ON THE TOTAL CURVATURE OF IMMERSED MANIFOLDS, II
Shiing-shen Chern and Richard K. Lashof

Let M™ be a compact differentiable manifold of dimension n, and let
x: M? —EPN

be a differentiable mapping of M™ into a Euclidean space of dimension n + N with
the property that the functional matrix is everywhere of rank n. Then M is said to
be immersed in Enﬂ_\l. If x is one-one, it is said to be imbedded in E*N, To each
unit normal vector v(p) of an immersed manifold M? at p € M, we draw through the
origin O of E™™N the unit vector parallel to it. This defines a mapping, to be called
v, of the normal sphere bundle B of M™ into the unit hypersphere S, about O. In a
previous paper [1; this paper will be referred to as TCI], we studied the volume of
the image of ¥ and called it the fotal curvature of M™, It will be advantageous to
normalize this volume by dividing it by the volume c,4n_] Of Sy, cp4n-1 being of
course an absolute constant. Throughout this paper, we will understand by the total
curvature of MT the normalized one. Then, if EP*Nc En*N' (N <« N'), the total
curvature T(M™ of M™ remains the same, whether M™ is considered as a submani-
fold of EntN or of En*N' (Lemma 1, Section 1). One of the theorems we proved in
TCI states that T(M™ > 2. We shall show below (Section 1) that the same argument
can be used to establish the following more general theorem.

THEOREM 1. Let M™ be a compact diffeventiable manifold immevrsed in EPTN,
and let B; (0 < i <n) be its ith Betti number relative to a coefficient field. Then
the total curvature T(MD) of MM satisfies the inequality

(1) T(M®) > B(MD)

where B(MD =3 MyB; is the sum of the Betti numbers of M™.
B i=0Pi

The right-hand side of (1) depends on the coefficient field. For the real field, the
lower bound in (1) cannot always be attained. In fact, we have the following theorem.

THEOREM 2. If the equality sign holds in (1) with the veal field as coefficient
field, then M™ has no torsion,

For a compact differentiable manifold M™ given abstractly, the total curvature
T(M®) or T (M? is a function of the immersion x: M? —>E n+N (N arbitrary). Ob-
viously, the number gq(M™) = inf; Ty(M™) is a global invariant of M™ itself. Theorem
1 says that q(M™) > g(M™). In this connection, there is another invariant s(M™) of
M™, namely the minimum number of cells in a cell complex covering M2, Clearly,
we have s(M") > g(M™®). If M? is a compact orientable surface of genus g, it is
easy to see that

q(M?) = s(M?) = g(M?) = 2 + 2g.
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Generally, it can be shown that q(M™) is an integer; but the proof will not be included
in this paper. It seems likely that q(M®) = s(MD).

Another problem in this order of ideas is the characterization of the immersions
of M™ by which the minimal total curvature of M™ is realized, that is, for which
T(M®) = q(M™). If M" is homeomorphic to an n-sphere, it is a consequence of
Theorem 3 of TCI that such an immersion is characterized by the property that M
is imbedded as a convex hypersurface in a linear space of dimension n + 1. The
general problem can therefore be regarded as a natural generalization of the theory
of convex hypersurfaces in Euclidean space. When M® is immersed as a hypersur-
face, that is, when N = 1, the Gauss-Kronecker curvature K(p) (p € M), a local in-
variant of M?™, plays an important role in our problem. It is defined only up to sign
when n is odd. The answer to our problem is most complete in the case of compact
surfaces imbedded in ordinary Euclidean space (n= 2, N = 1):

THEOREM 3. A compact ovientable surface of genus g is imbedded in the three-
dimensional Euclidean space with total curvature 2g + 2, if and only if the surface
lies at one side of the tangent plane al every point of positive Gaussian curvature.

For oriented compact hypersurfaces (N = 1) with Gauss-Kronecker curvature
K(p) > 0 for all p € M®, we have the following theorem.

