ON SOLUTIONS OF THE EQUATION OF HEAT CONDUCTION
F. W. Gehring

1. INTRODUCTION

Suppose that u = u(x, t) is defined over some domain D in the xt-plane. We say
that u is parabolic in D if u is of class C? and ui = uxx in D. Parabolic functions
have many properties in common with harmonic functions. In this paper we use
analogues of well-known theorems on harmonic and subharmonic functions to obtain a
uniqueness theorem and some representation theorems for functions which are para-
bolic in the infinite strip 0 <t < ec.

We begin by introducing a class of subparabolic functions. For x, < x, and
t, < t,, let R = R(x,, X, t,, t,) denote the open rectangle bounded by the lines x = x,,
X=X, t=t,and t=1t,. Let S denote that part of the boundary for R which does not
lie in the line t = t,, and let w = w(x, t) denote any function continuous in a domain D.
When RU S C D, we define the function My w = My w(x, t) as follows:
Mpw=w in D- R,
(1.1) Mp W is parabolic in R,

| MR W is continuous at each point of S.

Finally, we say that w is subparabolic in D if w < MR w for each rectangle
R (RUS cD). (Compare [9]) When P, = (x,, t;) € R, we have

(1.2) My w(Py) = | G(Py, Q) W@ ds,

where the integration is taken over S, where

(1.3) { @, @as=1,
S

and where

(1.4) G(P,, @ > 0

for Q= (& 7) € S [6]. Excepting the corners, we have strict inequality in (1.4) if and
only if t, < 7 < t,

If w is subparabolic in D, then w is subparabolic in each subdomain of D. If
u is parabolic, then |u|P is subparabolic for p > 1. A function u is parabolic if
and only if the functions u 'and -u are subparabolic. Finally, both the sum and the
upper envelope of a finite number of subparabolic functions are subparabolic.
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If E is any set in the xt-plane, we let E. denote the part of E which is contained
in the half plane t < c¢. Subparabolic functions satisfy the following important maxi-
mum principle. (Compare [13, p. 6].)

THEOREM 1. Suppose that w is subparabolic in a domain D with boundary T.
If, for some c,

(1.5) lim sup w(P) <A,
P—Q, PED,

for all Qe T'¢, then w< A in D.
When D, is unbounded, we must assume that I'. contains the point at infinity.

Proof. Let B be the least upper bound for w over D.. If w assumes this value
at Py = (xg, tg) € D, and if R = R(x,, X,; t;, t,) is any open rectangle containing P,
such that RU S C D, then (1.2), (1.3), and (1.4) imply that w(Q) =B for Q= (£, 7) € S,
t, <7< ty. Inparticular, w(x,, to) = B; and proceeding by induction, we can find an
increasing sequence {in} such that Pp = (x2n, to) approaches a point Qg € I'¢ and
such that w(P,) = B for all n. From (1.5) we conclude that B < A. If u does not as-
sume its least upper bound in D., we can find a sequence of points {Pn} in D, which
approach Qg€ I' . and such that u(P,) — B. Again we obtain B < A from (1.5).

With Theorem 1 it is not difficult to obtain the following alternative characteriza-
tion for subparabolic functions. (Compare [1, p. 194].)

COROLLARY 1. A continuous function w is subparabolic in D if and only if, for
each u parabolic in a subdomain A of D, the funclion w - u satisfies the maximum
principle of Theorem 1 in A.

In the sequel we shall require the following elementary lemma concerning the
Poisson kernel

1 x2
ke, 0= e (-5 )
LEMMA 1. Suppose that 0< a <1, B >0, v > 0. Then

(1.6) |ky(x, | < C1k(x, t)  (Cy =Cile, B,y) <),

for 0< t<at, B> t, v < |x|. Suppose that 0 <a <B<1, y>0. Then

(1-7) k(X -y, T) _<_ C2 k(X, t) (Cz = Cz(a, B, '}’) < °°) ’

for at <7 < Bt, y2<yt, t> 0,

Proof. The inequality (1.6) follows from a routine calculation. The restrictions
T < Bt, y? <yt imply that

(x_y)z X2 y2 ‘Y
-4y tmimaopSIa-p

and we obtain inequality (1.7) with

__1 Y
C2=7T P gI-p
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2. UNIQUENESS THEOREMS

We consider here some extensions, of Phragmén-Lindel6f type, of Theorem 1 for
the case where D is the strip 0 <t < ¢. We adopt the notation wt = Max(w, 0).

