ON A THEOREM OF MAHLO CONCERNING
ANTI-HOMOGENEOUS SETS

Leonard Gillman

Let us call a (linearly) ordered set anti-homogeneous if no two of its elements
have the same character. J. Novik [7] has asked if there exists a continuous anti-
homogeneous set. (I am indebted to M. Henriksen for calling Novik’s question to
my attention.) A partial answer had already been obtained by Mahlo [6], who had
proved that, even under considerably weaker conditions, such a set must have a
fantastically large cardinal—in fact, one whose existence is highly doubtful. In the
present note, we describe Mahlo’s result and derive some additional necessary con-
ditions of our own,

An infinite ordered set is called dense if between any two of its elements there
lies another [5, p. 90]. Let F = (F;) be a family of subsets of a dense set E, and
define

- U F,.
Fir) 7r<'rF1rr

We assume that there exists an ordinal 7 such that F(7) is not nowhere dense in E;
the least such 7 will be denoted by ¢ = ¢(F).

LEMMA 1. If Fy is nowheve dense in E, then ¢ is a (nonzevo) limit ovdinal.

Proof. Since Fy is nowhere dense, while F(¢) is not, we have ¢ + 0. Let I be
an interval in which F(¢) is everywhere dense. If ¢ = 7 + 1, there exists a sub-
interval J of I that does not meet F(w); but then Fy is everywhere dense in J.

We recall that cf(a) denotes the smallest ordinal 8 such that wy is cofinal with
wg; hence cf(a)s a. If cf(a) = a, then 'Ry and w, are said to be regular; other-
wise, they are singular. Every Wef(ar) 18 regular. If w, is singular, then o isa
limit ordinal. A vegular limit cardinal p = X, >N, and its initial ordinal w) are
said to be inaccessible. Even the smallest such p —if any exist—is of “exorbitant”
magnitude [5, p. 131]. For example, not only are there p cardinals less than p
(that is, wy = A), but there exist p cardinals q less than p such that there are q
cardinals less than q.

By a segment of a sequence (u £ ) £ (A > 0) is meant any subsequence of the
form (u§)§<f, where 0 <7 < A. Inaccessible numbers N, and w) are called p-
numbers if '

(1) every increasing sequence whose limit is w) (= 1) has a segment (of limit type)
whose limit is inaccessible.

This concept was introduced by Mahlo [6]. The first inaccessible number pales into
insignificance in comparison with the first p-number p. For example, not only are
there p inaccessible numbers less than 'p, but p inaccessible numbers .q less than
p such that there are ¢ inaccessible numbers less than q. A sobering thought is
that, conceivably, the cardinal 9% isa p-number. For additional discussion, see
[2, Definition 3.7 ff.].
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If o is a limit ordinal, then w, is cofinal with o, and wcg(q4) < a.
LEMMA 2. A limit ovdinal X is a p-number if and only if it satisfies (1).

Proof. The necessity follows directly from the definition of p-number. For the
sufficiency, suppose that w) is singular. Then cf(\) < A, so there exists an increas-
ing sequence (N§)§<w ) whose limit is A, and where p,> cf(x). Let 7 be any

limit ordinal <w f(»), and define 7 = limg< - ug. Then
Wef(n) <7< Wet(N) < T <wq,

so 7w cannot be inaccessible. Thus (1) fails. Therefore w, must be regular, hence
inaccessible.

Let x be an element or gap of an ordered set E. If the sets A [B] of all prede-
cessors [successors] of x in E are nonempty and have no last [first] element, then
A [the inverse of B] is cofinal with a unique regular initial ordinal, say w, [w gl;
then x is said to have the character Cqp- If a =8, then x is symmelric,

The set E is continuous if it is dense and has no gaps [5, p. 90]. Every interval
of a continuous set contains symmetric elements [5, p. 142]. The set of all c; ;-
elements will be denoted by S;.

The following result is a generalization of [6, Theorem 17]; because Mahlo’s
proof is hard to follow, we include a complete proof here.

THEOREM 1. Let E be continuous. If Fyp D Sy for every w, and if Fg is no-
where dense in E, then ¢ is a p-number.

