ON THE SCHWARZ REFLECTION PRINCIPLE
A. J. Lohwater

Let f(z) be meromorphic in the unit circle K: ]zI < 1, and let the modulus
[i(reif)|, z = reif, have radial limit 1 for almost all elf belonging to some arc
A:0<6,<6<6,<2m of |z|=1. We are interested in conditions under which
f(z) may be continued analytically across the arc A by means of the functional re-
lation £(1/z) = 1 /4(z). Using a concept originating with Gross [4], we associate with
an arbitrary point P of |z|= 1 three sets of points: the cluster set C(P) of f(z) at
P, defined as the set of all values a which f(z) approaches on a sequence of points
of K converging to P; the rvange of values R(P) of £(z) at P, which consists of all
the values a which f(z) assumes infinitely often in every neighborhood of P; the
asymptotic set I'(P) of f(z) at P, which consists of all values o which f(z) ap-
proaches along a Jordan arc which lies, except for one endpoint, entirely in K, and
which terminates at the point P. In this connection we shall say that a value o in
I (P) is an asymptotic value of f(z) at P.

The most interesting problem is that of the behavior of f(z) in the neighborhood
of P whenever P is a singular point of A; that is, whenever f(z) cannot be con-
tinued analytically across any arc of |z| = 1 containing P. Among the most signifi-
cant results concerning the behavior of meromorphic functions in the neighborhood
of a singular point on zI = 1, we mention the recent theorem of Carathéodory [2;
266] which states that the cluster set C(P) for each singular point P on A is either
one of the two sets |w|< 1, |w|> 1, or else the extended plane. Nevanlinna [8; 28]
had previously shown that if f(z) is analytic and bounded, [f(z)|< 1, in |z]| < 1, and
if lim ., [f(relf)| = 1 almost everywhere on an arc A of |z|= 1, then the radial
limit values f*(ef) of f(z) in any neighborhood of a singular point P on A comprise
a seton |w|=1 of measure 27. This result was improved by Seidel [11; 208], who
showed that every point of |w|= 1 is a radial limit value of £(z) in any neighborhood
of P.

Our principal result, previously announced in [5_], is that a meromorphic function
having at most a finite number of zeros and poles in the region 0 <1 - &€ < lz] <1,
f; < 8 < 6, can be continued analytically beyond the arc A: 8, < 6 < 6, by means
of the Schwarz reflection principle if and only if f(z) admits neither 0 nor « as an
asymptotic value at any point of A. From this result follows an extension of the
theorems of Nevanlinna and Seidel to the case of meromorphic functions of bounded
characteristic. We prove first a theorem for meromorphic functions of bounded
characteristic which extends a result of Seidel [11; 207] for bounded functions, and
which provides the motivation for Theorem 2.

THEOREM 1. Let £(z) be meromovrphic with bounded charactevistic in |z| <1,
and let £*(eif) = lim . ,f(reif) exist with modulus 1 for almost all €f belonging
toanarc A: 0 6,<0< 8 <27 of |z|=1. If £(z) has no zeros or poles in the
region 0<1 - ¢ < Izl <1, 6, <8< 8,, then the set of singularities of 1(z) on A
is the closure on A of the set of points €i9 for which f+(e10) = 0 oy f*(eif) = .

As a function of bounded characteristic, £f(z) has a representation (see, e.g.,
Nevanlinna [7; 190])
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where the a;j and by are the zeros and poles, respectively, of f(z), w¢) is a func-
tion of bounded variation in 0 < ¢ < 27, A is a real constant, and m is an integer.
Since the products in (1) are analytic with modulus 1 on A, it suffices to prove the
theorem for the exponential factor in (1). If f(z) were analyt1c on A, then Ii*(e19)|
would have the value 1 at all points eif of A. In this case the equations f*(eif) =
and f*(elf) = oo would have no solutions in A. Since any point of A for which e1ther
f*(el0) = 0 or f*(elf) = = is a singular point for f(z), it is clear that the set of singu-
larities of f(z) on A contains the closure of the set of points for which f* (eif) = 0 or
f*(ele) = o0.

