ON SOLUTIONS OF THE EQUATION OF HEAT CONDUCTION

F. W. Gehring

1. INTRODUCTION

Suppose that u = u(x, t) is defined over some domain D in the xt-plane. We say that u is parabolic in D if u is of class C^2 and $u_t = u_{xx}$ in D. Parabolic functions have many properties in common with harmonic functions. In this paper we use analogues of well-known theorems on harmonic and subharmonic functions to obtain a uniqueness theorem and some representation theorems for functions which are parabolic in the infinite strip 0 < t < c.

We begin by introducing a class of subparabolic functions. For $x_1 < x_2$ and $t_1 < t_2$, let $R = R(x_1, x_2; t_1, t_2)$ denote the open rectangle bounded by the lines $x = x_1$, $x = x_2$, $t = t_1$, and $t = t_2$. Let S denote that part of the boundary for R which does not lie in the line $t = t_2$, and let w = w(x, t) denote any function continuous in a domain D. When $R \cup S \subset D$, we define the function $M_R w = M_R w(x, t)$ as follows:

$$\begin{cases} M_R \ w = w & \text{in } D - R, \\ \\ M_R \ w & \text{is parabolic in } R, \\ \\ M_R \ w & \text{is continuous at each point of } S. \end{cases}$$

Finally, we say that w is subparabolic in D if $w \le M_R$ w for each rectangle R $(R \cup S \subset D)$. (Compare [9].) When $P_0 = (x_0, t_0) \in R$, we have

(1.2)
$$M_R w(P_0) = \int_S G(P_0, Q) w(Q) dS,$$

where the integration is taken over S, where

(1.3)
$$\int_{S} G(P_0, Q) dS = 1,$$

and where

(1.4)
$$G(P_0, Q) > 0$$

for Q = $(\xi, \tau) \in S$ [6]. Excepting the corners, we have strict inequality in (1.4) if and only if $t_1 < \tau < t_0$.

If w is subparabolic in D, then w is subparabolic in each subdomain of D. If u is parabolic, then $|u|^p$ is subparabolic for $p \ge 1$. A function u is parabolic if and only if the functions u and -u are subparabolic. Finally, both the sum and the upper envelope of a finite number of subparabolic functions are subparabolic.

Received January 22, 1958.

Part of this work was supported by a Rackham Research Fellowship from the University of Michigan.

If E is any set in the xt-plane, we let E_c denote the part of E which is contained in the half plane $t \le c$. Subparabolic functions satisfy the following important maximum principle. (Compare [13, p. 6].)

THEOREM 1. Suppose that w is subparabolic in a domain D with boundary Γ . If, for some c,

(1.5)
$$\lim_{P \to Q, P \in D_C} w(P) \le A,$$

for all $Q \in \Gamma_c$, then $w \leq A$ in D_c .

When D_c is unbounded, we must assume that Γ_c contains the point at infinity.

Proof. Let B be the least upper bound for w over D_c . If w assumes this value at $P_0 = (x_0, t_0) \in D_c$ and if $R = R(x_1, x_2; t_1, t_2)$ is any open rectangle containing P_0 such that $R \cup S \subset D$, then (1.2), (1.3), and (1.4) imply that w(Q) = B for $Q = (\xi, \tau) \in S$, $t_1 \le \tau \le t_0$. In particular, $w(x_2, t_0) = B$; and proceeding by induction, we can find an increasing sequence $\{x_{2n}\}$ such that $P_n = (x_{2n}, t_0)$ approaches a point $Q_0 \in \Gamma_c$ and such that $w(P_n) = B$ for all n. From (1.5) we conclude that $B \le A$. If u does not assume its least upper bound in D_c , we can find a sequence of points $\{P_n\}$ in D_c which approach $Q_0 \in \Gamma_c$ and such that $w(P_n) \to B$. Again we obtain $B \le A$ from (1.5).

With Theorem 1 it is not difficult to obtain the following alternative characterization for subparabolic functions. (Compare [1, p. 194].)

COROLLARY 1. A continuous function w is subparabolic in D if and only if, for each u parabolic in a subdomain \triangle of D, the function w - u satisfies the maximum principle of Theorem 1 in \triangle .

