gd(E) provided the complement of E does not contain arbitrarily
small disks that subtend a fixed angle 6(z) at the point z. We pdint out, for-example,
that if E is the set |z| < 1, then gd(E) is the set |z| < 1; and that if E is the clas-
sical two-dimensional Cantor set, then gd(E) is empty.

The set E! is defined by the rule E! = ENgd(E). For each ordinal o, we write

EY = g@-1 N gd(Ea'l) (o of the first kind),

E® = n EB (@ of the second kind).
B<Lla

THEOREM 2. A denumevable set E is an SD if and only if there exists an
ovdinal & such thal the set E® is empty.

To prove the necessity of the condition, suppose that E is a denumerable set for
which E%® is not empty, for any @. Then clearly there exists an ordinal 8 (B < €,
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where © denotes the first nondenumerable ordinal) such that ESt! = EB, We pro-
ceed to show that if a sequence {Tn(z)} diverges everywhere in EB, then the SD of
{T,} is not denumerable.

Without loss of generality, we may assume that Tn(z) = an/(z - tn), and that
T,(z) — 0 for each z for which the sequence converges (see [1, Section 2]). Let
W, be any point in EB. Then there exists a constant hy > 0 and a sequence {ny}
such that Tnk(wo)l > hg for all k. We may suppose that tnk — W, since otherwise

the SD of {T,} contains an open disk and is therefore not denumerable.

I t, # wo, let D, denote the disk |z - tnll < ho|wo - tnll . Then the inequality
|Tn1(z)| > 1 holds throughout D,. Also, since EPt1l = EB the disk D, contains two
points wy, and w,, of EB (provided the point 'r.nl lies near enough to w,, a condition
which is certainly satisfied if n, is chosen large enough).

If t, =w , there also exists two points wy, and wg, of EB in whose neighbor-
hoods | T, (2)| > 1.

In either case, there exist two disjoint disks Dy, and D, in which |Tn1(z)| >1
and in which some Tn(2z) and Tng (z) (ng > My, Ny, > ny), respectively, have modu-

lus greater than 1. By a familiar argument, the continuation of the construction leads
to a nondenumerable point set throughout which lim sup ITn(z)I > 1. This proves the
necessity of the condition.

To prove the sufficiency of the condition, we suppose that E is a denumerable set
{Zm} (m=1,2, ), and that E* is empty for some ordinal a. Then, for each index
m, there exists a unique ordinal g = B(m) such that z,,€ EB - EB+1 Also, for each
m, there exists a constant £,,, (0 <&,, < 1/m) such that each deleted neighborhood
0< |z - 2z,]| <& (e <e,) contains a disk N* subtending an angle 4em at zm and
containing no points of E (m), Since E is denumerable, we can replace N* by a
concentric subdisk N whose boundary does not meet the set E, whose closure does
not meet the set E8(m) (and therefore does not meet any of the sets EY with
Y > B(m)), and whose center w and radius r satisfy the condition r > sml Zm - W| .
Corresponding to each index m, we shall need a sequence {ij} G=1,2,-.) of
disks having these properties, and subject to the condition that the centers wp,; con-
verge to z,, as j — «. Our collection of disks N.,; (m, j=1, 2, --*) must satisfy
the further restriction that if two disks Np,j and Npx intersect, then one contains
the other, and that if Ny,; C Ny, then g(m) < B(n).

To construct the collection {N mj}, we order the index pairs (m, j) into a se-
quence, and corresponding to the first index pair we choose the disk N j in any
manner consistent with the specifications listed in the preceding paragraph. Suppose
that a finite number of choices have been made, and that (m, j) is the first of the in-
dex pairs for which the disk N,,; has not been selected. Since z;, does not lie on
the boundary of any of the disks that have been chosen, we can choose Np,j in such a
way that |zm - wmj| < 1/mj, and in such a way that each of the previously con-
structed disks that meet N,,; contains it entirely. Moreover, since zZx lies in none
of the disks N; with B(n) < B(m), we can stipulate that Ny,j lies in none of these
disks.

Finally, we define the transformations

ij(z) = Egn(zm - Wm_])/(z - Wmj)
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and arrange them into a sequence {T, }. Since |ij(z)| < gm outside of Np,j, and
Tmj(Zm) = €5, the sequence { T(z)} diverges at each point of E. Suppose, on the
other hand, that z is not one of the points z,; then {Tn(z)} certainly converges if
z lies in only finitely many of the disks Np,j. But for each z, the disks containing z
form a nested sequence, and the corresponding ordinals g(m) form a decreasing se-

quence. Since a decreasing sequence of ordinals is finite, T,(z) — 0 for all z out-
side of E.

It is evident that if, corresponding to a set M of natural numbers, we delete from
{ij} all elements for which m € M, then every sequence formed from the remain-
ing transformations converges at each z,, with m € M. This proves the following
theorem (and thus settles Problem 2 in [1]).

THEOREM 3. If E is a denumevrable SD, then every subset of E is an SD,
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