BILINEAR INTEGRALS OF POLYHARMONIC FUNCTIONS
AND OF ANALYTIC FUNCTIONS

Avner Friedman

INTRODUCTION

In Part I of this paper we show that any two functions polyharmonic in open sub-
sets of a euclidean space satisfy a certain identity which involves a bilinear integral.
This identity is a generalization of a bilinear integral identity for harmonic functions
which was derived by Gustin[4]. Gustin applied his identity to obtain new proofs of
several fundamental theorems in the theory of harmonic functions. Similarly, we
apply our identity to obtain some new proofs and new theorems in the theory of poly-
harmonic functions. In Part II we generalize our method to the case of arbitrary
analytic functions of real variables.

PART I

1. For i=1, 2, let fi(q) be a real-valued functi% which is nj-harmonic in an
open set D; of the euclidean N-dimensional space E~ (N > 2). We always denote by
X a point on the unit sphere S. Suppose that q; is a fixed point of D; and that the
whole sphere Q; with center g; and radius R; is contained in D;j. We then consider
the bilinear integral

(1) I(r,, r,) = S f,(q, + r;x)f,(q, + r, X)dS,,
S

defined for 0 <r, <R,, 0 <r, <R,. Using the Almansi development, [1]for poly-
harmonic functions, we write f; in the form

ni_—l .
f(q; + rx) = X riniij (q;+r;x)  (i=1,2),
j=0

- where the f;; are functions harmonic in Q;. Substituting this in (1), we get

nj-lnz-1
(2) I(r;, rp) = Zo Eo r%jr%ks flj(q1 + rx)f,,(q,+ r,x)ds,.
i= =

S

Gustin [4] proved that for any two harmonic functions g, and g, the bilinear integral

S 81(q + rx) g,(q; + rx) dSy
S
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depends only on q,, q, and T,r,. Using this fact, we can write (2) in the form

nl-lnz-l 2i 2k
(3) lry,xg) = X % Aplan o VEF) T’y
j=0 k=0

where the Ajx are defined by

(4) Ajk(ql, dz, vIiry) = gflJ(ql + rlx)ka(qZ + I'2X) de.
S

2. We shall apply identity (3) to derive a nonlinear characterization for poly-
harmonic functions.

THEOREM 1. A function 1(q), continuous in an open set D of EN, is n-harmonic *
in D if and only if an identity of the form

n-1

(5) S f(q+ r;x)f(q+ r,x) dS, = % oAjk(q,r)rfJ'rgk (r = yT7T5)
S Jy K=

holds for all nonnegative numbers r,, r, for which the whole sphere of vadius
max(r,,r,) about 4 is contained in D.

Proof. Taking f, =f,, q, = q, in (3), we see that if f(q) is n-harmonic in D, then
(5) holds.

To prove the converse, suppose that (5) is satisfied. Taking r, = 0, we obtain

n-1 .
(6) i@ fa+r0ds, = T Ada, 0ril.
S i=0

Let D, be the set of points of D at which f(q) # 0, and let D, be the interior of the
complement of D, relative to D. Clearly, every point q of D, has a neighborhood
where f = 0. From (6) it follows that if q € D,, then the polynomial on the right side
of (6) vanishes for all sufficiently small positive r,, and consequently

Aj0=0 0<j<n-1).
We conclude that the identity

n-1 .
)] s fl@+ r)x)ds, = X Bj(q)r%']
S j=0

holds for all sufficiently small positive r,, with Bj(q) = 0 (0 <ji<n- 1). ¥ qeD,,
then f(q) # 0, and from (6) we derive (7), with

» 0)

A;da
Bj0) = ~I05 =

By means of the identity (7), we can express the Bj(q) in terms of
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S fq+ r'0ds, (k=1,2, -, n),
S

where the r%‘ are nonnegative numbers, arbitrary except for the requirement that

r¥; rl if k# 1. It follows that the BJ(q) can be defined throughout D, ND by con-
tinuity, and we conclude that (7) holds for every q € D1 ND. Thus we have proved
(7) for every q in D.

We now apply a theorem due to Nicolesco [6], which states that if a function f(q),
summable in an open set D, satisfies the condition

1 1 1 Ko 1 1
1 __N_ _L 1%} N oee ___N__
(8) N+ 2 N+ 2n - 2 f(q) = N+ 2 N+2n-2
N n-1 N n-1 N n-1 N n-1
1 (N+ 2), (N+ 2n - 2) 1 »Un-l (N+ 2) (N+ 2n - 2)

for all sufficiently small positive r, where

o = Ho(q; T) = Sf(q+ rx)dS,
s

and

r

N - .
KLy = 1U~1(q; r) = ;‘N S pN lu'i_](q; p)dp i=1, 2, ., n- 1),
0

then f(q) has 2n continuous derivatives and is n-harmonic in D. Now from (7) it
follows easily that

n-1

® om0 = B@+ T B@ (yig) ¥ (=01, ,n-1).
j=1

The continuity of f(q) implies that B,(q) = £(q); solving (9) for f(q), we obtain (8). B
Nicolesco’s theorem, f is n-harmonic in D.

