HERMITIAN MANIFOLDS WITH ZERO CURVATURE
William M. Boothby

1. INTRODUCTION

In this note we consider the problem of determining those complex-analytic
manifolds with a Hermitian metric whose curvature vanishes everywhere. It is
easy to see that the identical vanishing of the curvature implies that there exists in
a neighborhood of each point a field of n independent (in fact, orthonormal) parallel
analytic vectors, where n is the dimension of the manifold. If the manifold is simply
connected, such a field may then be defined over the entire manifold, and the mani-
fold is therefore parallelisable (a complex-analytic manifold of complex dimension
n is said to be parallelisable if there exist n analytic vector fields defined over it
which are independent at each point). On the other hand, if a complex-analytic mani-
fold is parallelisable, then it has a Hermitian metric with curvature zero. Hence,
for a complex-analytic manifold, the existence of such a metric is a somewhat
weaker property than parallelisability. H. C. Wang [6] has shown that a compact,
complex-analytic, parallelisable manifold has a complex Lie group as its universal
covering space. Here this is generalized to the corresponding theorem for the case
of vanishing curvature.

We use the notation of [4], except that we denote the conjugate of a complex
number by a bar, and that the * on indices is replaced by a bar. Thus Greek indices
range from 1 to 2n, unbarred Latin indices from 1 to n, and barred Latin indices
from n+ 1 to 2n. In local coordinates z!, -- , 2%, and relatlve to the natural (affine)
frames, the metric tensor is denoted by g1J dz dzJ and the components of the con-
nectlon CBY are given by
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all other components being zero. The torsion tensor is simply the skew-symmetric
part of the connection, that is, Ag% y = CB - C B . Its vanishing is the condition that
the metric be Kahlerian. Covariant derlvatwes are given by the usual formula
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There are natural decompositions of a tensor into a sum of pure tensors of special
types, those of a given type having components which vanish except for a particular
pattern of Latin indices, for example, for all except the unbarred Latin indices. It is
easy to see from the def1n1t10n of covamant derlvatwes that if a tensor is pure and

has only unbarred indices (example: X ” js °), then the components are analytic

functions of the local coordinates in each coordinate system if and only if
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i ..li
X jll...j lig =0. We conclude by noting that the curvature tensor is defined by
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This corrects a misprint in [4, p. 524, formula (24)].

2. BOCHNER’S LEMMA

Bochner’s Lemma will be needed in the sequel; it may be stated as follows:

LEMMA. If ® is a real-valued function on a compact Hermitian manifold, and if
L(®) = gl &, the subscripts indicating covariant differentiation, then L(® > 0 every-
where zmplzes that ® = constant and L(®) = 0.

This is a slight extension of the lemma proved by Yano alid Bochner [7, p. 30],
0P

and it may be proved as follows. Locally, we have @, = 2Kl Since ¢ is real-
- zX 9z
valued, &, f = ®;; and hence L(®) = kl—g—a—lza—l— is real-valued. If the right-hand
zX 9z

side is translated into an expression in real variables by means of the relations
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gkl = akly jpkl,

2
then we get L(®) = h@B_2"2

¥ B’ where h®B is a positive definite symmetric matrix
x®
defined by

hil = ald,  hi =pl, K- pl, Bl all,

Then E. Hopf’s Theorem as stated in [7, Chapter II] applies, and exactly as in that
case we may deduce the lemma from the maximum principle. We remark that this
version of the lemma for Hermitian manifolds is an improvement over that given in
[4, Section 14], since it does not involve the torsion term.

3. HERMITIAN MANIFOLDS WITH ZERO CURVATURE

In this section, Theorems 1 and 2 are proved essentially by the methods of Aus-
lander and Markus [3]. As in [4], we introduce the bundle of orthonormal frames
re1at1Ve to the Hermitian metric, the fibre over a point p of M being all n-tples
ey, ***, e, of mutually orthogonal unit vectors at p. Then there exist independent
Pfafflan forms wi, wa’ with w'j + @J; = 0, defined intrinsically in the bundle, and
such that if pej :-- e, is a frame, then dp = wie; and de; = wj; iej. These forms
satisfy the equations of structure

dwl - wk A wik Aijk wl A wk,

dwi; - Wi A wly

- -,k
Rijkiw Awl,
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where Aljk and Rjjk], evaluated at a given frame pe) *:- ey, are the components of

the torsion and curvature tensor at the point p relative to the frame ej---e,. In this
case R 5,1 = 0, and hence the system of equations wJ = 0 is completely integrable
(see [5], p. 58). Therefore, in a suitably chosen coordmate neighborhood N(p) of

each point p of M, it is possmle to introduce a field of orthonormal frames qej - e,

" which are parallel (since dej = w;J ej = 0), and which are uniquely determined by the
choice of a frame at one point, say p. The vectors ej are pure vectors, and, since
their covariant derivatives vanish, they are analytic. Thus in N(p) we have introduced
a field of parallel, orthonormal, analytic frames, assuming only that the curvature
vanishes. On the other hand, given any field of orthonormal frames which are parallel,
then, restricted to these frames, the left-hand side of the second equation of structure
reduces to zero; hence the curvature relative to these frames is zero. But then it
must vanish relative to all frames. This gives

THEOREM 1. The curvature of a Hermitian manifold vanishes if and only if each
point has a neighborvhood over which it is possible to choose a field of analytic vectors
€1, ***, ey Such that the vectors are orthonormal at each point, and such that each e;
is a parallel vector field in the sense that its covariant devivative is identically zevo.

