ON A THEOREM OF MAHLO CONCERNING ANTI-HOMOGENEOUS SETS

Leonard Gillman

Let us call a (linearly) ordered set anti-homogeneous if no two of its elements have the same character. J. Novák [7] has asked if there exists a continuous anti-homogeneous set. (I am indebted to M. Henriksen for calling Novák's question to my attention.) A partial answer had already been obtained by Mahlo [6], who had proved that, even under considerably weaker conditions, such a set must have a fantastically large cardinal—in fact, one whose existence is highly doubtful. In the present note, we describe Mahlo's result and derive some additional necessary conditions of our own.

An infinite ordered set is called *dense* if between any two of its elements there lies another [5, p. 90]. Let $F = (F_{\pi})$ be a family of subsets of a dense set E, and define

$$\mathbf{F}(\tau) = \bigcup_{\pi \leq \tau} \mathbf{F}_{\pi}.$$

We assume that there exists an ordinal τ such that $F(\tau)$ is not nowhere dense in E; the least such τ will be denoted by $\phi = \phi(F)$.

LEMMA 1. If F_{ϕ} is nowhere dense in E, then ϕ is a (nonzero) limit ordinal.

Proof. Since F_{ϕ} is nowhere dense, while $F(\phi)$ is not, we have $\phi \neq 0$. Let I be an interval in which $F(\phi)$ is everywhere dense. If $\phi = \pi + 1$, there exists a subinterval J of I that does not meet $F(\pi)$; but then F_{ϕ} is everywhere dense in J.

We recall that $cf(\alpha)$ denotes the smallest ordinal β such that ω_{α} is cofinal with ω_{β} ; hence $cf(\alpha) \leq \alpha$. If $cf(\alpha) = \alpha$, then \aleph_{α} and ω_{α} are said to be regular; otherwise, they are singular. Every $\omega_{cf(\alpha)}$ is regular. If ω_{α} is singular, then α is a limit ordinal. A regular limit cardinal $\beta = \aleph_{\lambda} > \aleph_{0}$ and its initial ordinal ω_{λ} are said to be inaccessible. Even the smallest such β —if any exist—is of "exorbitant" magnitude [5, p. 131]. For example, not only are there β cardinals less than β (that is, $\omega_{\lambda} = \lambda$), but there exist β cardinals β less than β such that there are β cardinals less than β .

By a segment of a sequence $(\mu_{\xi})_{\xi < \lambda}$ $(\lambda > 0)$ is meant any subsequence of the form $(\mu_{\xi})_{\xi < \tau}$, where $0 < \tau < \lambda$. Inaccessible numbers \aleph_{λ} and ω_{λ} are called ρ -numbers if

(1) every increasing sequence whose limit is ω_{λ} (= λ) has a segment (of limit type) whose limit is inaccessible.

This concept was introduced by Mahlo [6]. The first inaccessible number pales into insignificance in comparison with the first ρ -number \mathfrak{p} . For example, not only are there \mathfrak{p} inaccessible numbers less than \mathfrak{p} , but \mathfrak{p} inaccessible numbers \mathfrak{q} less than \mathfrak{p} such that there are \mathfrak{q} inaccessible numbers less than \mathfrak{q} . A sobering thought is that, conceivably, the cardinal 2^{\aleph_0} is a ρ -number. For additional discussion, see [2, Definition 3.7 ff.].

Received March 12, 1956.

Research supported in part by the National Science Foundation.

If α is a limit ordinal, then ω_{α} is cofinal with α , and $\omega_{\text{cf}(\alpha)} \leq \alpha$.

LEMMA 2. A limit ordinal λ is a ρ -number if and only if it satisfies (1).

Proof. The necessity follows directly from the definition of ρ -number. For the sufficiency, suppose that ω_{λ} is singular. Then $\mathrm{cf}(\lambda) < \lambda$, so there exists an increasing sequence $(\mu_{\xi})_{\xi < \omega_{\mathrm{cf}(\lambda)}}$ whose limit is λ , and where $\mu_0 \geq \mathrm{cf}(\lambda)$. Let τ be any limit ordinal $<\omega_{\mathrm{cf}(\lambda)}$, and define $\pi = \lim_{\xi < \tau} \mu_{\xi}$. Then

$$\omega_{\mathrm{cf}(\pi)} \leq \tau < \omega_{\mathrm{cf}(\lambda)} \leq \omega_{\mu_0} < \omega_{\pi}$$
,

so π cannot be inaccessible. Thus (1) fails. Therefore ω_λ must be regular, hence inaccessible.

Let x be an element or gap of an ordered set E. If the sets A [B] of all predecessors [successors] of x in E are nonempty and have no last [first] element, then A [the inverse of B] is cofinal with a unique regular initial ordinal, say ω_{α} [ω_{β}]; then x is said to have the *character* $c_{\alpha\beta}$. If $\alpha = \beta$, then x is *symmetric*.