In the sequel we shall require the following elementary lemma concerning the Poisson kernel

$$k(x, t) = \frac{1}{\sqrt{4\pi t}} \exp\left(-\frac{x^2}{4t}\right).$$

LEMMA 1. Suppose that $0 < \alpha < 1$, $\beta > 0$, $\gamma > 0$. Then

(1.6)
$$|k_x(x, \tau)| \leq C_1 k(x, t) \qquad (C_1 = C_1(\alpha, \beta, \gamma) < \infty),$$

for $0 < \tau < \alpha t$, $\beta > t$, $\gamma \le |x|$. Suppose that $0 < \alpha < \beta < 1$, $\gamma > 0$. Then

(1.7)
$$k(x - y, \tau) < C_2 k(x, t) \quad (C_2 = C_2(\alpha, \beta, \gamma) < \infty),$$

for $\alpha t \leq \tau \leq \beta t$, $y^2 \leq \gamma t$, t > 0.

Proof. The inequality (1.6) follows from a routine calculation. The restrictions $\tau \leq \beta t$, $y^2 \leq \gamma t$ imply that

$$-\frac{(x-y)^2}{4\tau} + \frac{x^2}{4t} \leq \frac{y^2}{4t(1-\beta)} \leq \frac{\gamma}{4(1-\beta)},$$

and we obtain inequality (1.7) with

$$C_2 = \frac{1}{\sqrt{\alpha}} \exp \frac{\gamma}{4(1-\beta)}$$
.

2. UNIQUENESS THEOREMS

We consider here some extensions, of Phragmén-Lindelöf type, of Theorem 1 for the case where D is the strip 0 < t < c. We adopt the notation $w^+ = \text{Max}(w, 0)$.

THEOREM 2. Suppose that w is subparabolic in the strip 0 < t < c, that

(2.1)
$$\int_{-\infty}^{\infty} \int_{0}^{a} k(x, b - t) w^{+}(x, t) dt dx < \infty$$

for all 0 < a < b < c, and that $w(x, 0) \le A$ for all x. Then $w \le A$ in this strip. By the first hypothesis we mean that w is subparabolic in some domain containing the strip $0 \le t < c$.

Proof. If we replace w by the function w - A, then (2.1) still holds. Hence we can assume, without loss of generality, that A = 0. We begin by showing that

(2.2)
$$w(0, t) < 0$$

for 0 < t < c. For this, fix 0 < t < c, y > 0, and consider the rectangle R = R(-y, y; 0, c). Now $w < w^+$. With (1.2) and (1.4) we have

$$w(0, t) \le \int_{S} G(0, t; \xi, \tau) w^{+}(\xi, \tau) dS$$

and, since $w(x, 0) \le 0$ for all x, we obtain

(2.3)
$$w(0, t) \leq \int_{T} G(0, t; \xi, \tau) w^{+}(\xi, \tau) dT,$$

where T consists of that part of S not contained in the line t = 0. For the rectangle R, the kernel G is well known [3, p. 177], and if we let

$$h(y, t) = -2 \sum_{n=-\infty}^{\infty} k_x \{(4n + 1)y, t\},$$

then we can rewrite (2.3) as

(2.4)
$$w(0, t) \leq \int_0^t h(y, t - \tau) w^+(y, \tau) d\tau - \int_0^t h(-y, t - \tau) w^+(-y, \tau) d\tau.$$

With $|y| \ge \gamma = \sqrt{2t}$, it is not difficult to show that

$$|h(y, t)| \le 2 \sum_{n=1}^{\infty} |k_{x}(ny, t)| \le 4 |k_{x}(y, t)|,$$

and (2.4) yields

(2.5)
$$w(0, t) \leq 4 \int_0^t \left| k_x(y, t - \tau) \right| \left\{ w^+(y, \tau) + w^+(-y, \tau) \right\} d\tau.$$

Fix b so that t < b < c. Then $0 < \tau < t$ implies that $0 < t - \tau < \alpha(b - \tau)$ and $b - \tau < \beta$, where $0 < \alpha < 1$, $\beta > 0$, and (2.5) and (1.6) yield