Let these neighborhoods be called admissible. Parallel displacement of a frame
at p along any path in an admissible neighborhood N(p) is independent of the path,
since wlj = 0 has a unique solution throughout N(p) coinciding with the given frame
at p. Similarly, given any two points p, and p, of M and a path C joining them,

there is a neighborhood N(C) = U q€eC N(q) such that displacement of a frame from
P, to p, is the same along any path from p, to p, in N(C). Let C; (0 <t< 1) bea
homotopy class of curves joining p, to p,. From what has been said, it follows that
the subset S composed of those points of 0 < s < 1 for which parallel displacement
of a frame from p, to p, along Cg is the same as along C,, is an open subset of

0 <t< 1. Itis also closed and not empty, and hence it is the entire interval. This
gives

THEOREM 2. If M is a Hevmitian manifold of zevo curvature, then parallel dis-
placement of a vector or frame depends only on the homotopy class of the path., If the
manifold is simply connected, it is parallelisable by parallel, orthonormal frames,

THEOREM 3. A complex-analytic manifold which is parallelisable has a natuval
metrvic which is Hevmitian, which has cuvvature zevo, and relative to which the given
field of frames is pavallel and orthonormal.

To prove this, let vy, **-, v, be the n independent analytic vector fields assumed
to exist on the mamfold Let 01, **, O, be Pfaffian forms dual to vy, -, v,,. Define
ds? = i 6' 61; then it is clear that Vi, *:e, Vp are orthonormal. In local coordi-
nates, if 91 = al dzJ, we have then gjj = Ek 1 ak ak . By direct computation, and with
the use of the expressmns for Ci; jk and for Rlel m Section 1, it is easy to verify
that dvij = 0 and that Rijki = 0.

Example. As a simple example, we consider 6! = z1z2dz!, 62 = z!z%dz?, v! and
v? being dual to these forms, which are defined on the 2-dimensional complex plane
minus the origin. To compute components of the torsion tensor relative to v!, v2, we
write '

-1 1
dot = —T—TZI 222 6t /\92, doz = ——————2—(21)2z 0L A 62.

Clearly, Aijk= 0, except that
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-1 1
Ay = zi(z2)? “A% and A%, = @)%z = -A%,,.

We note that these components are not constant, although v, and v, form parallel

frames. Therefore not all the covariant derivatives of the torsion are zero. It will
be shown below that this cannot happen in the compact case.

4. THE COMPACT CASE

We now consider a compact Hermitian manifold with zero curvature. The Bianchi
identities for the curvature and torsion of such a manifold are (see [4, p. 525])

Rijii - RiGil = 2A%k 110,

AlhkAhlJ- + AlhlAhjk+ Althhkl —;—(Aljll K+ A11k|j+ Alkjll).

In our case AJikli,= 0, that is, the components of the torsion tensor are complex-
analytic. However, AJ;, [} may not be zero, as is shown by the example above; that
is, the AJ; ik may not be constants relative to a local field of parallel frames. We
shall show, however, that in the compact case this follows. Let ¢ =2; j « Al JkA jke
Since Aljk|f= 0, we get for L(®) the expression

L(®) = 2 &5=" 2 KijkAijklhﬁ"' KijkIhAijklh'
h i,j,k,h

By the interchange formulas in [4, Section 13], we get
A'klnh = Alklin = 0,

and hence

L@ = X AlygpAiyg, >0.
i,3,k,h

It follows from Bochner’s Lemma that AijklhE 0. From the second Bianchi identity
it follows that the A'; satisfy the Jacobi identities. If, in an admissible neighbor-
hood of each point, we restrict to parallel orthonormal frames, then the equations

of structure become

do' = Al wl AWk, Al o+ Al = 0,

and we have w!; = j = 0. Since relative to these frames the Al jk are constants and
satisfy the Jacobi identity, the w! are the left invariant forms of a local Lie group.
Let M be the universal covering space of M; then, since it is simply connected and
complete (being a covering space of a compact, and therefore complete, space), it is
a complex Lie group with the images wi of w1l as left invariant forms. Then, by
standard arguments on covering spaces, we get

THEOREM 4. If M is a compact Hermitian manifold with curvature zevo, then
its universal covering space M is a complex Lie group, and M is the factor space
M/D of M by a discontinuous group D of covering transformations each of which is
an isometry without fixed points mapping M onto M
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COROLLARY. A compact Hermilian manifold with zevo curvature cannot be
simply connected.

The corollary is immediate, since the only compact complex Lie groups are the
tori, and these are not simply connected.

We conclude with two remarks:

(i) H. C. Wang characterized all compact complex parallelisable manifolds: they
are coset spaces of a complex Lie group by a discrete subgroup. Thus, in the event
that M is complex parallelisable by parallel, orthonormal frames, D is actually a
subgroup of the Lie group M. That in general it need not be such a subgroup, even in
the case where the Hermitian metric is a Kahler metric, is shown by several exam-
ples of compact Kahler manifolds of zero curvature, in a recent paper by L. Aus-
lander [2]. In these cases, since the homogeneous holonomy group is not the identity,
the manifold is not parallelisable by parallel, orthonormal frames.

(ii) M. F. Atiyah [1] has recently considered complex-analytic fibre bundles with
a complex-analytic connection. For this reason it is perhaps of interest to point out
that, in the bundle of all complex-analytic frames (structure group GL(n, c¢)) over M,
the connection determined by the Hermitian metric is complex-analytic if and only if
the curvature vanishes. This follows from formula (20) of [4], namely

. J,
Ry = - 29 ik
2z1
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