THEOREM 2. Suppose that w is subparvabolic in the strip 0 <t < c, that
o a
2.1) 5 S k(x, b - ) wH(x, t) dtdx <
-0 Y0

for all 0 <a<b<c, and that w(x, 0) <A for all x. Then w <A in this strip.
By the first hypothesis we mean that w is subparabolic in some domain contain-
ing the strip 0 <t< c.

Proof. If we replace w by the function w - A, then (2.1) still holds. Hence we
can assume, without loss of generality, that A = 0. We begin by showing that

(2.2) w(0, 1) <0
for 0 <t < ec. For this, fix 0 <t < ¢, y > 0, and consider the rectangle
R = R(-y, y; 0, ¢). Now w < wt. With (1.2) and (1.4) we have

w0, 9 < (G0, & & DwHE, 7 as
S

and, since w(x, 0) < 0 for all x, we obtain

(2.9) wo, ) < (a0, & & DwH(E, Da,
T

where T consists of that part of S not contained in the line t = 0. For the rectangle
R, the kernel G is well known [3, p. 177], and if we let

o0

h(Yy t)=-2 E kx{(4l’1 + l)y’ t}’
n=-co
then we can rewrite (2.3) as
t t
(2.4) w(0, t) < S‘ h(y, t - ) wt(y, n)d7- S\ h(-y, t - 7) wt(-y, nd .
0 0

With |y| >y = v2t, it is not difficult to show that

Ih(y, 0] <227 |k, (ny, )| < 4 |k (v, V)],

n=1

and (2.4) yields
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t .

(2.5) w(0, t) < 45‘ |k 7, t - D] {w* (@, 1) + wH(-y, 7)} dr.
0

Fix b so that t<b <c. Then 0 <7 <t implies that 0 <t- 7 < a( - 7) and
b-7< B, where 0 <a <1, 8> 0, and (2.5) and (1.6) yield

t
(2.6) w(0, t) < 4015 k(y, b - { wH(y, 7) + w(-y, 7)} dr
0

for y <y. Integrating both sides of (2.6) over the interval y <y < 6, we conclude
that

& At
(- w0, 0 <4¢,{ (kb - D{wr, 7+ wey, I} dray,
y 0
and hence that
ac, 7t
(2.7 w(0, t) 5-51{)-;5\ S‘ k{y, b - 7) w¥(y, 7)dTdy.
-0 0

We obtain (2.2) from (2.1) and (2.7) by letting 6 — «.
To complete the proof for Theorem 1, fix y and choose 0 <a, <b, <b<ec. If
0<t<a,, then
ap-t) <b, -t<Bb-1), y<yb-1),

where 0 <a <8< 1, v > 0; applying (1.7) to (2.1), we conclude that
-] al
S S\ k(x - y, b, - t) wh(x, t) dtdx < =,
-0 Y0

By the previous argument we obtain w(y, t) < 0 for 0 <t < ¢, and the proof is com-
plete.

THEOREM 3. Suppose that w is subparabolic in the strip 0 < t < c, that (2.1)
holds for all 0 < a<b < c, and that

lim sup wix, t) <A,
(3x,t) = (x0,0)

o<t<ec
Jor all x,. Then w < A in this strip.

Proof. Again we can assume that A = 0. Define R, S and T as in the proof for
Theorem 2 and, for P € R, let

u(P) = g G(P, Q) £(Q) ds,
S
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where f is the continuous function equal to w* on T and equal to 0 on S — T. Now
W - u is subparabolic in R,

lim sup {w(P)-u(P)} <0
P—Q, PeR

for all Q€ S [6, p. 369], and with Theorem 1 we conclude that w < u in R. Hence we
obtain (2.3), and the proof is completed as before.

The following results are immediate consequences of Theorem 3. (For a related
theorem, see [2].)

