SIMPLE WAVES IN THE STEADY ROTATIONAL PLANE
SUPERSONIC FLOW OF A POLYTROPIC GAS
OF CONSTANT ENTROPY

N. Coburn

1. INTRODUCTION

By use of the intrinsic form of the characteristic relations [1], we study the
problem of determining all plane, steady rotational flows possessing «! straight-
line bicharacteristics. We call these flows simple waves, and we investigate their
properties.

For all ¥y (where y is the ratio of the specific heats of the gas), two types of
simple waves are shown to exist: (1) flows in which the simple waves are radial
lines; (2) flows in which the simple waves are the «! lines tangent to a circle. These
flows are vortex flows. Expressions for the speed of sound, the magnitude of the ve-
locity, and the vorticity are determined. In the case of y = 3, the above two types of
simple waves are found to be the only simple waves. Finally, all flows at Mach num-
ber one are shown to be centered simple waves.

2. THE BASIC RELATIONS
The basic relations were derived in a previous paper [1]. Here, we shall sum-
marize them briefly. References to equations in [1] will be starred.
Let x3 (j =1, 2, 3) denote a Cartesian orthogonal coordinate system in Euclidean

three-space, and let us denote partial derivatives by the symbolism

d

) oxJ

In a Cartesian orthogonal system, covariant and contravariant quantities are equiva-
lent. However, in order to use the Einstein summation convention of summing on re-
peated upper and lower indices, we shall use both of these quantities. Further, we
introduce the following scalars, vectors and tensors:

g, the magnitude of the velocity vector;

¢, the local speed of sound;

b= (g% - ¢2)¥/2;

tj, the unit tangent vector along a bicharacteristic curve;
nJ, the unit normal vector of a characteristic surface;

pi, a unit vector orthogonal to tj, nJ and such that the ordered orthogonal
triple pJ, tJ, nJ forms a right-handed set;

Received January 20, 1958,

The author is indebted to the Office of Ordnance Research, U. S. Army, for fi-
nancial aid during this research, which was administered by the Engineering Re-
search Institute of the University of Michigan,

129



130 N. COBURN

wl = p¥a, pJ, the curvature vector of the pi-congruence;
mJ = tk9, tJ, the curvature vector of the ti-congruence;
uj = nk@, nj, the curvature vector of the nj-congruence;
S 5k the second fundamental tensor of the characteristic surfaces;
M* the mean curvature of the characteristic surfaces.
Finally, we introduce the notation

0

. P . F) .
— = 3 —_— J 3 -_— = J 3
T: tig;, 3n - 1 dj, 3p p aJ

for directional derivatives, and the stagnation enthalpy

CZ
v-1

2
2.1 hy =5+

For constant entropy, the basic equations (4.1)*, (4.5)*, (4. 6)* (3.8)* for ¢ > 0
become, respectively,
ah,

22
ot ’

(2.2) b 3

—%—=-c btkw +Db chktJt + e M* 4 b—2
ob i
bl(y - 3)g?% + 4c2]5—r—1 =[29% - (y + 3)c4|b? sjktJ tk
. + (y - c - ¢eb[(y - 3)g“+ 4c“Jt) u
(2.3) (v - Db% c® M* - cb[(y - 3)q %+ 4c®lty u®

-y - Dbt W+ [ - 3)d - (v - 5)02]%}2,

aq 2 2.\ k dhg
(2.4) Bp =4(b“my + c“u)p” + cbK +-a—5 ,
dhg dhg
(2.5) C-a—ﬁ—+ b—'a—t—= 0,
where

We shall study plane flows. This means that (1) q, c, h, are functions of x and y
only, where x, y, z are orthogonal Cartesian coordinates; (2) tJ and n) lie in planes
perpendlcular to the z-axis and are independent of z; (3) pJ is parallel to the z-axis.
Thus, wJ) = 0, and the characteristic surfaces are cylinders with generators parallel
to the z-axis. One principal direction.lies along these generators (the pi-direction).
Since the principal normal of t} is nJ, it follows that tJ is the other principal direc-
tion and that

(2.7) M* = st = -k,

where k is the curvature of the tj—congruence. The ordered triad consisting of the
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tangent vector to a curve in the xy-plane, its principal normal, and the vector pl
form a right-handed set in the usual convention. Hence, we may write

(2.8) %9, t) = mJ = knd,
(2.9) nk 9y nt = ul = -'ktJ,

where 'k is the curvature of the nJ-congruence.