THEOREM 4. A compact orientable suvface immersed in three-dimensional
Euclidean space with Gaussian curvaluve > 0 is imbedded and convex. There are
examples of nonconvex compact ovientable hypersurfaces, of dimension > 3, whose
Gauss-Kronecker curvature is everywheve > 0.

The main point of this theorem is that K(p) is assumed merely to be > 0, and

- not strictly > 0. In the latter case, a well-known argument due to Hadamard shows
that M™ is imbedded as a convex hypersurface. Theorem 4 implies that a conjecture
made by us in TCI (p. 318) is true for n = 2 and false for n> 3.

»

1. TOTAL CURVATURE AND THE SUM OF BETTI NUMBERS

LEMMA 1. Let x: M2 —-EDNtN pe an immersion of a compact diffeventiable
manifold of dimension n in EPtN  given by

x:p—x(pp) = &'@), -, x*Np))  (pe MD).

Let x': M®— ERTN' (N < N'), be the immersion defined by

x'(p) = xX(p), -+, x*N(p), 0, +-+, 0).

Then the immersed mainfolds x(M?) and x'(MP) have the same total curvature.

The lemma is intuitively obvious. For if B;, is the normal sphere bundle, and
ot: B'ogntN'-1 ihe corresponding normal map of the immerson x', then clearly 7'
is the (N' - N)-fold suspension of ¥ on each fiber. Since Sn+N'-1l jg the (N' - N)-
fold suspension of SntN-1 it follows that the ratio of the area covered by ¥ on
Sn+N'-1 to the area covered by ¥ on SPtN-1 jg the same as the ratio of the areas
of sntN'-1 anq gn+tN-1_ 1p gpite of this short argument, we give a more analytical
proof as follows:

It suffices to prove the lemma for the case N' - N = 1, The general case will
then follow by induction on the difference N' - N.
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-

We follow the notation of TCI, and consider the bundle B of all frames

x(ple; ey (p e M)

such that ej, :--, e, are tangent vectors and ep4+j, *++, €n+N are normal vectors at
x(p). If we put

wniN,A = depyncepa (1<A<n+N),
then the total curvature is, according to our definition,

1

TulM?) = o

S Wn+N,1 Nese /\wn+N,n+N—l ’
BV

where the integral is taken in the measure-theoretic sense. It is to be pointed out
that, as stated in the Introduction, we have inserted the factor 1/c,;pn_; to normalize
the total curvature. .

Let a be one of the two unit vectors perpendicular to E in EP*N-1_ A unit nor-
mal vector at x'(p) can be written uniquely in the form

eniN+1 = (cos 0) e, + (sin 6) a (_12’ < Bs—g),

where e,,N is the unit vector in the direction of its projection in EntN, Let

NN - (cos 6) a, el =e 1<s<n+N-1)

= (sin 8) e < s

e n+N

and

] 1
dn+N+1,A = depiNs1 €A

Then the total curvature of the immersed manifold x'(M®D is equal to

Txl(Mn) =

1
Cr¥N JBY, BiN+1,1 7N AN Pn N+, n+N ¢

Now we have
de;,n+1 = (cos B)de  y+ {-(sin B)e g+ (cos B)a}ds = (cos f)de,,n - enin 90 .
Since
de ., n° er'hLN = -(cos B)(de,,\y*a) = (cos 0)(e, -da) = 0,

we find that

t ]
bn+N+1,neN = 9€niNs1 €N = -dO .
Also

$niN+1,s = (cos 68)(dey;°es) = (cos B)wn-i-N,s'
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it follows that

€N w/2 204N -1 /2
T, (M?) = 22— S lcos®™N-19| dg- T, (M™) = ——— g cos?tN-1g dg - T (M?).
Ch+N / Cn+N
m/2 0

That T,,(M?) = T,(M™) is then a consequence of the following well-known formulas:

_ 2 [P(%)]kﬂ S‘ﬂ/zcoske dg = I‘(%)I‘(—k—;l
0

“ = kr1\ K+ 2\ °
r(==) ZP( 3

This completes the proof of the lemma.