We shall show next that, if P is a singular point of f(z) on A, then £+(P) =0 or
« or else the solutions of the equations f*(eif) = 0 and f*(eif) = have P asa
limit point. Let E be an arbitrarily small subarc of A with P in its interior, and
let E be the complementary arc on [z|= 1 defined by E. Now if u(¢) were con-
stant on E, (1) would reduce to

2) £(z) = eir exp[zjr f e‘: + zd (¢)].
. E -

It would follow from (2) that f(z) is analytic on E, and a fortiori at P; hence u(p)
cannot be constant on E. In the Lebesgue decomposition of u(¢) on E, we have

(3) o) = v@) + glo) + Ys),

where p(¢) is absolutely continuous with v'(¢) = p'(p) almost everywhere, g(p) is
continuous and of bounded variation with g'(¢) = 0 almost everywhere, and Y(¢) is a
step-function. Since [f*(eif)| = 1 almost everywhere on E, it follows that v (¢) is
identically constant on A. X (¢) is not constant on E, it must have a jump in every
neighborhood of P; otherwise, we could find a smaller arc E' containing P such

that y(¢) is constant in E'. It is known [6; 244] that at each jump of Y(p), u'®) = + o,
dependmg on whether the saltus of Y(¢) is positive or negative. At such jumps, either’
f*(eif) = 0 or f*(eif) = o, so that P is again a limit point of the points for which
fx(eif) = 0 or fx(eif) = ». Finally, if g(¢) is not identically constant on E, then, by

a well-known theorem (see, e.g., Saks [10; 128]), g'(¢) =+ o on a non-denumerable
set of points of E. Such a set contains at least one point ¢, for which p'(¢,) = + .
Since E is arbitrarily small, it follows that either u'(P) =+ « or else the points for
which p'(¢) = + o have P as a limit point, which is a contradiction, since, if ¢, is
such that p'(¢,) = + «, then f+(ei®o) = 0 or . Hence g(¢) must be constant on E.
This proves Theorem 1. ‘

Frostman [3: 2] showed that there exists a function f(z), analytic and bounded,
f@z)| < 1, in |z|< 1, with ]f*(ele)l = 1 almost everywhere on |z|= 1, with the
property that f(z) is singular in P = 1, and such that £*(el) vamshes nowhere. The
function f(z) has an infinite number of zeros in Izl < 1, however, and these zeros
have the point 1 as a limit point.

~ To see that Theorem 1 fails to hold if we drop the condition that f(z) be of
bounded characteristic, we observe that the function
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is harmonic in |z| < 1, with lim;,,u(r, ) = 0 for all values of 6. K v(r, 0) isa
conjugate harmonic function of u(r, ), the function

f(z) — eu+iv

is analytic in |z|< 1, and [f(z)| = e >1 on all radii of |z|< 1. From the fact that

2T
f latr, 6)|do

)

is not bounded independently of r, it follows that f(z) is not of bounded characteris-
tic in |z} < 1. The point z = 1 is obviously a singularity for f(z), and since

lim, _,f(reif), whenever it exists, is of modulus 1, it is clear that Theorem 1 does
not apply to £(z). It will be noticed, however, that, as z approaches 1 along the
oricycles r =cos8 (8> 0) and r = cosd (6 <0), u(r, 8)> + o, so that, along these
paths, £(z)>0 or f(z) >, accordingas 6> 0 or 6 < 0.

THEOREM 2. Let f(z) be meromorphic in |z|< 1, andlet A: 0< 6, <6< 8, < 27
be an avc of |z| =1 such that, for almost all ei0 on A, lim, ,, [f(reif)|=1. I £(z)
has no zevos or poles in the region 0 <1 - ¢ < |z| <1, 6, <0 <4, then a necessary
and sufficient condition that £(z) can be continued analytically beyond A is that 1(z)
admits neither 0 nor « as asympiotic values on A.

Let M be the set of points ¢ on A such that 0 or « belongs to I'(¢). We shall
show that the set of singularities of f(z) on A is the closure of M on A. Now if
f(z) is analytic on A, then [f(z)| = 1 for all points of A. Hence it follows that M
is contained in the set of singularities of f(z) on A.

