UNIQUENESS FOR THE ANALOGUE OF THE NEUMANN
PROBLEM FOR MIXED EQUATIONS

Cathleen S. Morawetz

In this paper we shall consider a uniqueness problem for an equation of mixed
type, that is, an equation which is partly elliptic and partly hyperbolic depending on
the domain in question. Such problems were posed first by Tricomi; uniqueness has
been proved in certain cases, for a boundary condition that corresponds to the
Dirichlet problem, by Tricomi and many others. Here we shall consider the boundary
value problem that corresponds to the Neumann problem. It arises in the study of
transonic flow, and the proof of uniqueness in this case leads to a proof that con-
tinuous transonic flows past smooth profiles do not exist in general (see[4] and [5]).

Let w be a solution of the equation
1) K(o)wea +wgg = 0,

where K(o) > 0 for o > 0, and a
K(o) < 0 for 0 < 0, in an open do-
main D (see Fig. 1). In 0> 0, D
is bounded by an arc C, with con-
tinuous tangent which intersects the
negative f-axis at II, and the posi-
tive #-axis at [I,. In 0 <0, D is
bounded by two curves C, and C,
issuing from II, and Ii,, and by the
two characteristics of (1), y, and
Y., that issue from a point II; be-
tween II, and II, on the f-axis.
Here C, and C, satisfy the condi-
tion

do \?
@) K(E) +1>0.
The analogue to the Neumann ‘ Figure 1
problem is to find a solution of (1)
in D for which the oblique derivative wor%g - Kgg—g is prescribed as a function of arc

length s on Cy+ C, + C,.

This problem is called the analogue of the Neumann problem because if, for o > 0,
we introduce the variable

(02
(3) U= j K(o)do ,
0
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6 CATHLEEN S. MORAWETZ
equation (1) is reduced to the canonical form
4) w99+wﬂ'ﬂ-+auﬂ=0’

1 dK . ot de do dw
where a = K% do and the oblique derivative Wogs " nga-g becomes -Vk_a—n .

We shall show that, under certain continuity conditions and with some restriction
on C,+ C, + C,, the solution of this problem is unique. We shall also show, by an ex-
plicit counter-example, that there are domains D for which uniqueness does not hold.

1. CONDITIONS FOR UNIQUENESS

Let D* be the subdomain of D with 0 > 0. Let j be the angle that the tangent to
the image C¥ of C, in the (8, u)-plane makes with the #-axis, that is,

du

COS]= —d—;,

- sin j =
d—rt J

where

dT = Vdé? + Kdo? = Vde? + dpu?,
taken counterclockwise. In the body of this paper we consider only the case
(5) 0<j<2nm.

We could also consider the case -7 < j < 3w, but the method would then be extremely
cumbersome. We assume that

i=Q-a)r>7 at O,
(6)

i=oa<lnm at II,.

It is for j = n that we find a counter-example.

In the region o0 < 0 we require that on going counterclockwise

do<0 onC,,

(7)
do >0 on C,.

The function K(o) is required to have a bounded derivative which is nonnegative in
some neighborhood of ¢ = 0.

To every solution w of (1) there corresponds a function ¥ (see [6]), defined by the
integral

(6,0)
(8) ¥ = j (sze - w';’,)dcr - 2wgwydo .
1154

which is independent of the path of integration, by (1). The solution w is to satisfy the
continuity conditions
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w is continuous in the closure of D,
(9)
wg, wy are continuous in D, and they are such that ¥
is continuous in the closure of D.

In addition we require

(Vi-l)/Z)

(10) K/ 4w - iwy| = at I (i=1,2),

1
l1-ao

THEOREM. If w satisfies the dszeo’entzal equation (1) and the continuity conditions
(9) and (10) in D, and the boundary condition

where r; = V(6 - 0(I;;))? + p? and —— 1 < y; <

i

(11) wgdf - Kwgdos = 0 on Cy+ C,+ C,,

then w = constant in D.

2. PROOF OF THE UNIQUENESS THEOREM

We assume that w satisfies the conditions of the theorem and is not a constant.
We shall state five lemmas, to be proved later, from which we can prove the theorem
by a simple geometric argument.

LEMMA 1. If wy = wg = 0 in some subdomain of D+ o on an arc of C,, and w
satisfies (1) and (9), then wg = wg =0 in D.