The set E is *continuous* if it is dense and has no gaps [5, p. 90]. Every interval of a continuous set contains symmetric elements [5, p. 142]. The set of all $c_{\pi\pi}$ -elements will be denoted by S_{π} .

The following result is a generalization of [6, Theorem 17]; because Mahlo's proof is hard to follow, we include a complete proof here.

THEOREM 1. Let E be continuous. If $F_{\pi} \supset S_{\pi}$ for every π , and if F_{φ} is nowhere dense in E, then φ is a ρ -number.

Proof. By Lemma 1, ϕ is a limit ordinal. Hence, if ϕ is not a ρ -number, then by Lemma 2 there exists an increasing sequence (μ_{ξ}) whose limit is ϕ , but no segment of which has an inaccessible limit. The same properties are evidently shared by every cofinal subsequence; we may accordingly assume that the sequence (μ_{ξ}) is of type $\omega_{\text{cf}}(\phi)$.

By definition of ϕ , $F(\phi)$ is everywhere dense in some interval I of E, while for every $\tau < \phi$, $F(\tau)$ is nowhere dense in E. Let J be an arbitrary subinterval of I. Let K_0 be a subinterval of J that is free of elements of $F(\mu_0)$. Let τ be any non-zero ordinal $<\omega_{\mathrm{cf}(\phi)}$, and suppose that a sequence of intervals $(K_\xi)_{\xi<\tau}$ has been defined such that, for every $\xi < \tau$, K_ξ is disjoint from $F(\mu_\xi)$, and for every ξ with $\xi+1<\tau$, the endpoints of $K_{\xi+1}$ lie in the interior of K_ξ .

If τ is isolated, then there exists an interval K_{τ} that does not meet $F(\mu_{\tau})$ and whose endpoints lie in the interior of $K_{\tau-1}$.

Suppose that τ is a limit ordinal. Define $\pi = \lim_{\xi < \tau} \mu_{\xi}$. Then $\omega_{\mathrm{cf}(\tau)} \leq \pi$. Hence if $\mathrm{cf}(\tau) = \pi$, then $\omega_{\pi} \leq \pi$, and π is inaccessible, contrary to assumption. Therefore $\mathrm{cf}(\tau) < \pi$. Choose $\delta < \tau$ such that $\mathrm{cf}(\tau) < \mu_{\delta}$.

If the interval $K' = \bigcap_{\xi < \tau} K_{\xi}$ reduces to a single element x, then x is symmetric—in fact, $x \in S_{cf(\tau)}$. Now $S_{cf(\tau)} \subset F(cf(\tau)) \subset F(\mu_{\delta})$; hence K' meets $F(\mu_{\delta})$. But this is impossible, since K' is contained in K_{δ} . Therefore K' must be a non-degenerate interval. We select a subinterval K_{τ} of K' that is disjoint from $F(\mu_{\tau})$.

We thus define K_{ξ} for all $\xi < \omega_{cf(\phi)}$. Put

$$K = \bigcap_{\xi < \omega_{cf}(\phi)} K_{\xi}.$$

Then K is disjoint from F_{τ} —and hence from S_{τ} —for all $\tau < \phi$. Hence if K is a nondegenerate interval, then it must meet F_{ϕ} (since $F(\phi)$ is everywhere dense in I). The other possibility is that K reduces to a single element y. Then $y \in S_{cf(\phi)}$. By the remark above, we must then have $cf(\phi) \geq \phi$. Then $cf(\phi) = \phi$, and $y \in S_{\phi} \subset F_{\phi}$. Thus, in either case, K meets F_{ϕ} ; so J meets F_{ϕ} . Since J was arbitrary, it follows that F_{ϕ} is everywhere dense in I. This contradiction completes the proof of the theorem.

COROLLARY 1. Let E be continuous. If $F_{\pi} \supset S_{\pi}$ for every π , and if F_{π} is nowhere dense in E whenever ω_{π} is singular, then ω_{ϕ} is regular.

Proof. If ϕ is a ρ -number, then ω_{ϕ} is regular; and if ϕ is not a ρ -number, then by Theorem 1, F_{ϕ} is not nowhere dense.

Let $S = (S_{\pi})$; and let $C = (C_{\pi})$, where C_{π} denotes the set of all $c_{\alpha\beta}$ -elements of E such that $\alpha \leq \pi$, $\beta \leq \pi$, and either $\alpha = \pi$ or $\beta = \pi$. Then $S_{\pi} \subset C_{\pi}$. We define

$$\sigma = \phi(S), \quad \gamma = \phi(C)$$

(these numbers exist, since the set of *all* symmetric elements is everywhere dense in E). Evidently, $\sigma > \gamma$.