We must show, conversely, that if P is a singular point of £(z) on A, then P
belongs to M. Denote by V = V(P, 8) the circle |z - P| < 5, where 6> 0 is
chosen small enough so that f(z) has no zeros or poles in V N K, and small enough
so that the circle |z - P| = 6 intersects A in two points. Letting p > 0 be a fixed
real number less than 1, we form the open sets

(5) 0p = V(®, 0)n{z| 2| < 1; |t@)] <4},
Q, = V(P, o)n {Zl lz] < 1; i) > 1/p}.

It cannot happen that there exist values of 6 and p for which both O, and Qp are
empty; otherwise, for these values of 6 and p, we would have in V(B, 5)

p< @)L Vp.

This relation, however, is not compatible with the result of Carathéodory mentioned
in the iatroduction, since the cluster set C(P) must be either the extended plane or
one of the sets |w[ <1 and |w|> 1. Hence at least one of Op and Q, must be non-
empty for all § and all p; we shall assume it to be Op.

It follows from the maximum modulus theorem that every component Gy of O
is simply-connected. We assert next that there exists at least one component Gy
of O, such that G N A is not empty. Consider the two subsets {Gp}, {G]]} of the
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components Gy, those in the first class having one or more arcs of [z - PI =06 as
a part of their frontiers, and those in the second class having no such arcs. It is an
easy consequence of the minimum modulus theorem that ngn A is not empty. We
show then that if the class {G;'n} is empty, at least one G}, has the desired property.
By virtue of Carathéodory’s theorem there exists a sequence {zy}, |zk| <1, z> P,
with the property that f(z;)> 0. It is clear that we may assume that there exists an
infinite subset {G}lj} containing the z;, since the existence of a finite subset yields

our assertion immediately. From this subset we can extract a subsequence (which
we relabel {G! }) whose frontiers converge to a limiting continuum C which connects
P with a point of |z - Pl = 6. The continuum C cannot contain as a subset any sub-
arc of A, since [f(z)| = p < 1 at all points of C interior to |z|< 1 and [f(z)|>1
almost everywhere on A. Now it is not difficult to show that C cannot be a limiting
continuum of an infinite number of frontiers of the {G! } without violating at some
point of lz| < 1 the principle of the preservation of neighborhoods. Hence we can
assume that there is at least one Gy with the property that Ey = GknA is not empty.
In the sequel we shall speak only of components whose frontiers have a non-empty
intersection with A, and we shall assume that the components have been relabelled
Gyx. We remark thdt P € Er. We need a lemma:

LEMMA. For each p and each n, the frontier Fr G, of G, is locally-connected,
and the linear measure of E, = Fr G,N A is zero.

This lemma can be proved by modifying slightly an earlier method of the author
[6; 249]; we omit the details.

To complete the proof of Theorem 2, we consider two different values of
p:0<p, <p,<1. Let G(p,) be a component of Op, such that Gl{p,)NA is not

empty, and let G be that component of OP2 which contains G(p,). Let z = y(w)

be a univalent analytic function which maps IWI < 1 conformally onto G, and let

E, be the set of points on |w| = 1 whose image under z = Y(w) is E, = GNA.

Since the linear measure of E, is zero, an extension, due to Ostrowski [9; 422],

of the Lowner-Montel lemma implies that the linear measure of E,, is zero. We
consider the function F(w) =f[¢(w)]/p,, which is analytic and bounded, |[F(w)|< 1,
in |w|< 1, and which has the property that |[F*(eis)|= 1 almost everywhere on an
arc A' of |w|=1, where w= |w|eis. Let P' denote the image on A' of P; we re-
mark that A' contains P'. If F(w) were analytic at P', we could find a circular
neighborhood of P' with the property that in this neighborhood 1 - [F(w)|< 1 - p,/p,.
This implies that |[F(w)|> p,/p, > p,, in some neighborhood of P', and that, under
the mapping ¥(w), [f(z)|> p, in some neighborhood of P. This contradicts the
structure of G(p,) and proves that P' is a singular point for F(w). Since F(w) # 0
in |w|< 1, it follows from a well-known theorem of Seidel [11; 207] that there exists
at least one radius s = s, such that F*(e'5°) = 0. This radius is mapped by z = Y {w)
onto an arc L. of G terminating at a point 7 of Fr G such that f(z) >0 as z>7
along L. Since n cannot be an interior point of |z| < 1, 7 must be a point of A. An
identical argument can be used if Qp is not empty to show that there exists a path

L' and a point ' of A such that f(z) >« as z>7' along L'. Since 6 can be chosen
arbitrarily small, it follows that P € M, and Theorem 2 is proved.