(2.6)
$$w(0, t) \le 4C_1 \int_0^t k(y, b - \tau) \{ w^+(y, \tau) + w^+(-y, \tau) \} d\tau$$

for $\gamma \leq y$. Integrating both sides of (2.6) over the interval $\gamma \leq y \leq \delta$, we conclude that

$$(\delta - \gamma) w(0, t) \leq 4C_1 \int_{\gamma}^{\delta} \int_{0}^{t} k(y, b - \tau) \{ w^{+}(y, \tau) + w^{+}(-y, \tau) \} d\tau dy,$$

and hence that

(2.7)
$$w(0, t) \leq \frac{4C_1}{\delta - \gamma} \int_{-\infty}^{\infty} \int_{0}^{t} k(y, b - \tau) w^{+}(y, \tau) d\tau dy.$$

We obtain (2.2) from (2.1) and (2.7) by letting $\delta \to \infty$.

To complete the proof for Theorem 1, fix y and choose $0 < a_1 < b_1 < b < c$. If $0 < t < a_1$, then

$$\alpha(b-t) \leq b_1 - t \leq \beta(b-t)$$
, $y^2 \leq \gamma(b-t)$,

where $0 < \alpha < \beta < 1$, $\gamma > 0$; applying (1.7) to (2.1), we conclude that

$$\int_{-\infty}^{\infty} \int_{0}^{a_{1}} k(x - y, b_{1} - t) w^{+}(x, t) dt dx < \infty.$$

By the previous argument we obtain $w(y, t) \le 0$ for 0 < t < c, and the proof is complete.

THEOREM 3. Suppose that w is subparabolic in the strip 0 < t < c, that (2.1) holds for all 0 < a < b < c, and that

$$\lim_{(x,t) \to (x_0,0)} \sup_{0 \le t \le c} w(x, t) \le A,$$

for all x_0 . Then $w \leq A$ in this strip.

Proof. Again we can assume that A = 0. Define R, S and T as in the proof for Theorem 2 and, for $P \in R$, let

$$u(P) = \int_{S} G(P, Q) f(Q) dS,$$

where f is the continuous function equal to w^+ on T and equal to 0 on S-T. Now w-u is subparabolic in R,

$$\label{eq:continuous_posterior} \lim_{P \to Q} \sup_{P \in R} \big\{ \, w(P) - u(P) \big\} \, \le 0$$

for all $Q \in S$ [6, p. 369], and with Theorem 1 we conclude that $w \le u$ in R. Hence we obtain (2.3), and the proof is completed as before.

The following results are immediate consequences of Theorem 3. (For a related theorem, see [2].)

COROLLARY 2. Suppose that u is parabolic in the strip 0 < t < c, that

$$\int_{-\infty}^{\infty} \int_{0}^{a} k(x, b - t) |u(x, t)| dt dx < \infty$$

for all 0 < a < b < c, and that

$$\lim_{\substack{(x,t)\to(x_0,0)\\0< t< c}} u(x, t) = A$$

for all x_0 . Then $u \equiv A$ in this strip.

COROLLARY 3. Suppose that w is subparabolic in the strip 0 < t < c, that

$$\sup_{0 < t < b} \int_{-\infty}^{\infty} k(x, b - t) w^{+}(x, t) dx < \infty$$

for all 0 < b < c, and that

$$\lim_{\begin{subarray}{c} (x,t) \to (x_0,0) \\ 0 < t < c \end{subarray}} w(x,\,t) \le A \,,$$

for all x_0 . Then w < A in this strip.

Corollary 2 is an extension of a well-known uniqueness theorem due to Tychonoff [14]. A subparabolic form for the Tychonoff theorem is as follows.

COROLLARY 4. Suppose that w is subparabolic in the strip 0 < t < c, that

$$w(x, t) \le Me^{ax^2}$$
 $(0 < M < \infty, 0 < a < \infty)$

in 0 < t < c, and that

$$\lim_{\substack{(\mathbf{x},t) \to (\mathbf{x}_0,0) \\ 0 < t < c}} w(\mathbf{x}, t) \leq A$$

for all x_0 . Then $w \leq A$ in this strip.