LEMMA 2. ¥ agssumes its maximum and minimum, for any subdomain of D*, on
the boundary of that subdomain.

LEMMA 3. Let X be a point on the 9-axis. For 6(Il,) < 6(X) < 6(I,), we have
v(X)<o(I,) or wg=wg=0

on X, For (1)) < 6(X) < 0(IL,), we have

|
(o]

¥(X) < ¥(,) or wy=wg=
on XIL,.

LEMMA 4. dw / do < 0 on C,, where s is arc length taken counterclockwise and
¥ cannot have a local minimum at any point on C,. Near l'[l, < 0, and near Il,,
2 >0
ds )

LEMMA 5. ¥ does not have a local maximum at 11, ov II ,.

The first is a well-known theorem for which we shall sketch a proof. Lemmas 2,
3, and 4 are easily proved by means of known theorems and Lemma 1. The main dif-
ficulty lies in proving Lemma 5.

Proof of the theorem. On every circular arc joining the line 0= 0 to C,, with its
center at II, and with a sufficiently small radius, there exists by Lemma 5 at least one
point at which ¥ > ¥(Il,). By Lemmas 3 and 4 we see that the value of ¥ at the end-
points is not greater than at II,, and that it is actually less at the endpoint which lies
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on C,. Therefore there exist at least two level lines of ¥ emanating from each of II,
and IT, into the closure of D*. Consider four such lines. By Lemma 4 they do not
coincide with C,. Furthermore, it follows from Lemmas 1 and 2 that through every
point in D+ there passes a curve ¥ = constant. Therefore the four curves ¥ = con-
stant which issue from [I, and I, either intersect, or they end at the boundary of D%,
or they lieon o = 0.

There are only four possibilities:

1) The two curves from II, (or II,) form a loop. Let D, denote the domain bounded
by these two curves. By Lemma 2, ¥ achieves its maximum and minimum at II,. This
is impossible, since then ¥ = ¥(II,) in D, and by (8) and Lemma 1, w= constant in D.

2) At least one curve L, from II, and another curve L, from I, intersect. Con-
sider the domain D, bounded by C,, L, and L,. By Lemmas 2 and 4, ¥ can achieve
its minimum in Dy only on L, + L, where ¥ = ¥(II,) = ¥(IL,); but this is impossible by
Lemma 4, since ¥ is nonincreasing as s increases near II,.

3) At least one curve, say L,, ends on C,, ¢ >0. For the domain bounded by C,
and L, the argument of case 2) shows that this situation is impossible.

4) At least one curve L, from I, and one curve L, from II, issue into D* and
end on the #-axis. Let the points of intersection be X, and X,. Then ¥(X;) = ¥(II,)
and ¥(X,) = ¥(II,). By Lemma 3, either we have again case 1), or 0(X,) > 4(Il,) and
6(X,) < 8(I,). Therefore L, and L, must intersect. This leads us back to case 2),
and therefore it is impossible.

The theorem is proved.

3. PROOFS OF THE LEMMAS

Lemma 1. By the unique continuation theorem for a solution of an elliptic equa-
tion (see for example [1]), we have in both cases wg = wg = 0 in D*. Hence, by the
continuity condition (9), wg = wg = 0 on o = 0. Then, from the differential equation (1),
we have

o
]

XS fwg (Kwgg + wgg)dd do
D

8(Kwf do - 2wgwydof - we do) + S %(-ng + wg)dodo

Cy+y,1+721C, D

de
CrtC, 71 Y2

g -Kowj (1+ K(-d-q)z)da+ S (-6)do (V-Kwg + wo)? + S (-6)do (V-Kwp - wg)? ,

by (11) and the equation for the characteristics, YV-Kdo + df = 0. Here D~ is the sub-
domain of D with o < 0. The three line integrals are nonnegative, by (2) and (7).
Therefore wg = wg = 0 in D™, and thus the lemma is proved.

Lemma 2. It is not difficult to show that, in D, ¥ satisfies the elliptic equation
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with coefficients v
a = -K'K Y29, /Y92, + 92, = -K'K~¥20, / V7 + ¥
which are bounded for o > 0; that is, p© > 0. Such an elliptic equation satisfies a

maximum and minimum principle (see [1]).
Lemma 3. For 6(II,) < 6(X) < 0, it follows from (8) and (9) that

T(X) = ¥(IL,) + S (Kwp - wg)do - 2wpwg 6,
Cr+Yy

where yx is the characteristic of positive slope (-K)-¥2 through X, and where the
integral along C, is taken as far as yyx. By (11), the integral along C, is

(13) S -Kuwp (1 + K(%%)z)do.