Since the total curvature is clearly invariant under motions in space, Lemma 1
implies that the total curvature of x(M™) in E™N remains unchanged if x(M") is
considered as a submanifold of a high-dimensional Euclidean space which contains
EntN ag a linear subspace.

We wish now to give a proof of Theorem 1. As in the proof of Theorem 1 of TCI,
we consider the map ¥: B,— SB‘LN'1 defined by assigning to each unit normal vector
the end-point of the unit vector through the origin parallel to it. The total curvature
of M" is by definition the volume of the image of B, under 7. The singular points
of 7, that is, the points where the functional determinant of 7 is zero, are exactly
the points where the quadratic differential form v.d%x = -dv-dx is of rank <n. By
Sard’s theorem, their image on S§*tN-1 has measure zero. Hence, for almost all
unit vectors v, the function v-x(p) on M?, with v fixed, has only nondegenerate
critical points. By Morse’s inequalities, the total number of critical points is
> ;MM = g(M™). Now the image of B,, under 7 is the same as the set of points
v € S§TN-1_each counted a number of times equal to the number of critical points of
the function v-x(p) on M™, It follows that the measure of the image is > c,n_18(MD),
and hence that the total curvature of M2 is > g(MD).

2. IMMERSIONS WITH MINIMAL TOTAL CURVATURE

Proof of Theorvem 2.T This theorem follows immediately from Theorem 1. In
fact, let 8i(M™, F) be the ith Betti number of M™ with the coefficient field F, and let
B(M", F) be the sum of these Betti numbers. If R denotes the real field and Z, the
field mod p (p a prime), we have

fWe are indebted to the referee for this elementary argument. Our original
proof makes use of results of R, Thom [3] and of Eilenberg and Shiffman [2, P. 53]
concerning the cell decomposition of a manifold on the basis of a real-valued func-
tion on it, The result of Eilenberg and Shiffman can be stated as follows: If a com-
pact differentiable manifold M has a differentiable function on it with k nondegene-
rate critical points of indices ij, *-- ik, respectively, then M is of the same homo-
topy type as a cell complex consisting of k cells of dimensions ij, ¢+, ik, respec-
tively, Theorem 2 follows immediately from this, because there is a coordinate
function with B(M™,R) nondegenerate critical points. The theorem of Eilenberg and
Shiffman also gives more information on manifolds satisfying the hypothesis of
Theorem 2, For instance, it follows easily that the fundamental group of M® is iso-
morphic to its first homology group.
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B;(Mn, R) < g;(Mn, Z)) (0 <i<n).

Now by hypothesis, T(M® = g(M®, R), and by Theorem 1, T(M®) > g(Mr, Z), so that
B(M", R) > B(M", Zp). In view of the inequalities above, this is possible only when
Bi(M", R) = B;(M", Z,), which means that M™ has no torsion.

From now on we study the particular case of hypersurfaces (N = 1). Here the
most important local invariant is the Gauss-Kronecker curvature K(p) (p € MD). If
K(p) # 0, the principal curvatures of M™ at p are all different from zero. In this
case, we call the signature of M™ at p the nonnegative integer which is the excess
of the number of principal curvatures of one sign over that of the opposite sign. A
part of Theorem 3 is true for n dimensions, and we state it as a lemma:

LEMMA 2. Let x: M2 — Entl pe an immersion of a comipact manifold as a hyper-
surface in Euclidean space with total curvature equal to the sum B(M") of the Betti
numbers of M™ velalive lo the coefficient field mod 2. Then every point p € M with
K(p) > 0 and signature n lies on the outside of M®; that is, x(M®) lies on one side of
the tangent hyperplane at x(p).