Proof. By Lemma 1, ¢ is a limit ordinal. Hence, if ¢ is not a p-number, then
by Lemma 2 there exists an increasing sequence (u g) whose limit is ¢, but no seg-
ment of which has an inaccessible limit. The same properties are evidently shared
by every cofinal subsequence; we may accordingly assume that the sequence (,ug) is

of type Wet(p):

By definition of ¢, F(¢) is everywhere dense in some interval I of E, while for
every 7 < ¢, F(7) is nowhere dense in E. Let J be an arbitrary subinterval of I.
Let K, be a subinterval of J that is free of elements of F(u,). Let 7 be any non-
zero ordinal <wcf(¢), and suppose that a sequence of intervals (Kg) £<r has been de-
fined such that, for every £ < T, K¢ is disjoint from F(p.g), and for every £ with
£+ 1< T, the endpoints of K£+1 lie in the interior of K¢.

If 7 is isolated, then there exists an interval K, that does not meet F(uT) and
whose endpoints lie in the interior of K__,.

Suppose that 7 is a limit ordinal. Define 7 = limgc g, Then wegr) < m
Hence if cf(7) = 7, then w, < @, and 7 is inaccessible, contrary to assumption.
Therefore cf(r) < 7. Choose & < 7 such that cf(r) < pg.

If the interval K' = n £<T K¢ reduces to a single element x, then x is sym-
metric—in fact, x € Scf(r). Now Scg(r) C F(cf(r)) C F(ug); hence K' meets F(ugs).
But this is impossible, since K' is contained in K5. Therefore K' must be a non-
degenerate interval. We select a subinterval K, of K' that is disjoint from F(u;).

We thus define K¢ for all £ <w f(g). Put

K= n KE'

E<wet(g)
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Then K is disjoint from F, —and hence from S; —for all 7 < ¢. Hence if K isa
nondegenerate interval, then it must meet Fy (since F(¢) is everywhere dense in I).
The other possibility is that K reduces to a single element y. Then y € Scf(<1> By
the remark above, we must then have cf(¢) > ¢. Then cf(p) = ¢, and y € S¢C }-‘

Thus, in either case, K meets F4; so J meets Fy . Since J was arbitrary, it follows
that Fy is everywhere dense in f¢ This contradiction completes the proof of the
theorem,

COROLLARY 1. Let E be continuous. If FyD Sy for every w, and if Fy is
nowhevre dense in E whenever w, is singular, then W is regular.

Proof. If ¢ is a p-number, then wg is regular; and if ¢ is not a p-number, then
by Theorem 1, Fy is not nowhere dense.

Let S = (S;); and let C = (Cp), where C; denotes the set of all cyg-elements of
E such that ¢ <7, B <7, and either @« =7 or g=7. Then S; Cc C;. We define

o=¢8), v =¢(C)

(these numbers exist, since the set of @/l symmetric elements is everywhere dense
in E). Evidently, 0 >v.

The following corollary includes [6, Theorems 14 and 17].

COROLLARY 2. Let E be continuous. Then bolth wg and wy are regular; and
if Sy is nowhere dense in E, then o is a p-number, while if G, is nowhere dense in
E, then vy is a p-number.

Proof. Put F =S, F = C, respectively. Then the second conclusion is immediate
from Theorem 1; and the first follows from Corollary 1 upon observing that if w; is
singular, then, by definition of character, both S; and C; are empty, hence nowhere
dense in E.

We shall denote the cardinal of E by 8, . Obviously, ¢ > ¢. Thus it follows from
Corollary 2 that if S5 is nowhere dense in E then |E| is at least as large as the first
p-number. Observe that the hypothesis here is (apparently) many stages weaker than
Nov4k’s condition of anti-homogeneity.

By an ng-set is meant an ordered set that is neither coinitial nor cofinal with any
subset of power less than ®,, and such that every element [gap] has character Cap
with @ > £ and [or] g > ¢ [é p. 181].

THEOREM 2. Let1 be any intevval of the continuous set E, and let 7 be any
ovdinal < 6. Then 1 contains an M, y-set, and |I| > ZN" . If, furthermove, 7 <Y,
then 1 contains an Mg, -set that is a subinterval of 1, and |I|> aNme1,

Proof. By definition of ¢, S(7) is nowhere dense in E; hence there exists a sub-
interval J of I that does not meet S(7). For every cyqy-element of J, we have
@ > 7+ 1. Therefore, by [4, Theorem XXII], J contains an nml-set-—and by [5, pp.
181-182] (or [8, Theorem V]), every .1 -Set is of power at least 2M7, Similarly,
if 7 <y, there exists a subinterval J of 1 that does not meet C(w), whence every
element of J has a character cyg with both > 7+ 1 andg > m+ 1. Therefore
any interior subinterval of J is an 7., ,-set—and by [4, Theorem XX1] (or [3, Re-

mark 2]), every continuous ng—set is of power at least 2 E.