As an application of Theorem 2, we extend the result of Nevanlinna and Seidel
mentioned in the introduction.

THEOREM 3. Let {(z) be mevomovphic with bounded characteristic in |z| < 1,
and let fx(eif) = lim,_,f(reib) have modulus 1 for almost all eif belonging to some
arc A: 0,< 0 < 8,, of |z|= 1. If P is a singular point of £(z) on A, then every
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value of modulus 1 which is not in the vrange R(P) of f(z) at P is an asympiotic
value of 1(z), at some point of each subavc of A containing the point P,

Let us assume that ¢ = ei? is not in the range R(P) of f(z) at P; then the func-
tion

6) 8(z) = exp K+ £

is analytic without zeros in the region V(P, 8) NK for sufficiently small 6 > 0.
Since f(z) has bounded characteristic in [zl < 1, it follows from a simple corollary
of the Riesz-Nevanlinna theorem [7; 197] that lim inf, ,, [f(reif) - £| > 0 for almost
all eif on |z| = 1. Hence the function ¢(z) of (6) has the property that

lim, , |¢(reif)| = 1 for almost all eif on that arc of |z|= 1 which bounds

V(P, 6)nK. It follows trivially from the theorem of Carathéodory mentioned above
that P is a singular point for @¢(z). Indeed, since the cluster set C(P) consists of
one or both of the sets |w|< 1 and |w|> 1, either 0 or « (or both) must be a
cluster value of f(z) at P; it is convenient to assume that 0 ¢ C(P). This means
that there exists a sequence {z k}, Izkl <1, limgy Zk = P, such that

limy , oof(zy) = 0. For this sequence we must have limy., ., $(z)) = e*, which shows
that @(z) cannot be regular at z = P since lim,, |#(relf)|= 1 almost everywhere.
We may now apply Theorem 2 to the function ¢(z); it follows that there exists an
arc L of |z| < 1, terminating either at P or at a point P' of |z|=1 as close to P
as we please, such that @(z) tends to 0 or « as z>P'(or P) along L. This shows
that f(z) admits ¢ = ei* as an asymptotic value, either at P or at a point P' of

|z| = 1 arbitrarily close to P.

We remark that in such applications of Theorem 2 it is not necessary to assume
—as we did in Theorem 3—that f(z) is of bounded characteristic. The essence of
the proof of Theorem 3 is in the statement that the function @ (z) in (6) has the
property that limy,, |#(reif)|= 1 for almost all eif belonging to some arc of |z|=1
containing the singular point P. In Theorem 3, we were able to use the Riesz-
Nevanlinna theorem for functions of bounded characteristic to assert that

lim inflf(reif) - ¢| =0
r>1

on at most a set of measure zero on Izl = 1. It appears from a recent extension by
E.F. Colling'wood1 of a uniqueness theorem of Wolf [12; 383] that for meromorphic
functions with unbounded characteristic the notion of category, rather than measure,
becomes significant. In fact, unless additional assumptions are made about £(z),
the function @(z) of (6) may not have the desired property; for in a recent letter to
the author, W. Rudin has indicated that he has proved the following result.

THEOREM (Rudin). Let ¢(z) be continuous in |z| < 1, and let E be a set on
|z| = 1 of first category. Then theve exists a function 1(z), analytic in |z|< 1,
such that for every eif € E, lim;_, [f(relf) - ¢(reif)] = 0.

This theorem implies the existence of a function g(z), analytic in |z| < 1, with
the property that lim,_, 9ig(reif) == and lim,., Sg(reif) = 0 for almost all eif
on f;I = 1. If we set (z) = [g(z) + 1]/[g(z) - 1], we have that lim,_, ,f(reif) =1
almost everywhere on |z| = 1. The function @(z) of (6) then has the property that
limy,, |#(reif)| = lim;, , exp Sig(reif) == for almost all eif, so that the method

1. To appear in Acta Math. For a uniqueness theorem of a related character,
see also [1].
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of proof of Theorem 3 is not, in general, applicable to functions of unbounded char-
acteristic. Whether Theorem 3 can be carried over to the case where f(z) is not of
bounded characteristic is still an open question.
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