To prove the lemma, we suppose the contrary, namely, that there is a point p
with K(p) > 0 and signature n such that x(M"™) lies on both sides of the tangent
hyperplane at x(p). Then there is a neighborhood U of p whose points have the
same property. We orient U by choosing a field of unit normal vectors. The nor-
mal map v: U—Sj is then defined. Since K(p) > 0 (p € U), v can be supposed to be
one-one (with the choice of a smaller neighborhood, if necessary). The image v(U)
is therefore of positive measure on Sj. It follows that there exists a set ¥ of points
of positive measure in v(U) such that the function v-x(p) on M (v € F) has only
nondegenerate critical points, and such that there is a tangent hyperplane to x(Mn)
perpendicular to v which divides x(M%) and which is fangent to x(M») at a point of
signature n. The latter is a critical point of index 0 or n for the function v-x(p),
and it is neither a maximum nor a minimum. On the other hand, since the total curva-
ture is equal to g(M™), and since v.x(p), for almost all v € Sfj, has at least B; critical
points of index i for each dimension i, the number of critical points of v.x(p) of in-
dices 0 and n mustbe 1 (= 8y = B,), except for a set of points v € S§j of measure
zero. These critical points are obviously the maximum and the minimum of the func-
tion v.x(p). Thus we arrive at a contradiction, and the lemma is proved.

We proceed to give a proof of Theorem 3. Half of the theorem follows from
Lemma 2, because a point p € M? with K(p)> 0 has the signature 2, the two princi-
pal curvatures being either both positive or both negative.

Suppose now that the surface M? is imbedded in E3? in such a way that it lies on
one side of the tangent plane at every point of positive Gaussian curvature. Suppose
also that its total curvature is > 2g + 2. Then there exists a set of points v € SZ of
positive measure such that the function v-x(p) on M? has only nondegenerate criti-
cal points, whose number exceeds 2g + 2. Let m; (0 < i < 2) be the number of
critical points of index i of this function. Then we have by hypothesis

mg+m,+m,>2g+ 2,

and by Morse’s relation, m;, - m, + m, = 2 - 2g. Combination of these two relations
gives m, + m, > 2, It follows that there are at least three distinct points of positive
Gaussian curvature on M2, whose tangent planes are perpendicular to v. According
to our hypothesis, two of these three tangent planes must coincide, and x(M?) is con-
tained between the two tangent planes and is tangent to one of them, say =, in two
distinct points. Since x is an imbedding, it is geometrically clear that we can rotate
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7 slightly so that the new plane is again tangent to x(M?) at a point of positive Gaus-
sian curvature and divides x(M?2). This contradiction proves Theorem 3.

Remark, Examples can easily be given to show that Theorem 3 is not true if x is
an immersion,

K 3. HYPERSURFACES WITH NONNEGATIVE
GAUSS-KRONECKER CURVATURE

As remarked before, an immersed compact orientable hypersurface with K(p) > 0
is convex. Its total curvature is equal to 2. We will show that the class of immersed
compact hypersurfaces with K(p) > 0 is much wider.

LEMMA 3. Let x: MR —E™! pe an immersion such that (1) n is even; (2) M™
is compact and ovientable; (3) K(p) > 0 (p € M), Then M™ has no torsion, the odd-
dimensional Betti numbers of M® ave zero, and ils total curvature is equal to B(M™D).

As usual, let v € S§ be a unit vector such that the function v«x(p) on M™ has
only nondegenerate critical points. The second-order terms in the expansion of the
function at a critical point are given by v-d?x = -dv-dx, which is the second funda-
mental form of the hypersurface. Since the critical points are nondegenerate, the
Gauss-Kronecker curvature is > 0 at these points, and the numbers of negative prin-
cipal curvatures and hence positive principal curvatures are both even. This means
that the critical points of v.x(p) are of even indices. By the Theorem of Eilenberg
and Shiffman stated in the footnote of Section 2, the manifold M? is of the same
homotopy type as a cell complex which consists only of even-dimensional cells.
Hence the odd-dimensional Betti numbers of M" are zero, and M™ has no torsion.