Proof. Fix $c_1 = Min(1/8a, c)$. If $0 < b < c_1$, then

$$\int_{-\infty}^{\infty} k(x, b - t) w^{+}(x, t) dx \le N \int_{-\infty}^{\infty} k\{x, 2(b - t)\} dx = N$$

for 0 < t < b, $N = \sqrt{2}M$, and we conclude, from Corollary 3, that $w \le A$ in $0 < t < c_1$. If $c_1 < c$, the proof is completed by a familiar step-by-step argument [14].

3. PARABOLIC MAJORANTS

We say that u is a majorant for w in a domain D if $w \le u$ in D. We obtain here a necessary and sufficient condition for a function w, subparabolic in 0 < t < c, to have a nonnegative parabolic majorant in this strip.

We begin with the following parabolic analogue of a result due to Littlewood [8, p. 193].

THEOREM 4. Suppose that w is subparabolic in the strip 0 < t < c, and that

(3.1)
$$\sup_{0 < t < b} \int_{-\infty}^{\infty} k(x, b - t) w^{+}(x, t) dx < \infty$$

for all 0 < b < c. Then for 0 < a < c the function

(3.2)
$$u_a = u_a(x, t) = \int_{-\infty}^{\infty} k(x - y, t - a) w^+(y, a) dy$$

is nonnegative and parabolic in the strip a < t < c, and

(3.3)
$$w^+(x, t) \le u_a(x, t)$$

there. Furthermore, for each fixed (x, t) in the strip 0 < t < c, $u_a(x, t)$ is nonincreasing as a function of a in the interval 0 < a < t.

Proof. Condition (3.1) implies that the integral in (3.2) is convergent in a < t < c, and hence that u_a is parabolic in this strip [15, p. 88]. For (3.3) let

$$w_1(x, t) = w^+(x, t + a) - u_2(x, t + a)$$
.

Then w_1 is subparabolic in 0 < t < c - a,

$$\lim_{\substack{(x,t) \to (x_0,0) \\ 0 < t < c - a}} w_1(x, t) = 0$$

for all x_0 [15, p. 89], and

$$\int_{-\infty}^{\infty} k(x, b - t) w_1^+(x, t) dx \le \int_{-\infty}^{\infty} k(x, b - t) w^+(x, t + a) dx$$

for all 0 < b < c - a. Appealing to (3.1) and Corollary 3, we conclude that $w_1 \le 0$ in 0 < t < c - a, and hence that (3.3) holds in a < t < c. For the last part, fix $0 < a_1 < a_2 < c$, and let

$$w_2(x, t) = u_{a_2}(x, t + a_2) - u_{a_1}(x, t + a_2).$$

Then w_2 is parabolic in $0 < t < c - a_2$,

$$\lim_{\substack{(x,t) \to (x_0,0) \\ 0 < t < c - a_2}} w_2(x, t) = w^+(x_0, a_2) - u_{a_1}(x_0, a_2) \le 0$$

for all x_0 , and, by Fubini's theorem, if $0 < b < c - a_2$, then

$$\int_{-\infty}^{\infty} k(x, b - t) w_{2}^{+}(x, t) dt \leq \int_{-\infty}^{\infty} k(x, b - t) u_{a_{2}}(x, t + a_{2}) dx$$

$$= \int_{-\infty}^{\infty} \left\{ \int_{-\infty}^{\infty} k(x, b - t) k(x - y, t) dx \right\} w^{+}(y, a_{2}) dy$$

$$= \int_{-\infty}^{\infty} k(y, b) w^{+}(y, a_{2}) dy < \infty$$

for all 0 < t < b. By Corollary 3, $w_2 \le 0$ in 0 < t < c - a_2 , and we conclude that $u_{a_2} \le u_{a_1}$ in the strip $a_2 < t < c$ as desired.

We require next the following analogue for the second theorem of Harnack.

THEOREM 5. Suppose that $\{u_n\}$ is a nondecreasing sequence of functions which are parabolic in the strip 0 < t < c, and for which

$$\lim_{n\to\infty} u_n(0, b) < \infty$$

for all 0 < b < c. Then

$$\lim_{n\to\infty} u_n(x, t) = u(x, t)$$

uniformly on each compact set in 0 < t < c, and u is parabolic in this strip.