Now we introduce the orthogonal curvilinear coordinates «, 3, in the xy\ plane,
where a = variable (or B = constant) are the bicharacteristic curves with unit tan-
gent vector t, and where g = variable (or a = constant) are the curves of the ni-
congruence. We denote the square of the element of arc in the ap-system by

(2.10) ds? = A%da? + B2dg?,

where A and B are the metric coefficients. If 6(a, 8) is the angle between the x-
axis and the vector t), along a bicharacteristic @ = variable, then the components of
t) and nJ in the xy-system are

(2.11) ti, (cos 0, sin §) and nJ, (- sin 6, cos 6).

From (2.11), we find that

X _ Y _ A g %y _
(2.12) 5a - A cos 9, i A sin 9, 33 -B sin 9, T B cos 9.

Forming the scalar product of (2.8) with nj, and noting that

k j_ lat
tYo, tV=A" a

we find by use of (2.11) that

L .-108
(2.13) k=A==,

Similarly, (2.9) furnishes

' 139
(2.14) . k=B" %6

By differentiation of (2.12) and use of

9%x a%x 2%y d%y

oa 0B oBoa’ ‘dxop odpoa’

we find that

20 2B 20 _0A
(2.15) A35=%a° Boa=15"

Thus (2.13) and (2.14) may be written in the form
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1 2A 1 3B
(2.16) ‘ k= -K—B-EE, 'k = AB7a’

Now we express (2.2) to (2.5) in terms of derivatives with respect to o and 8.
First we note that

g =2 - !

d in
it 0’ W=

Further, from the fact that the pJ form a congruence of straight lines, and by use of
(2.7), (2.13), (2.14), (2.16), we find that

' Ko _ 1w Tk .1 9B _-1299

(2.17) t*w, =K =0, ttu, = k———ﬂB_—B__a ,
. jk=M*=_k=_1__2,_A__l._a_Q
(2.18) SJkt t AB 0o A Ja

Thus, (2.2) to (2.5) become

3 g2 30 . ah
2_ 31 _ _ 277 -0
(2.19) b 30 b cq=o + b 3o ?
2
(2.20) [ - 3)qg® + 4c2]2b— = 4b2[q? - 202]—8— log A
GJE o8
2 2190 2 21 0h
+ 2¢b[ly - 3)g + 4c?lp + 2[(r - 3)g* - O - H)e?] 57,
cdh, bahy _
(2.21) B—JBB + A—Daa 0.

Note that (2.4) is an identity and that h, can be expressed in terms of ¢ and q by
use of (2.1).

3. SIMPLE WAVES IN PLANE ROTATIONAL FLOWS

If the bicharacteristics form a family of «! straight lines, then the flow is said
to consist of ©»! simple waves (the straight-line bicharacteristics). Thus k = 0 (see
(2.8)), and (2.16) shows that A = A(a). By proper choice of scale factor (taking o to
be arc length) along the curves a = variable, we can assume that

(3.1) A=1,

Hence the second equation of (2.15) leads to 0 = 6(B), and by proper choice of scale
factor along the curves B = variable, we can choose

(3.2) 6=8.

The special case 6 = 1 implies that the «! bicharacteristics are parallel lines.
From (3.1), (3.2) and the first equation of (2.15), we find
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(3.3) B=a+g@),

where g(B8) is an arbitrary function of 8. The special case § =1 leads to B = 1. .
By substituting (3.1), (3.2), (3.3) into (2.12) and integrating, we find

(3.4) x=ac0sB—SgsianB, y=asinB+SgcosBdB.