COROLLARY 2. Suppose that u is parabolic in the strvip 0 < t < c, that
o a
§ g k(x, b - t) |u(x, t)|dtdx < e
-0 Y0

Jor all 0 < a<b<c, and that

lim u(x, t) = A
(x,t) — (x%4,0)
0<t<c
for all x,. Then u= A in this strip.
COROLLARY 3. Suppose that w is subparabolic in the strip 0 < t < c, that
o0

sup k(x, b - ) wH(x, t) dx <
0<t<pb ¥ =0

Jor all 0 <b < c, and that

limsup w(x, t) <A,
(X1t) - (Xo :0)
o<t<e

Sfor all x,, Then w < A in this strip.

Corollary 2 is an extension of a well-known uniqueness theorem due to Tychonoff
[14]. A subparabolic form for the Tychonoff theorem is as follows.

COROLLARY 4. Suppose that w is subparabolic in the strip 0 < t < c, that

2
wix, ) < Me®™ (0<M<w, 0<a< )
in 0 < t<c, and that

limsup w(x, t) <A
(X,t) - (xo,O)
0<t<c

Jor all x,. Then w < A in this strip.
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Proof. Fix ¢, = Min(1/8a, ¢). If 0 <b < c,, then

gw k(x, b - ) wH(x, ) dx < N gw k{x, 2(b - t)} dx=N

- 00

for 0 <t<b, N= v2M, and we conclude, from Corollary 3, that w<Ain0<t<c,.
If c, <c, the proof is completed by a familiar step-by-step argument [14].
3. PARABOLIC MAJORANTS

We say that u is a majorant for w in a domain D if w<u in D. We obtain here
a necessary and sufficient condition for a function w, subparabolic in 0 <t <c, to
have a nonnegative parabolic majorant in this strip.

We begin with the following parabolic analogue of a result due to Littlewood [8,
p. 193].

THEOREM 4. Suppose that w is subparvabolic in the stvip 0 <t < c, and that
o0
(3.1) sup S k(x, b - f) wH(x, t)dx < e
0<t<b "=

for all 0 <b<c. Thenfor 0 < a< c the function
o0

(3.2) va=uals, 0= | Kx-y, t- 2wy, ay
00

is nonnegative and parabolic in the stvip a < t < ¢, and
(3.3) wh(x, t) <ug(x, t)

theve. Furthermore, for each fixed (x, t) in the strip 0 < t < ¢, ua(x, t) is nonin-
creasing as a function of a in the interval 0 < a < t.

Proof. Condition (3.1) implies that the integral in (3.2) is convergent in a < t< c,
and hence that u, is parabolic in this strip [15, p. 88]. For. (3.3) let

w,(x, t) = wh(x, t+a) -u_(x, t+a).
Then w, is subparabolicin 0 <t<c - a,
lim w,(x, t) =0
(1) = (x0,0)

o<t<c-a,

for all x, [15, p. 89], and

5 k(x, b - t) wi(x, i:)d.xSSv k(x, b - ) wr(x, t + a)dx
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for all 0 <b < c - a. Appealing to (3.1) and Corollary 3, we conclude that w, <0 in
0 < t<c - a, and hence that (3.3) holds in a < t < c. For the last part, fix
0<a,<a,<c,andlet

wa(x, t) = uaz(x, t+ay) - ual(x, t+ay).

Then w, is parabolicin 0 <t<c - a,,
lim wo(x, t) = wh(xg, a3) - ual(xo, ay)) <0
(x,t) = (x4,0)
0<t<c-a,

for all x,, and, by Fubini’s theorem, if 0 <b <c - a,, then

§ kb - 9wl Dt < S_w K(x, b - Du, (x, t+2,)dx

1l

§7L7 s - 0xte- 3, vax pwrty, ap)ay

f k(y, b) w*(y, a,) dy < «
-0

for all 0 <t <b. By Corollary 3, w, < 0 in 0 <t < c - a,, and we conclude that
U, <u, in the strip a, <t < c as desired.
We require next the following analogue for the second theorem of Harnack.
THEOREM 5. Suppose that {un} is a nondecreasing sequence of functions which
are pavabolic in the stvip 0 < t < c, and for which

lim u (0, b) <

n— oo

for all 0 <b < c. Then

lim u (x, t) = u(x, t)
n—*oo
uniformly on each compact set in 0 < t < ¢, and u is parabolic in this stvip.