Proof. The uniform convergence follows from a result of Hadamard [5] and Pini [10, p. 429]. The fact that u is parabolic is a consequence of the parabolic analogue for the first theorem of Harnack [13, p. 13].

Combining the previous two theorems, we obtain the following result.

THEOREM 6. Suppose that w is subparabolic in the strip 0 < t < c. Then w has a nonnegative parabolic majorant in this strip if and only if

(3.4)
$$\sup_{0 < t < b} \int_{-\infty}^{\infty} k(x, b - t) w^{+}(x, t) dx < \infty$$

for all 0 < b < c.

Proof. Suppose that w has such a majorant u. Then, by a well-known theorem due to Widder [15, p. 92], u has the representation

$$u(x, t) = \int_{-\infty}^{\infty} k(x - y, t) d\mu(y)$$

in 0 < t < c, where $\mu(y)$ is nondecreasing in y. If we fix 0 < b < c and apply Fubini's theorem, we obtain

$$\int_{-\infty}^{\infty} k(x, b - t) w^{+}(x, t) dx \leq \int_{-\infty}^{\infty} k(x, b - t) u(x, t) dx$$

$$= \int_{-\infty}^{\infty} \left\{ \int_{-\infty}^{\infty} k(x, b - t) k(x - y, t) dx \right\} d\mu(y)$$

$$= \int_{-\infty}^{\infty} k(y, b) d\mu(y) = u(0, b) < \infty$$

for 0 < t < b. Hence (3.4) is necessary. To show that (3.4) is sufficient, define u_a as in (3.2) for 0 < a < c. Then $w^+ \le u_a$ in a < t < c for each fixed a, and $u_a(x, t)$ is nonincreasing in 0 < a < t for each fixed (x, t). By (3.4),

$$\lim_{a\to 0+} u_a(0, b) = \lim_{a\to 0+} \int_{-\infty}^{\infty} k(x, b - a) w^+(x, a) dx < \infty$$

for all 0 < b < c, and we can apply Theorem 5 to conclude that

$$\lim_{a\to 0+} u_a(x, t) = u(x, t)$$

uniformly on each compact set in 0 < t < c. Clearly, u is the desired majorant for w.

4. REPRESENTATION THEOREMS

With the aid of Theorem 6, we obtain a number of representation theorems for functions parabolic in the strip 0 < t < c.

THEOREM 7. A necessary and sufficient condition that u can be expressed as the difference of two functions which are nonnegative and parabolic in 0 < t < c is that u be parabolic in this strip and that

(4.1)
$$\sup_{0 < t < b} \int_{-\infty}^{\infty} k(x, b - t) |u(x, t)| dx < \infty$$

for all 0 < b < c.

Proof. Suppose first that $u = v_1 - v_2$, where v_1 and v_2 are nonnegative and parabolic in 0 < t < c. Then u is parabolic, w = |u| has $v = v_1 + v_2$ as a nonnegative parabolic majorant in this strip, and condition (4.1) follows from Theorem 6. Conversely, if u is parabolic and if (4.1) holds, then, by Theorem 6, w = |u| has a nonnegative parabolic majorant, say v_1 , in 0 < t < c. Since $v_2 = v_1 - u$ is nonnegative and parabolic in this strip, u has the desired representation.

Combining Theorem 7 with the Widder representation theorem [15, p. 92], we obtain the following result.

THEOREM 8. A necessary and sufficient condition that u have the representation

(4.2)
$$u(x, t) = \int_{-\infty}^{\infty} k(x - y, t) d\mu(y)$$

in 0 < t < c, where the integral is absolutely convergent, is that u be parabolic in this strip and that (4.1) hold for all 0 < b < c.

Theorem 8 is equivalent to Theorem 2 of [4]. On the other hand, Theorem 8 is in slight disagreement with the following one-dimensional form of Theorem 4 of [11].