The degree of the normal map v is equal to one-half of the Euler-Poincaré char-
acteristic of M™, which is in this case equal to B(M™)/2. Since the image under v
of the set of points with K(p) = 0 is of measure zero, and since K(p) > 0 otherwise,
the number of times which almost every point of Sf is covered by v is g(M")/2. It
follows that the total curvature of M™ is B(M™), because at every point of M™ there
are two unit normal vectors, one being the negative of the other.

Remark. If besides the hypotheses of Lemma 3 we further suppose that the signa-
ture of M™ at p is equal to n at all points where K(p)> 0, then it follows that the
Euler-Poincaré characteristic of M is g(M™) /2 = 1. By Theorem 4 of TCI, we con-
clude that M is imbedded as a convex hypersurface,

Proof of Theorem 4. The first statement on compact orientable surfaces follows
immediately from Lemma 3 and Theorem 4 of TCI. To prove the second statement,
it suffices to exhibit some examples of hypersurfaces.

First let n be odd. In EPt! with the coordinates x!, ..., x2*1 we consider the
hypersurface with the equation

(r - 2% + (@12 =1,
where
r2 = x)24+ e r @2 (r> 0).

This hypersurface is obtained by rotating a unit circle about the x*tLaxis, and is
hence homeomorphic to the Cartesian product slx gn-1, gts equation can also be
written
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x™l = g ¢(r),
where € = +1 and
3(r) = +(1 - (r - 2)9¥2,
Then we have

dx =(dxls +ee, dx™, £dg), d%x = (0, -+, 0, £d?¢),

£
Gl F L+ + RN/ (+¢1, =5 +8,, -1),
where
.= 99 o % .
¢'1 - axi' ¢iJ = axiaxj (15 i, ] S n).

This determination of v is inward. It follows that

ved®x = = d2¢ = = 20 ¢, . dxidxd
T 1+ od 4 e+ 92)1/2 (1+ ¢4+ - 92)1/2 0y :

If ¢' and ¢" denote the first and second derivatives of ¢ with respect to r, we
have

- _ay1/2 p) = 2-F nip) = 1 —z 2
o) = (% +4r - V5, 9'() = Gy, @"R) ;&—)g{¢(r)+(2 r)%},

and
i xxl ' .. . .
b=, by = ¢"—;§‘ +%3 (64r2 - xix)).

The Gauss-Kronecker curvature K(p) is equal to the determinant of the second
fundamental form divided by the determinant of the first fundamental form. Since
the latter is positive, the sign of K(p) is the same as that of -det(¢;;). Since our
hypersurface is a hypersurface of revolution, it suffices to consider those of its
points in the (x?, x**1)-plane for which x! = <.« xn-1 =0, At such a point we have

-det( (¢ ) -

i) = ¢n > 0.

The example for n even (n> 4) is similar. It is a hypersurface obtained by
rotating a two-dimensional sphere about a two-dimensional coordinate plane, and
it has the equation

(r-2F + @2+ x®)2=1, r2=@H2+er x-H2 (x>0,

or

xtl - syx, r)  (e2:=1),
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where

v, r) ={1-xM2-(r- 2)2}1/2 > 0.
. 22y

axioxi’
It is a straightforward computation to show that det (wij) > 0 or K(p) > 0; we omit
the details. B

The following corollaries are obvious.

COROLLARY 1. If a compact manifold M can be imbedded in E*, then MXSn™
can be imbedded in EPTN,

COROLLARY 2. The product of spheres s x ---xSnr can be imbedded in
nteectnytl with minimal tolal curvature 27,

As in the preceding example, K(p) has the same sign as det (zl/ij), where y¥jj =

E
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