ON CERTAIN CONFORMAL MAPS IN SPACE

Maxwell O. Reade

It is well known that a differentiable homeomorphism with constant unit dilatation, defined in a two-dimensional domain, is either an analytic function of a complex variable, or else the conjugate of such a function [1; p. 1]. Studying three-dimensional quasi-conformal maps, the present author has tried to prove an analogue of this; but He has succeeded only in establishing the following result.

THEOREM. Let y = y(x) denote a conformal, differentiable homeomorphism, with positive Jacobian, of the open ball ||x|| < 1 onto ||y|| < 1, and let y(0) = 0. Then y(x) is a rotation,

Proof. The first quadratic form of the mapping is of the form $d\sigma^2 = \lambda^2 ds^2$ [2]. Hence the volume V(R) and the area S(R) of the image of $||x|| \le R$ and ||x|| = R, respectively, are given by

$$V(R) = \iiint_{|\mathbf{x}| \leq R} \lambda^3 dV, \quad S(R) = \iint_{|\mathbf{x}| = R} \lambda^2 dS,$$

respectively. It follows at once from the isoperimetric inequality $36\pi V^2 \leq S^3$ [5; p. 530] that we have

(1)
$$\left[\frac{3}{4\pi R^3} \int \int \int \lambda^3 dV \right]^2 \leq \left[\frac{1}{4\pi R^2} \int \int \lambda^2 dS \right]^3.$$

A judicious application of the Hölder inequality to the right-hand side of (1) yields

(2)
$$\left[\frac{3}{4\pi R^3} \iiint_{|\mathbf{x}| < R} \lambda^3 dV \right]^2 \leq \left[\frac{1}{4\pi R^2} \iint_{|\mathbf{x}| = R} \lambda^3 dS \right]^2.$$

The relation (2) gives us the following inequality between the volume and spherical averages:

(3)
$$\frac{3}{4\pi R^3} \iiint_{|\mathbf{x}| < R} \lambda^3 dV \leq \frac{1}{4\pi R^2} \iint_{|\mathbf{x}| = R} \lambda^3 dS.$$

Moreover, the analogue of (3) clearly holds for all spheres $||x - x_0|| \le R$ lying in ||x|| < 1; we conclude that $\lambda^3(x)$ is a subharmonic function, for ||x|| < 1 [4; p. 7]. Therefore we have

$$\lambda^3(0) \leq \frac{3}{4\pi R^3} \int \int \int \lambda^3 dV.$$

Received August 27, 1956.

The research reported here was supported in part by a grant from the National Science Foundation.

Now it is well known that the average on the right-hand side of (4) is nondecreasing with R [4; p. 8]. Hence, since we have a homeomorphism from ||x|| < 1 onto ||y|| < 1, we obtain $\lambda^3(0) < 1$ from (4), by letting R $\rightarrow 1$.

But we could also have considered the mapping of ||y|| < 1 onto ||x|| < 1, with differential form $ds^2 = d\sigma^2/\lambda^2$, and we would have found that $1/\lambda^3(0) \le 1$. Hence we conclude that $\lambda(0) = 1$. Since the right-hand member of (4) is a nondecreasing function of R, and since ||x|| < 1 is mapped onto ||y|| < 1, we find

(5)
$$1 = \lambda^{3}(0) = \frac{3}{4\pi R^{3}} \iiint_{||x|| \leq R} \lambda^{3} dV \leq 1.$$

Because $\lambda^3(x)$ is subharmonic, (5) implies that $\lambda^3(x)$ is harmonic for ||x|| < 1 [4; p. 6].

If we again apply the Hölder inequality to the isoperimetric inequality, and if we make use of the harmonic character of $\lambda^3(x)$, then we obtain

$$\lambda^{2}(x) = \frac{1}{4\pi R^{2}} \iint_{||x-x_{0}||=R} \lambda^{2} dS$$

for all spheres $||x-x_0||=R$ lying in ||x||<1. Hence $\lambda^2(x)$ is harmonic for ||x||<1 [4; p.6].

Since $\lambda^2(x)$ and $\lambda^3(x)$ are both harmonic, a simple computation shows that $\lambda(x) \equiv 1$.

The preceding result is an analogue of a classical theorem of Liouville [2; p. 487], as well as an analogue of Schwarz's Lemma. It is related to a recent result due to Lavrentiev, who obtained a similar result for general image domains, but under more severe smoothness conditions on the mapping y = y(x) [3].

REFERENCES

- 1. L. V. Ahlfors, On quasiconformal mappings, J. Analyse Math. 3 (1953-54), 1-58.
- 2. L. Bianchi, Lezioni di geometria differenziale, Third Edition, Pisa, 1922.
- 3. M. A. Lavrentiev, Stability in Liouville's Theorem, Doklady Akad. Nauk SSSR (N.S.) 95 (1954), 925-926.
- 4. T. Radó, Subharmonic functions, Berlin, 1937.
- 5. ——, The isoperimetric inequality and the Lebesgue definition of surface area, Trans. Amer. Math. Soc. 61 (1947), 530-555.

The University of Michigan