THEOREM. A necessary and sufficient condition that u have the representation (4.2) in 0 < t < c is that u be parabolic in this strip and that, for some 0 < M < 1/4c,

$$\sup_{0 < t < c} \int_{-\infty}^{\infty} |u(x, t)| e^{-Mx^2} dx < \infty.$$

If u is parabolic in 0 < t < c and if (4.3) holds, then (4.1) holds for all 0 < b < c, and u has the desired representation, by Theorem 8. However, Widder has pointed out (oral communication) that (4.3) is not necessarily satisfied by functions with such a representation. For example let

$$u(x, t) = \frac{1}{\sqrt{4\pi(c-t)}} \exp \frac{x^2}{4(c-t)}$$

in 0 < t < c. Then u is nonnegative and parabolic in this strip, u has the representation (4.2) by the Widder theorem, and (4.3) does not hold for any finite M.

Theorem 8 offers an alternative proof for the following theorem due to Rosenbloom and Widder [12].

THEOREM 9. A necessary and sufficient condition that u have the representation (4.2) in 0 < t < c, where

$$\int_{-\infty}^{\infty} k(x, c) |d\mu(x)| \leq M \qquad (0 < M < \infty),$$

is that u be parabolic in this strip and that

$$(4.5) \qquad \int_{-\infty}^{\infty} k(x, c - t) |u(x, t)| dx \leq M$$

for 0 < t < c.

Proof. If u has such a representation, then u is parabolic, and (4.5) can be obtained from (4.2), (4.4) and the Fubini theorem, as in (3.5). Conversely, suppose that u is parabolic and that (4.5) holds. Fix 0 < b < c and let \triangle be any closed disk in 0 < t < c with center at (0, b). Then

$$k(x, b - t) \le C_3 k(x, c - t)$$
 $(C_3 = C_3(\triangle) < \infty)$

for 0 < t < b and $(x, t) \notin \triangle$, and we conclude from (4.5) that

$$\int_{-\infty}^{\infty} k(x, b - t) |u(x, t)| dx \leq C_3 M + N < \infty$$

for 0 < t < b, where N is an upper bound for |u| in \triangle . Hence (4.1) holds for all 0 < b < c, and u has the representation (4.2) by Theorem 8. (If (4.1) holds for a certain value of b > 0, it holds for all smaller values of b > 0.) For (4.4) we may assume that μ is normalized, in other words, that $\mu(x) = [\mu(x+0) + \mu(x-0)]/2$ for all x. Then

(4.6)
$$\mu(y_2) - \mu(y_1) = \lim_{t \to 0+} \int_{y_1}^{y_2} u(x, t) dx$$

for all $y_1 < y_2$ (see [16, p. 293] or [4]). Now (4.5) and (4.6) imply that

$$\int_{y_1}^{y_2} |d\mu(x)| \le \lim_{t\to 0+} \inf \int_{y_1}^{y_2} |u(x, t)| dx < \infty$$

for all $y_1 < y_2$, and we conclude, with the Helly theorem and the Helly-Bray theorem, that

$$\int_{y_1}^{y_2} k(x, c) |d\mu(x)| \le \lim_{t \to 0+} \inf \int_{y_1}^{y_2} k(x, c - t) |u(x, t)| dx \le M$$

for all $y_1 < y_2$. The proof is completed by letting $y_1 \to -\infty$ and $y_2 \to \infty$.

In conclusion we consider the following variant of Theorem 9.

THEOREM 10. A necessary and sufficient condition that u have the representation

(4.7)
$$u(x, t) = \int_{-\infty}^{\infty} k(x - y, t) f(y) dy$$

in 0 < t < c, where, for some p > 1,

(4.8)
$$\int_{-\infty}^{\infty} k(x, c) |f(x)|^p dx \leq M^p \quad (0 < M < \infty),$$

is that u be parabolic in this strip and that

(4.9)
$$\int_{-\infty}^{\infty} k(x, c - t) |u(x, t)|^p dx \leq M^p$$

for 0 < t < c.