We call E power-homogeneous if every interval of E has the same cardinality
as E. There is no essential restriction in assuming E to be power-homogeneous,
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masmuch as every interval contains a power-homogeneous subinterval (&.g., one of
minimal cardinality).

THEOREM 3. If E is continuous and power-homogeneous, then |C(1)| <N_ < N,
implies T < V.

Proof. Let I be any interval of E. Then |I| =8, , so |c(m)] < |1]. Let
y € I - C(7); then y has character Cqg With, say, B> 7+ 1. Let (XE)£<wﬁ be an in-

creasing sequence in I with y as limit. Since wg is regular (by definition of char-
acter), and |C(7)| < N7 < Ng, there exists an ordinal & < wg such that the subinter-

val [xg,y] of I is free of elements of C(r). It follows that C(7) is nowhere dense in
E. Thus, 7 <v.

Let p = N, be 1nacceSS1b1e we shall call 8, and w) semi-strongly inaccessible
if, for all q <p, we have 29 <p. For any regular p, this latter condition is equiva-
lent to the following: pd = p for all q <p [2, proof of Lemma 3.2]. Under the %xy-
pothesis of inaccessible numbers proposed in [1], every inaccessible p would clearly
be semi-strongly inaccessible. See also [3, Theorem 3 and Remark 1]. (For strongly
inaccessible, replace < above by <; see [1;2] for discussion and references.)

On combining various of the preceding results, we obtain
THEOREM 4. Let E be continuous and power-homogeneous. If
(1)  |Chl< W, forall m<e, then
(@) e =0=1v,
(b) for all w < &, every interval of E has a subintevval that is an Ny y-Sel,
(c) every subset of E of power less than N ¢ S nowhevre dense in E, and
(d) every intervval of E contains N, symmelric elements.
If also
(ii) S, is nowhere dense in E, then
(e) ¢ is a semi-strongly inaccessible p-number, and
() theve exist N, inaccessible numbers T < € such that lS(T)] =
Proof. As already observed, we have € > 0>y in any case. If (i) holds, then for

every 7 < &, since C(71) = U 7<7Cq,» We have

(2) lc@|< = |Cpl<r+1]-8 =0
T T

s

Theorem 3 now implies that ¥ > ¢ . This proves (a); and (b) then follows from
Theorem 2. Since no set of power N; can be dense in an 7, 1-set, (c) follows at
once from (b). Since the set of all symmetric elements is everywhere dense in E,
(c) implies (d).

If (ii) holds, then ¢ is a p-number, by Corollary 2; and the rest of (e) follows
from Theorem 2.

Finally, since S(¢&) is everywhere dense in E, while S, is nowhere dense, the

set S'=S(g) - S, = U g<& Sy must be everywhere dense in E. By (c), |S’ |_ .
Since S; ¢ C,, we find " from (i) that |S;| < W¢ for all # < ¢. Therefore, smce
R, is regular there exist N, ordinals 7 < ¢& for which S; is nonempty; let these
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be (ﬂ£)£<£, in increasing order. Let a be any ordinal <& , and suppose that inac-

cessible ordinals 7¢ (£ < a) have been defined as in (f). Define 6 = SUP£< oy ('r§+1)
then 6 < ¢, since ¢ is regular. Since ¢ is a p-number, there exists a limit ordinal
A, with & < A <&, such that 11m5<£<)\77§ is 1nacce531b1e——hence equal to A. Since

S(») o U£<A S”g’ we have

SWI> X sg,|> 2 1= a]= 8y
EA £
Since S(A) c C(r), it then follows from (2) that IS()\)| = NR,. We define 74 = A

Remark. We are so far unable to prove that if ¢ is a semi-strongly inaccessible
p-number, then there does exist a continuous set of power N that is anti-homo-
geneous (or that satisfies the weaker conditions above).
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