Two special cases will be studied: (1) g(B8) = 0; (2) g(B) = aB, where a is an arbitrary
nonvanishing constant.

Case 1: g(B) = 0. Here (3.4) becomes
(3.5) x=acosf, y=asinf.

Thus r =a and 8 = 8, where r and # are the usual polar coordinates. The bichar-
actevistics, 6 = constant, arve rvadial stvaight lines.

Case 2: g(B) = ap. Here (3.4) becomes
(3.6) x=(ad+aB)cosB-asinB, y={(+aB)sinp+acosp.

We shall show that the locus of the bicharacteristics, B = constant, consists of the
ol lines tangent to the civcle x% + y? = a2,

Since 0 = B is the angle from the x-axis to any bicharacteristic, it follows that
B + /2 is the angle between the x-axis and any line perpendicular to a bicharacter-
istic. The coordinates of any point P on the circle x2+ y% = a2 are

acos“(ﬁ+%), asin(B+127).

Thus the coordinates of a point Q on the line tangent to x2+ y2=a2% at P and at a
distance R from the point P are

(3.7 'x=acos(B+%)+RcosB, 'y=asin(3+12r)+Rsinﬁ.

Evidently, if R = @ + aB, then from (3.6) and (3.7), we see that

and B8 = constant are the «! lines tangent to x2 + y? = a2,

Now we consider the system (2.19), (2.20,, (2.21) for the case of simple waves
((see (38.1), (3.2), (3.3)). First (2.19) reduces to

8 g% _3hy
(3.8) baa b da "

By use of (2.1), this equation becomes

(3.9) (1 -9)c? q® + [y - 3)g2+ 202]%;—2 =0,

0
da
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Integrating this homogeneous equation, we obtain

(3.10) q% = c? + f2¢cn,

where f is an arbitrary function of g8 and

(3.11) n=2-3/y-1).

From (3.10), we see that h, of (2.1) reduces to

(3.12) 2(y - Dhy = (y + 1)c? + (y - 1)f2 ¢,

Substituting (3.10), (3.12) into (2.20), (2.21) and solving for 3c2/da and dc2/dB8, we
obtain two very complicated relations whose consistency must be studied. Since no
complete results have been obtained for the general y, we shall study two y’s:

(1) the general theory for y = 3; (2) the cases B=«a and B = a + aB (see (3.5), (3.6))
for arbitrary 7.

First we consider the case y = 3. From (3.11), we find that n = 0, and (3.10) be-
comes

(3.13) qZ = c? + 2,

Thus (3.12) reduces to

(3.14) 2h, = 2¢2 + 2.

By use of (3.14) and (3.13), we find that (2.20) furnishes

2
(3.15) aa_% = £f' - 2cf.

On substitution of (3.14) and (3.15) into (2.21), the latter becomes, through use of
(3.1) and (3.3),

dc c f'

(3.16) 0 a+g a+g’

Integrating the linear equation (3.16), we obtain
(3.17) c=f{"+ (a + gk,
where k is an arbitrary function of 8. If we substitute (3.17) into (3.15) and require

that the resulting quadratic in o be an identity, we find that f and k are arbitrary
constants but

(3.18) g=ap,

where a is an arbitrary constant. Thus, for v = 3, the only simple waves are (1) a
family of radial stvaight lines (see (3.5) for a = 0), (2) a family of lines tangent to
the circle x2 + y2 = a? (see (3.6)). From (3.5), (3.7) and (3.18), we see that (3.17)
leads to

(3.19) c=kR, R=oa+aB,
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where R is (1) the distance from the point of intersection of the radial lines in the
first case; (2) the distance from a point P of x2 + y2 = a? to any point Q of the line
tangent to x? + y? = a2 and passing through P, in the second case. Finally, from
(3.13), (3.14) and (3.19), we see that for y = 3,

(3.20) q% = k?R? + {2, 2h, = 2k?R?2 + {2,

The streamlines are R = constant; the flows are vortex flows (see [4]; Prim shows
that the only plane rotational flows with an isometric streamline pattern are vortex
and parallel flows). From (3.3)* and (2.17), we see that the vorticity vector lies in
the z-direction and has magnitude 2k,