Proof. If u has such a representation, then u is parabolic and, with (4.7), (4.8), Jensen's inequality, and Fubini's theorem, we conclude that

$$\int_{-\infty}^{\infty} k(x, c - t) |u(x, t)|^{p} dx \leq \int_{-\infty}^{\infty} k(x, c - t) \left\{ \int_{-\infty}^{\infty} k(x - y, t) |f(y)|^{p} dy \right\} dx$$

$$= \int_{-\infty}^{\infty} \left\{ \int_{-\infty}^{\infty} k(x, c - t) k(x - y, t) dx \right\} |f(y)|^{p} dy$$

$$= \int_{-\infty}^{\infty} k(y, c) |f(y)|^{p} dy \leq M^{p}$$

for 0 < t < c, as desired. Conversely, suppose that u is parabolic and that (4.9) holds. Since (4.9) implies (4.5), u has the representation (4.2), and (4.6) holds for all $y_1 < y_2$. Now (4.9) also implies that the integrals

$$\int_{y_1}^{y_2} |u(x, t)|^p dx$$

are bounded for small t. Hence, by a theorem due to de La Vallée Poussin [7, p. 452], μ is absolutely continuous over each finite interval, and we obtain (4.7) with $f(x) = \mu'(x)$. Since

$$\lim_{t\to 0+} u(x, t) = f(x)$$

for almost all x [11, p. 194], (4.9) and Fatou's lemma yield

$$\int_{-\infty}^{\infty} k(x, c) |f(x)|^p dx \leq \liminf_{t \to 0+} \int_{-\infty}^{\infty} k(x, c - t) |u(x, t)|^p dx \leq M^p,$$

and the proof is complete.

REFERENCES

- 1. L. V. Ahlfors, Complex Analysis. An introduction to the theory of analytic functions of one complex variable, McGraw-Hill, New York, 1953.
- 2. G. Birkhoff and J. Kotik, *Note on the heat equation*, Proc. Amer. Math. Soc. 5 (1954), 162-167.
- 3. J. L. B. Cooper, The uniqueness of the solution of the equation of heat conduction, J. London Math. Soc. 25 (1950), 173-180.
- 4. J. Czipszer, Sur la propagation de la chaleur dans une barre infinie, I, Magyar Tud. Akad. Alkalm. Mat. Int. Közl. 3 (1954), 395-408. (Hungarian. Russian and French summaries.)
- 5. J. Hadamard, Extension à l'équation de la chaleur d'un théorème de A. Harnack, Rend. Circ. Mat. Palermo (2) 3 (1954), 337-346.
- 6. P. Hartman and A. Wintner, On the solutions of the equation of heat conduction, Amer. J. Math. 72 (1950), 367-395.
- 7. C. J. de La Vallée Poussin, Sur l'intégrale de Lebesgue, Trans. Amer. Math. Soc. 16 (1915), 435-501.
- 8. J. E. Littlewood, Mathematical notes (7): On functions subharmonic in a circle, J. London Math. Soc. 2 (1927), 192-196.
- 9. I. Petrowsky, Zur ersten Randwertaufgabe der Wärmeleitungsgleichung, Compositio Math. 1 (1934-35), 383-419.
- 10. B. Pini, Sulla soluzione generalizzata di Wiener per il primo problema di valori al contorno nel caso parabolico, Rend. Sem. Mat. Univ. Padova 23 (1954), 422-434.
- 11. P. C. Rosenbloom, *Linear equations of parabolic type with constant coefficients*, Contributions to the theory of partial differential equations, pp. 191-200, Annals of Mathematics Studies, no. 33, Princeton University Press, 1954.
- 12. P. C. Rosenbloom and D. V. Widder, Expansions in terms of heat polynomials and associated functions, Trans. Amer. Math. Soc. (to appear).
- 13. S. Täcklind, Sur les classes quasianalytiques des solutions des équations aux dérivées partielles du type parabolique, Nova Acta Soc. Sci. Upsal. (4) 10 (1936), 1-57.
- 14. A. Tychonoff, Théorèmes d'unicité pour l'équation de la chaleur, Rec. Math. (Mat. Sbornik) 42 (1935), 199-215.
- 15. D. V. Widder, Positive temperatures on an infinite rod, Trans. Amer. Math. Soc. 55 (1944), 85-95.
- 16. ——, Integral transforms related to heat conduction, Ann. Mat. Pura Appl. (4) 42 (1956), 279-305.

University of Michigan