C,

This integral is negative, by (2) and (7), unless wg = wy = 0 on C,. The integral
along vy is

g ~(V-Kuwy + wg)?do ,
rx

and it is negative unless }/-_-_Izwg + wg = 0 on yx. Therefore ¥ (X)< ¥(II,), unless

wg = wy on C, and w = constant on 7x . In the latter case, by a well-known theorem
on hyperbolic equations, w = constant in the domain bounded by v, C, and the x-
axis. This proves the lemma for I II;; the result for I I, can be proved similarly.

Lemma 4. Along C, we have, from (8) and (11)

dvw 2 2\do
(14) | & = - (xeof + )2

d¥ /do
Therefore 35/ as <0.
For the second assertion, there are two cases to consider. First, if do/ds changes
sign on passing through a point P, then the point P can be a minimum for ¥ only if

do/ds changes from positive to negative. Therefore by (5) we have j = n. But then

where 9/9n denotes differentiation in the direction of the inward normal. By a
theorem of Hopf [3] for elliptic equations, a¥/dn > 0 at a point where ¥ has a mini-
mum for some domain, unless ¥; = ¥; = 0 in that domain. Therefore

Vg=¥g=wg=wg =0

in some neighborhood of P, and by Lemma 1 also in D, which contradicts our assump-
tion. A
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The second case occurs if do/ds = 0 or wg= 0 on an arc of C,. However,
by (14), if ¥ achieves a minimum at some point on this arc, then as we proceed
counterclockwise on C,, d¥/ds is positive before the arc and negative afterwards.
Hence j = m at some point on the arc, and the same argument as above holds since ¥
achieves its minimum at all points on this arc.

The last statement of the lemma follows from (14) and Lemma 1.

Lemma 5. Suppose ¥ has a local maximum at II,. By Lemmas 3 and 4 and the
continuity condition (9), we see that for 6 sufficiently small there exists a simple
curve Bs on which ¥ = constant = ¥5, 0< ¢ <3, and which joins ¢ =0 to C,. Bg,
C, and the 9-axis bound a domain Dg in which K'(0) is continuous, is positive for
o > 0 and vanishes for 0= 0 and ¥5< ¥(6, 0) < ¥(II,).

Hence ¥ is nondecreasing in all directions pointing into Dg from Bg; in particu-
lar,

do do _ 40 _ g, du )
(15) Toqs - K¥gg = Vﬁ(qfuag -g2k ) >0,

going counterclockwise on Bg.

Consider the area integral I over any domain R with boundary S,

R
By (1), the integral I vanishes. We shall show that over Dj it can be made positive

by a proper choice of the functions B and C, and that ¥ does not have a local maxi-
mum at X,. This contradiction proves the lemma.

If B, C, wy, wg are continuous in R, then

I= S S{%—wg [-KBg + (KC)g] + wgwys[Bg + KCyl + %wg[Be - Co]}dg do

R
(16)
+ f[;B[ng do - 2wywydf - w§ do] + C(Kwj db + 2Kwywydo - wi db)
S
Let
1 .
Zm -v
(17) VKC -iB = e” (- XNI)™,
where A = 0+ iy and v, given by (10), satisfies
o, 1
(18) 1—a1<v<1—a1'

Then B and C have the following properties which are easily deduced from (16):

(19) Bg - (VKC), = By, + (VKC)g = 0,
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(20) VfEC =0, B<0O onarg(-a())=0,

(21) VKC = 0 in Dg for sufficiently small 5,

since 0<7—'; arg (A - A(IL,)) ~ v(1 - @,) < 1 by (18) and (6).

From (20) and (21), or by direct computation, it follows that (\/IZC) p > 0 for
arg (A - A(II,)) = 0, and hence that V-I_(-C vanishes like p, or that C vanishes like

. o
(VK)-1 g VK do,

that is,
(22) C=0 onarg(A-2a(l))=0.