Now we consider the possibility of solutions for ¢, q, h, in terms of R, where
A=1, R=B =0 + af, in the case of arbitrary y. This implies that the simple waves
are vortex flows [4] of type (3.5) or (3.6). Since h, = hy(c), equation (2.21) leads, by
use of (3.10), to

@.21 eeg (B eog[(£)7(R)7
and hence by (3.12) to
(3.22) 207 - Dho=cf [+ D) (%)7-1 +lr-1) (—% )y-3 ],

where a is an arbitrary negative constant, { is an arbitrary function of g and
(3.23) Ry=-a f=c3/(-1),

It remains to show that (2.20) is satisfied. By substituting (3.21) and (3.22) into
(2.20), we obtain a fourth-degree polynomial in R, whose coefficients are zero if c,
is constant. Again, from (3.3)*, (2.17) and (3.21), we find that the vorticity vector is
parallel to the z-axis and has magnitude

(3.24) w =

(r-3)/
Soyrl(R)TT

4. ROTATIONAL PLANE FLOWS AT MACH NUMBER ONE

We shall show that all plane rotational flows at Mach number one (q = c) are
vortex flows with centeved simple waves (the streamlines are orthogonal to the
straight-line bicharactevistics).

To prove this result, we shall consider (2.21)*, (3.6)*, (3.7)* and (3.9)* which are
valid for q = ¢ or b = 0. These relations become, by use of (2.16), (2.17), and (2.18),

(4.1) M*=-k=0,

(4.2) oa  “3at B 38’
(4.3) ahy _ .
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From (4.1) and (2.8), it follows that the bicharacteristics are straight lines. Thus,
by use of (3.1), (3.2), (3.3), the equation (4.2) becomes

dh ac c2
9y _ o€
(4.4) iz - “3a *a 1 2@ =@
For q = c, the relation (2.1) reduces to
(4.5) IO A S
T2y - 1)

In view of (4.3), it follows that c¢ is independent of 8. Hence, by (4.4), g(8) must be
a constant. By use of (3.4), we see that this constant can be chosen to be zero. The
bicharacteristics ave radial straight lines (see 3.5), and r = a (where r is the ra-
dial distance in polar coordinates). Integration of (4.4) by means of (4.5) leads to

v-1
(4.6) c?® = c§ (f—o) ,

where c, and r, are arbitrary constants (see 3.21). The magnitude of the vorticity
vector is (see (3.3)%)

_Co -y+1( r
(4.7) w—-r"(;T ?0'

)(7’-3)/2

5. SIGNIFICANCE OF THE RESULTS

- R. Courant and K. O. Friedrichs have shown that the irrotational flow in a region
adjacent to a region of constant state is a simple wave [2, p. 61]. For y = 3, the only
rotational simple waves are waves of the two types discussed in Section 3. In both of
these waves, the vorticity vector has magnitude 2k, where ¢ = kR. Thus no bichar-
actevistic can be the boundary line between a vegion of irrotational flow and a vegion
of rotational flow, when the lalter vegion is spanned by a simple wave.

To determine all simple waves in the cases where y is arbitrary, we use (3.10)
and (3.12) to eliminate q and h, in (2.20) and (2.21), solve these last equations for
dc?/oa and 9c?/9B, and then require that

22 c? 22¢c2
(5.1) da 0B odpoa’

By eliminating dc2/da and 3c2/9B in (5.1), we obtain an algebraic equation in c?, a,
B, which must be consistent with the solutions of ¢? obtained by integrating the equa-
tions for 3c?/da and 9c2/9B [3, pp. 15, 16]. This is a complicated procedure and
probably will not furnish any solutions in addition to (3.21), (3.22). Since the vorticity
does not vanish along any simple wave of this type (see 3.24), it appears plausible that
the result of the previous paragraph is valid for all y.

Finally, we note that the only possible supersonic, rotational flows at Mach num-
ber one are the centered simple waves discussed in Section 4.
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