The following corollary includes [6, Theorems 14 and 17].

COROLLARY 2. Let E be continuous. Then both ω_{σ} and ω_{γ} are regular; and if S_{σ} is nowhere dense in E, then σ is a ρ -number, while if C_{γ} is nowhere dense in E, then γ is a ρ -number.

Proof. Put F = S, F = C, respectively. Then the second conclusion is immediate from Theorem 1; and the first follows from Corollary 1 upon observing that if ω_{π} is singular, then, by definition of character, both S_{π} and C_{π} are empty, hence nowhere dense in F.

We shall denote the cardinal of E by \aleph_{ϵ} . Obviously, $\epsilon > \sigma$. Thus it follows from Corollary 2 that if S_{σ} is nowhere dense in E, then |E| is at least as large as the first ρ -number. Observe that the hypothesis here is (apparently) many stages weaker than Novák's condition of anti-homogeneity.

By an η_{ξ} -set is meant an ordered set that is neither coinitial nor cofinal with any subset of power less than \aleph_{ξ} , and such that every element [gap] has character $c_{\alpha\beta}$ with $\alpha \geq \xi$ and [or] $\beta \geq \xi$ [5, p. 181].

THEOREM 2. Let I be any interval of the continuous set E, and let π be any ordinal $< \sigma$. Then I contains an $\eta_{\pi+1}$ -set, and $|I| \geq 2^{\aleph_{\pi}}$. If, furthermore, $\pi < \gamma$, then I contains an $\eta_{\pi+1}$ -set that is a subinterval of I, and $|I| \geq 2^{\aleph_{\pi+1}}$.

Proof. By definition of σ , $S(\pi)$ is nowhere dense in E; hence there exists a sub-interval J of I that does not meet $S(\pi)$. For every $c_{\alpha\alpha}$ -element of J, we have $\alpha \geq \pi+1$. Therefore, by [4, Theorem XXII], J contains an $\eta_{\pi+1}$ -set—and by [5, pp. 181-182] (or [8, Theorem V]), every $\eta_{\pi+1}$ -set is of power at least $2^{N\pi}$. Similarly, if $\pi < \gamma$, there exists a subinterval J of I that does not meet $C(\pi)$, whence every element of J has a character $c_{\alpha\beta}$ with both $\alpha \geq \pi+1$ and $\beta \geq \pi+1$. Therefore any interior subinterval of J is an $\eta_{\pi+1}$ -set—and by [4, Theorem XXI] (or [3, Remark 2]), every continuous η_{ξ} -set is of power at least $2^{N\xi}$.

We call E power-homogeneous if every interval of E has the same cardinality as E. There is no essential restriction in assuming E to be power-homogeneous,

inasmuch as every interval contains a power-homogeneous subinterval (e.g., one of minimal cardinality).

THEOREM 3. If E is continuous and power-homogeneous, then $|C(\tau)| \leq \aleph_{\tau} < \aleph_{\epsilon}$ implies $\tau < \gamma$.

Proof. Let I be any interval of E. Then $|I| = \aleph_{\epsilon}$, so $|C(\tau)| < |I|$. Let $y \in I - C(\tau)$; then y has character $c_{\alpha\beta}$ with, say, $\beta \ge \tau + 1$. Let $(x_{\xi})_{\xi < \omega_{\beta}}$ be an increasing sequence in I with y as limit. Since ω_{β} is regular (by definition of character), and $|C(\tau)| \le \aleph_{\tau} < \aleph_{\beta}$, there exists an ordinal $\delta < \omega_{\beta}$ such that the subinterval $[x_{\delta},y]$ of I is free of elements of $C(\tau)$. It follows that $C(\tau)$ is nowhere dense in E. Thus, $\tau < \gamma$.

Let $\mathfrak{p}=\aleph_{\lambda}$ be inaccessible; we shall call \aleph_{λ} and ω_{λ} semi-strongly inaccessible if, for all $\mathfrak{q}<\mathfrak{p}$, we have $2^{\mathfrak{q}}\leq\mathfrak{p}$. For any regular \mathfrak{p} , this latter condition is equivalent to the following: $\mathfrak{p}^{\mathfrak{q}}=\mathfrak{p}$ for all $\mathfrak{q}<\mathfrak{p}$ [2, proof of Lemma 3.2]. Under the hypothesis of inaccessible numbers proposed in [1], every inaccessible \mathfrak{p} would clearly be semi-strongly inaccessible. See also [3, Theorem 3 and Remark 1]. (For strongly inaccessible, replace < above by <; see [1;2] for discussion and references.)