Proof. The uniform convergence follows from a result of Hadamard [5] and Pini

[10, p. 429]). The fact that u is parabolic isa consequence of the parabolic analogue
for the first theorem of Harnack [13, p. 13].

Combining the previous two theorems, we obtain the following result.

THEOREM 6. Suppose that w is subpavabolic in the strvip 0 < t < c. Then w has
a nonnegative pavabolic majovant in this stvip if and only if
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(3.4) sup S‘ k(x, b - ) wH(x, t)dx < o
0<t<b ¥ -0

Jorall 0 <b<e.

Pyoof. Suppose that w has such a majorant u. Then, by a well-known theorem
due to Widder [15, p. 92], u has the representation

u(x, t) = S~°°

-00

k(x -y, t)du(y)

in 0 < t < ¢, where u(y) is nondecreasing in y. If we fix 0 < b < ¢ and apply
Fubini’s theorem, we obtain

Sm k(x, b- t)wh(x, ) dx < Smo k(x, b - t)u(x, t)dx

(3.5) - gw {gw k(x, b - Dk(x - y, t)dx}du(y)

= S‘ k(y, b) du(y) = u(0, b) < «

for 0 <t <b. Hence (3.4) is necessary. To show that (3.4) is sufficient, define u,
as in (3.2) for 0 < a < c¢. Then wh <u, in a <t < c for each fixed a, and u,(x, t)
is nonincreasing in 0 < a < t for each fixed (x, t). By (3.4),

[» o]
lim u4(0, b) = lim S‘ k(x, b - a) wr(x, a) dx <
a—0+ a—0+ " -

for all 0 < b < ¢, and we can apply Theorem 5 to conclude that

lim uy(x, t) = u(x, t)
a—0+

uniformly on each compact set in 0 < t < ¢. Clearly, u is the desired majorant for
w.

4. REPRESENTATION THEOREMS

With the aid of Theorem 6, we obtain a number of representation theorems for
functions parabolic in the strip 0 < t < ec. -

THEOREM 7. A necessary and sufficient condition that u can be expressed as
the difference of two funclions which ave nonnegative and parabolic in 0 <t < c is
that u be parabolic in this strip and that
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(4.1) sup S‘ k(x, b - t)|u(x, t)|dx < o
0<t<hb T =®

forall 0<b< ec.

Proof. Suppose first that u = v, - v,, where v, and v, are nonnegative and para-
bolic in 0 <t < c. Then u is parabolic, w = |u| has v = v, + v, as a nonnegative
parabolic majorant in this strip, and condition (4.1) follows from Theorem 6. Con-
versely, if u is parabolic and if (4.1) holds, then, by Theorem 6, w = |u| has a non-
negative parabolic majorant, say v,, in 0 <t <c. Since v, =v, - u is nonnegative
and parabolic in this strip, u has the desired representation.

Combining Theorem 7 with the Widder representation theorem [15, p. 92], we
obtain the following result.

THEOREM 8. A necessary and sufficient condition that u have the vepresenta-
tion 1

(4.2) ue, 0= {7 kx-y, Hauw)

in 0 < t<c,where the integral is absolutely convergent, is that u be parabolic in
this strip and that (4.1) hold for all 0 < b < c.

Theorem 8 is equivalent to Theorem 2 of [4]. On the other hand, Theorem 8 is
in slight disagreement with the following one-dimensional form of Theorem 4 of [11].

THEOREM. A necessary and sufficient condition that u have the representation
(4.2) in 0 < t < c is that u be parabolic in this stvip and that, for some
0 <M< 1/4c,

(4.3) sup S‘ lu(x, t) I e "szdx < oo,
<t ™=

If u is parabolic in 0 < t < ¢ and if (4.3) holds, then (4.1) holds for all 0 < b < c,
and u has the desired representation, by Theorem 8. However, Widder has pointed
out (oral communication) that (4.3) is not necessarily satisfied by functions with such
a representation. For example let

1 x2

Vare -0 Pdc- 1

in 0 < t< ec. Then u is nonnegative and parabolic in this strip, u has the repre-
sentation (4.2) by the Widder theorem, and (4.3) does not hold for any finite M.

u(x, t) =

Theorem 8 offers an alternative proof for the following theorem due to Rosen-
bloom and Widder [ 12].