Along any curve Sy which is the image in the (9, o)-plane of a circular arc in the
1

A-plane of radius 6, and center A(Il;), we have

§ B((Kwj do - 2wpwydl - wg do) + C(Kwj db + 2Kwgwy do - w do)

551

= | §V§(VI€C - iB)(wg -iw,)? dz
S

= E)ti; YK e™i/2 61-Ve-ivargz (y, - iwy)?d (arg z)

Sﬁl

<§ \[I_{_GI'VIwg - iwﬂlzd Iarg z| .
551
Here
z=x-A(II).
Thus the line integral tends to zero as §,> 0 since, by (10),
KY/2 61| wg - iwy [?>0 as 5,>0.
Note from (18) that if o > 1/2, then to satisfy (10), wyg - iw, must vanish at 1, if K
vanishes sufficiently slowly. In particular, if K vanishes like o, which is the case

for transonic flow problems, we find that if |wg - iwy [* = O(67%/*Y), where
v>a,/(1 -a,), then (10) is satisfied.

We want to apply (16) to the domain R = Dg. First, we apply (16) to the domain
R = Dgp, bounded by Bg, C,, Sal and the 6-axis, where §, is much smaller than 0.
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Then we let 6, >0 and obtain by (22), using the boundary condition (11) on C,,

I= SS{%“%[_KB" + (KC)g] + wgwy [By + KCo] + %‘”3 [Bg - Ccr]}deda
2
5

+ S C(¥4d6 - K¥ydo) + S (Kw? + w?)(-Bdo + Cdo) + S By do.
Bg Co o=0

Introducing the variable p from (3), and letting (*) denote image in the (9, u)-
plane, we find

{ K 03[-By + (\/_C)“+—372\[—C]+w9wc[B + (VKC)gl

1 2 K'

+ 5 VKC(¥ ,d6 - wpdp) + j—‘}—K(ng + w@)(-Bdp + YKCdAe)

* *

+ SB\Ifede.

0=0
Using (19), we find

Kl
”W (Kwg + wZ)dodu + S VKC(¥ , d0 - ¥gdp)

D Bg

IT(KCOQ + wg)sh(\[_C - iB)d(X - A(IL,)) + s By, do,
ck =0

where the bar indicates the complex conjugate.
The area integral is positive, since otherwise w = constant in Dg and, by Lemma
1, w = constant in D. The first line integral, along B5, is positive by (15) The last
integral is positive by (20) and Lemma 3, for § sufficiently small. The integral along
CF is nonnegative, for
R(YRC - iB)d(A - A(II))) = % iz~VdZ
= |z|-V %t ie"ivare 2d|z|e-i T8 2 ~ |z|-Vsin[(v + 1) arg 2] d|z],

by (3). By (6), we have argz=j - 7 = (1 - @,)m, and also by (18),

1<@+1)1-)<2-0a,.
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Therefore the sine term is negative. Finally on C¥, d|z| <o0.

Hence ¥ does not have a local maximum at II, or, similarly, at II,.

4, THE COUNTER-EXAMPLE

In the counter-example we violate condition (6), so that Lemma 5 does not hold.
The counter-example is given here for the case K(0) = g; but by means of the for-
mulas given in [2] it could be generalized to any K(o) that vanishes like ¢ at o = 0.

Consider the polynomial

] B
(24) w_ea(1+2 -90-39,

which satisfies (1) and (9). (For the general case we replace this polynomial by the
corresponding formal polynomial.) There is a curve satisfying owydo - wydo = 0
passing through (+1, 0). For if we set vg = -Kwy and vy = wy, we see that the curves
Kwgdo - wydf = 0 are the curves v = constant. We find

ty
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(24) =%(1-02)2--§—02+03(%-92)+

1
15 os.
We take for C,+ C; + C, the portion of v = 0 cut out by the characteristics through
the origin.

By expanding (25) about the neighborhood of the point II, = (-1, 0) and taking lead-
ing terms, it is not difficult to see that the curve v =0, for # <0, 0 < 0, has slope
greater than -(\/’—_I_{‘)l/2 and less than zero. Therefore (2) is satisfied near II,, and by
symmetry near II,. ‘

A very lengthy computation would show that (2) is satisfied on the rest of the
boundary v = 0; but a simple sketch (see Fig. 2) provides the simplest if not so
rigorous way of showing that condition (2) also holds on the rest of the boundary. In
addition, conditions (5) and (7) are satisfied.

Remark. It seems reasonable to conjecture that a general uniqueness theorem
holds for arbitrary curves C,, C, and C,, provided (2) and (6) hold. Whether there
will always exist a counter-example for arbitrary domains for which (6) does not hold
is not clear.
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