On combining various of the preceding results, we obtain

THEOREM 4. Let E be continuous and power-homogeneous. If

- (i) $|C_{\pi}| \leq \aleph_{\pi}$ for all $\pi < \epsilon$, then
 - (a) $\varepsilon = \sigma = \gamma$.
 - (b) for all $\pi < \epsilon$, every interval of E has a subinterval that is an $\eta_{\pi+1}$ -set,
 - (c) every subset of E of power less than \aleph_{ϵ} is nowhere dense in E, and
 - (d) every interval of E contains \aleph_{ϵ} symmetric elements.

If also

- (ii) S_{ϵ} is nowhere dense in E, then
 - (e) ε is a semi-strongly inaccessible ρ -number, and
 - (f) there exist \aleph_{ε} inaccessible numbers $\tau < \varepsilon$ such that $|S(\tau)| = \aleph_{\tau}$.

Proof. As already observed, we have $\tilde{\epsilon} \geq \sigma \geq \gamma$ in any case. If (i) holds, then for every $\tau < \epsilon$, since $C(\tau) = \bigcup_{\pi < \tau} C_{\pi}$, we have

(2)
$$|C(\tau)| \leq \sum_{\pi < \tau} |C_{\pi}| \leq |\tau + 1| \cdot \aleph_{\tau} = \aleph_{\tau};$$

Theorem 3 now implies that $\gamma \geq \epsilon$. This proves (a); and (b) then follows from Theorem 2. Since no set of power \aleph_{π} can be dense in an $\eta_{\pi+1}$ -set, (c) follows at once from (b). Since the set of all symmetric elements is everywhere dense in E, (c) implies (d).

If (ii) holds, then ε is a ρ -number, by Corollary 2; and the rest of (e) follows from Theorem 2.

Finally, since $S(\epsilon)$ is everywhere dense in E, while S_{ϵ} is nowhere dense, the set $S' = S(\epsilon) - S_{\epsilon} = \bigcup_{\pi < \epsilon} S_{\pi}$ must be everywhere dense in E. By (c), $\left|S'\right| = \aleph_{\epsilon}$. Since $S_{\pi} \subset C_{\pi}$, we find from (i) that $\left|S_{\pi}\right| < \aleph_{\epsilon}$ for all $\pi < \epsilon$. Therefore, since \aleph_{ϵ} is regular, there exist \aleph_{ϵ} ordinals $\pi < \epsilon$ for which S_{π} is nonempty; let these

be $(\pi_{\xi})_{\xi < \epsilon}$, in increasing order. Let α be any ordinal $< \epsilon$, and suppose that inaccessible ordinals τ_{ξ} ($\xi < \alpha$) have been defined as in (f). Define $\delta = \sup_{\xi < \alpha} (\tau_{\xi} + 1)$; then $\delta < \epsilon$, since ϵ is regular. Since ϵ is a ρ -number, there exists a limit ordinal λ , with $\delta < \lambda < \epsilon$, such that $\lim_{\delta \le \xi < \lambda} \pi_{\xi}$ is inaccessible—hence equal to λ . Since $s(\lambda) \supset \bigcup_{\xi < \lambda} s_{\pi_{\xi}}$, we have

$$|S(\lambda)| \geq \sum_{\xi \leq \lambda} |S_{\pi_{\xi}}| \geq \sum_{\xi \leq \lambda} 1 = |\lambda| = \aleph_{\lambda}.$$

Since $S(\lambda) \subset C(\lambda)$, it then follows from (2) that $|S(\lambda)| = \aleph_{\lambda}$. We define $\tau_{\alpha} = \lambda$.

Remark. We are so far unable to prove that if ε is a semi-strongly inaccessible ρ -number, then there does exist a continuous set of power \aleph_{ε} that is anti-homogeneous (or that satisfies the weaker conditions above).

REFERENCES

- 1. P. Erdös and A. Tarski, On families of mutually exclusive sets, Ann. of Math. (2) 44 (1943), 315-329.
- 2. L. Gillman, On intervals of ordered sets, Ann. of Math. (2) 56 (1952), 440-459.
- 3. ——, Some remarks on η_{α} -sets, to appear in Fund. Math.
- 4. F. Hausdorff, Grundzüge einer Theorie der geordneten Mengen, Math. Ann. 65 (1908), 435-505.
- 5. ——, Grundzüge der Mengenlehre, Leipzig, 1914.
- 6. P. Mahlo, Über lineare transfinite Mengen, Berichte der Sächs. Ges. d. Wiss., Math.-Phys. Kl. 63 (1911), 187-225.
- 7. J. Novák, *Problem* 134, Colloquium Math. 3 (1955), 171.
- 8. W. Sierpiński, Sur une propriété des ensembles ordonnés, Fund. Math. 36 (1949), 56-67.

Purdue University