3. Definition. A function g(x) defined on the unit sphere is called surface n-
harmonic of degree t if there exists an n-harmonic function f(q), defined for all q
of EN, such that for each x € S and for every nonnegative number r,

f(rx) = rtgx).

It is easy to see that f(q) must be a homogeneous polynomial of degree t.

THEOREM 2. Let g;(x) (i= 1, 2) be a surface nj-harmonic function of degree
t;. Then g,(x) and g,(X) are ovthogonal if one of the following conditions holds:
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1) t, -t, is odd;
2) t,-t, is even and either t, - t, > 2n, - 2 or t, - t, > 2n, - 2.

Proof. We have to show that the bilinear integral A = S g,(x) g,(x) dS, is zero.
S

Denoting by fi(rx) (i = 1, 2) the nj-harmonic function associated with gj(x), we have
T t t, t, t,

(10) f,(r,x) £,(r,x) dSy = r'r;? \g,(x)g,(x)dS, = Ar,'r,?.
S S

By the identity (3), the left side of (10) is equal to

n;-l1n,-1 2% 2k
> Y ApvIm)rnnt.
j=0 k=0

Comparing this expression with the right side of (10) and taking r, =r, r, = r~!, we
get the identity

n,-l1n,-1
t,-t 1 2 2(j-k
AptTtz _ Z Z Ajk(l)r (J )’
j=0 k=0

from which the assertion of the theorem follows.

It should be remarked that Theorem 2 is sharp in the following sense: I t, - t,
is evenand 0 <t, - t, = 2k < 2n, - 2, then there exist surface n;-harmonic functions
g;(x), of degrees t;, such that S g,(x) g,(x)dS, # 0. To show this, let g(x) be an arbi-

S
trary surface harmonic function of degree t,; then it is also surface n,-harmonic of
t
the same degree t,. Since r 2g(x) is harmonic, r2k rt'*’ g(x) is (k + 1)-harmonic (see

(1], and since k < n, - 1, it is also n,~harmonic. Therefore g(x) is surface n,-
harmonic of degree 2k + t, = {;; but it is also surface n,-harmonic of degree t,, and

S g(x) g(x)ds, = 0.
S

4, LEMMA. Let f be an n-harmonic function in a sphere Q with center q and
radius R,, and suppose that f vanishes in a concentric sphere of radius R; < R,.
Then £ vanishes identically in Q.

Proof. If the assertion did not hold, then we could assume that there does not
exist a sphere of radius greater than R, in which f = 0. We shall derive a contra-
diction.

Substituting r, = sr, r, = s”'r in (5) (so that r = vr,r,, s = vr,r;'), we obtain

(11) Sf(q+ r1x)f(q + rx)ds, = X sk ( Zr"jA(q,r)) = X e lr) sZk,
S
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The left side of (11) vanishes if 0 <r, <R,, 0 <r, <R,, so that Zc(r) s2k - 0 for
s, < 8<s, and s; = s;(r) (i =1, 2). We write Z¢,(r) &k in the form

m
sl ¥ d, (r) sk;
k=0

then the polynomial Zd(r) sk vanishes throughout the interval s, < s < s,; con-
sequently, it vanishes identically, hence Zc{r) s2k = 0 for 0 < s < «, and therefore
ck(r) = 0 for every k. Note that in this argument we have not used the usual method
of series expansion. i

In particular, it follows that ci(r) = 0 for R, <r < vR,R,, and so the left side of
(11) vanishes for r, = r, = r; that is,

S f(q+rx)2dS, =0 (R, <r < VER).
S

This implies that f vanishes in a sphere of radius ¥ R,R,, which is a contradiction.
Using the lemma above, we obtain by a well-known argument (see, for instance, [5]
p. 250) a new proof of the following result.

THEOREM, 3. If a function f is n-harmonic in a domain D of EN and vanishes
identically over some nonempty open set, then it vanishes identically in D.

It should be remarked that our proof, which is a generalization of Gustin’s proof
to the harmonic case, is of interest in that it makes no use of series expansion.

5. We shall give one more application of the identity (5), by proving a generaliza-
tion of Liouville’s theorem for polyharrhonic functions.

THEOREM 4. If a function f is n-harmonic throughout EN, and if

(12) S If(rkx)l dSx S H (k= 1, 2, )
S

Sfor some sequence {r,} (r, # »), then f = const.