THEOREM 9. A necessary and sufficient condition that u have the representa-
tion (4.2) in 0 < t < c, where

o0

(4.4) S k(x, c) ldux)] <M (0<M< =),
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is that u be parabolic in this stvip and that
’ o0
(4.5) (" kg, c- 0 utx, 0] ax< ™
-00

Jor 0<t<e.

Proof. If u has such a representation, then u is parabolic, and (4.5) can be ob-
tained from (4.2), (4.4) and the Fubini theorem, as in (3.5). Conversely, suppose that
u is parabolic and that (4.5) holds. Fix 0 < b < ¢ and let A be any closed disk in
0 < t < ¢ with center at (0, b). Then

k(x, b - t) < C;k(x, c - t) (C; = Cy(L) < )

for 0<t<b and (x, t) ¢ A, and we conclude from (4.5) that
o0
g k(x, b - t) |ulx, )] dx < C;M+ N< w
-00

for 0 < t<b, where N is an upper bound for Iul in A. Hence (4.1) holds for all

0 < b< c, and u has the representation (4.2) by Theorem 8. (If (4.1) holds for a
certain value of b > 0, it holds for all smaller values of b > 0.) For (4.4) we may
assume that p is normalized, in other words, that p(x) = [u(x + 0) + u(x - 0)]/2 for
all x. Then

Y2
(4.6) b - u) = im { u@x, Ddx
t—0+ Y1

for all y, <y, (see [16, p. 293] or [4]). Now (4.5) and (4.6) .imply that

S‘yzldu(xﬂ < lim inf gyzlu(x, t)|dx <eo
Yy t—0+ Vi

for all y, <y,, and we conclude, with the Helly theorem and the Helly-Bray theorem,
that

Y: Y;
S‘ 2k(x, c) | du(x)l < lim infS‘ 2k(x, ¢ - 1) Iu(x, t) | dx <M
Yl t‘-"0+ Y1
for all y, <y, The proof is completed by letting y, — -« and y, — eo.
In conclusion we consider the following variant of Theorem 9.

THEOREM 10. A necessary and sufficient condition that u,have the vepresenta-
tion

(4.7) u(x, t) = S‘w kix - y, t) f(y) dy

-00
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in 0 < t<c, where, for some p > 1,
(4.8) S k(x, o) [f{@[Pdx<MP (0<M< ),
is that u be parabolic in this strip and that
> o]
(4.9) S‘ k(x, c - t) |u(x, t) |p dx < MP

Sfor 0 <t<e.

Proof. If u has such a representation, then u is parabolic and, with (4.7), (4.8),
Jensen’s inequality, and Fubini’s theorem, we conclude that

gw k(x, ¢ - t) |u(x, )[Pdx < Sm k(x, ¢ - t) {gm k(x - y, t) |f(y)|de}dx
= S‘w {Xm k(x, ¢ - k(x - y, t)dX}If(y)Ide

- (7 kv, o |1y lpay < e

—c0

for 0 <t < c, as desired. Conversely, suppose that u is parabolic and that (4.9)
holds. Since (4.9) implies (4.5), u has the representation (4.2), and (4.6) holds for all
¥y, <y, Now (4.9) also implies that the integrals

Y2
(7% lutx, 0 ax
Y1
are bounded for small t. Hence, by a theorem due to de La Vallée Poussin [7, p. 452],
p is absolutely continuous over each finite interval, and we obtain (4.7) with

f(x) = u'(x). Since
lim u(x, t) = f(x)
t—0+
for almost all x [11, p. 194], (4.9) and Fatou’s lemma yield

S‘ k(x, ¢) [£(x) [P dx < lim inf 5 k(x, ¢ - t) |ux, t)|Pdx < MP,
had T ot—0+ Ve -

and the proof is complete.
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