Proof. 1t is clear that we may assume that £(0) = 0. Using (5), we get the formulas

n-1
(13) flecoras, = = apw,
S ‘ i, k=0
n-1
-1 = 3 p-2jp2 = S p2m <
(14) éf(r x) £(rx) dS,, = j,k‘éor 2ir2kp (1) = Tr? (k§=mAjk(1)) :

By (12) and the assumption that £(0) = 0, we have

lim

L Sf(r];lx)f(rkx) dS_ (< H lim sup |f(r1"<1x)| =0.
Q0

s k>0 x€S
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We conclude from (14) that the coefficients of r Zm vanish, for m > 0. Hence
Zk-j=mAjk(1) = 0 if m > 0. I in (14) we replace r by r-! and r-! by r, the left side
remains unchanged, while the right side takes the form

n-1
j}k:orZJ' &A= X er(.E Ajkh)).
K= J-k=m

We conclude, as before, that Zj_kx=mAjk(1) = 0 if m > 0. Using these remarks and
(13), we have

S[f(x)]zdsx = ni?l Aj1) = ):‘( = Ajk(1)) =0,

S J,k=0 m *j-k=m

so that f(x) = 0.

Let r be an arbitrary positive number; then the function g(q) = f(rq) satisfies
all the assumptions of Theorem 4; consequently, by the previous argument, we have
f(rx) = g(x) = 0, which proves the theorem.

PART II
1. Let f5(q;) (i =1, 2) be real-valued functions, analytic in an open set D; of the

euclidean N-dimensional space EN (N_>_ 2). As in Part I, we consider the bilinear
integral

(15) I(r,, r,) = Sfl(q1 + r;x) f,(g, + r,;x) dSy,
S

defined for 0 <r, <R, 0 <r, <R. We shall use the following development, which is
due to Cioranesco [2}]:

® .
(16) f(q; + ryx) = _EoriZinj(qu, rx) (=1,2),
J‘_'.'
where the f;; are harmonic functions and the series converges absolutely and uni-

formly in a sufficiently small neighborhood of q;. Substituting (16) in (15), we get
the identity

o
(17) I(rp rz) = E() kzor%Jr%kAjk(ql’ q,, Vrlrz),
J= =

where

A ji(ay, 9z, VT Tp) = Sflj (a; + r1x) 153 (q;, + ryx) dS, .
5



BILINEAR INTEGRALS OF POLYHARMONIC FUNCTIONS 83

This identity is a generalization of the identity (3). If f,(q,) is n-harmonic, then the
identity (17) takes the form:

n-1 o
(18) I(r;, r,) = PIEDY r%J r%kAjk(ql, q,, Vrr,).
j=0 k=0

2. We shall discuss briefly some generalizations of the results of Part I. The
method we used in the proof of Theorem 3 cannot be generalized without using the
method of series expansion for the case of a power series in one variable. As to
Theorem 4, the use of bilinear integrals seems to involve complications. Using a
linear integral, namely, the well known Pizzetti formula

. i 2 A¥f(0)rPk
(19) |—S—|§f(rX) dSy = P(N/z)ké:o/;kk! T(k + N/2)’

where ISI is the area of S, we can prove a generalization of Liouville’s theorem.
This was already done by the author [3]. It remains to discuss the generalization of
Theorem 2.

Definition. A function g(x) defined on the unit sphere is called surface analytic
of degree t if there exists an analytic function f(q), defined for all q in EN, such
that, for each x € S and for every nonnegative number r,

f(rx) = rtg(x).

THEOREM 5. Let g,(x) be a surface n-harmonic function of degree t,, and let
g,(x) be a surface analytic function of degree t,. Then g,(x) and g,(x) are orthogonal
if one of the following conditions hold:

1) t, - t, is odd;
2) t, ~t, isevenand t, - t,> 2n - 2.

Proof. Using the definition of surface analytic and surface n-harmonic functions
and applying (18), we get the identity

n-1 oo

i t, t
> Ajk(\/rlrz} r%J r%k = I(ry, rp) = rllrzzggl(x)gz(x)dsx,
j=0 k=0 $

validfor 0<r;<R', 0<r, <R". Take r, = s~'r, r, = sr; then

n-1 < . . -
(20) > Aj(r) r20t) g2(-3) o ptitts gta-ta [e1me mas,.
§=0 k=0 g

For each r, (20) holds for s, < s < s,, where s; = 8;(r) (i =1, 2). If we take r to be
a fixed number and compare the coefficients of st2=f1 on both sides of (20), the theo-

rem follows.

Theorem 5 is sharp in the following sense: If 0<t, - t, = 2k < 2n - 2, then there
exist surface analytic and surface n-harmonic functions, of degrees t, and t,,
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respectively, which are not orthogonal. This follows from the analogous remark to
Theorem 2, if we observe that polyharmonic functions are analytic.

The generalization of Theorem 5 to the case of two analytic functions can be
proved by using (14), or even by using (19), but it follows almost immediately if we
observe that a surface analytic function of degree t must be a homogeneous poly-
nomial of degree t. We have the following result, which overlaps with Theorems 2
and 5. (

THEOREM 6. If g,(x) and g,(x) ave surface analylic functions of degrees t, and
t,, and if t, - t, is odd, then g,(x) and g x) are orthogonal.
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