ON FABER SERIES
1. A PROBLEM OF TRANSFER

J. L. Ullman

1. INTRODUCTION. In Sections 2 and 3 a method for the treatment of Faber
series [2]is developed. The method is applied, in Section 4, to give a new proof of
a recent result of Iliev [4], and to establish one new theorem. Further applications
are indicated in Section 5.

1.1. Notation. The letter C will denote the same simple closed analytic curve
throughout, and I(C) will denote its interior. The symbol F(z) will represent a
function analytic in I(C), although not necessarily the same one in different usages.
The symbol X2 will indicate a summation in which the index of the summand ranges
from 0 to . A sequence will be represented by placing braces about a general
element. Again, the index will be understood to range irom 0 to oo.

1.2. The Problem of Transfer. The following proposition constitutes the basic
result in the theory of Faber series.

LEMMA 1 (Faber). There exists a sequen’ce of polynomials { F(z)} which can
be associated with C, such that each function analytic in 1(C) can be represented
by a unique sevies

,(1) " Xa, F{z)

converging uniformly in each closed subset of 1(C).

These polynomials are now called Faber polynomials. A series of type (1), whether
it converges for any z, or not, is called a Faber series. When the series converges
uniformly in closed subsets of I(C), it converges to an analytic function and is called
the Faber expansion of the function.

Recently, Iliev investigated the nature of the analytic function represented by a
Faber series in the case where the number of different values assumed by the co-
efficients is finite. The corresponding problem for power series was solved by
Szego [6). He proved that the function represented by the power series is either a
rational function, or is analytic inside the circle |z|=1 and has each point of this
circle as a singularity.

INliev’s result has a similar character, and his proof follows the pattern of the
proof for power series. This suggests the problem of developing a geneval method
for transferrving a theovem on power series to Faber sevies. As indicated, Iliev’s
proof is of a special nature. In Faber’s work, however, certain findings are related
to this problem. It will be indicated in what respect they are inadequate as a method
of transfer. A new lemma is then added, which, together with Faber’s results, con-
stitutes the proposed method.

The author is grateful to Professor Piranian for the reference to Hiev’s paper,
and for helpful discussions.
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2. OUTLINE OF THE METHOD. Faber obtained results on the relationship be-
tween the function F(z) represented by Za,F,(z) and the associated function G(t)
represented by the power series X a,t™ formed with the same coefficients. After
preliminaries, the pertinent facts due to Faber are stated, and an extension is given.

2.1. Some Conformal Mapping Theory. There exists a unique analytic function
w = f(z) which (a) maps the exterior of C in a one-to-one manner onto the exterior
of a circle K centered at w = 0, and (b) is represented for large z by a series of
the form

) f(z)=z+b0+%1—+-...

The function w = f(z) is known as the normalized exterior mapping function of C.
The radius k of K is determined by the conditions (a) and (b), and is called the ex-
terior mapping radius of C. The formal expansion of [f(z)]® by (2) begins with a
polynomial of degree n. This is the Faber polynomial of degree n associated with
the curve C.

Since C is an analytic curve, f(z) is analytic and one-to-one in an unbounded,
simply connected domain D containing C and its exterior. Thus the function
w =f(z) maps D onto a domain L containing K. Let the inverse of this mapping
be denoted by z = g(w). There exists a number k, (k, < k) such that the circle
K, : |wl|=k, and its exterior lie in L. Then if k; 2k, the image of K; :|w|=k;,
by z = g(w) is a simple analytic curve. This is called the level curve of C of
height k;.

2.2. Faber's Result. In Lemma 1 a function F(z) is given, and the assertion
concerns the possibility of its representation by a series of polynomials. In the
following result, a series is given, and the assertion concerns the function repre-
sented by the series.

LEMMA 2 (Faber). Let C have exterior mapping radius Kk, and let {Fn(z)}
be the associated sequence of Faber polynomials.

(a) If a sequence {cy,} satisfies the condition

3) lim sup |c, V™ = 1/k,,
n -» «©

wheve k, >k, then Xc,F,(z) converges inside of C,, the level curve of height k,,
to an analytic function F(z). The curve C, is called the curve of convergence.

(b) The image K, of C, under the mapping w =1(z) is the circle of convergence
of Zc,t™ It will also be veferved to as a curve of convergence. Lel G(t) be the
Junction defined by this sevies. Then a point z, on C, is a vegular point of F(z) if
and only if t, = 1(z,) is a regular point of G(t).

Note that this lemma describes a method of transfer. An assertion is made about
a function defined by a Faber series, based on information concerning a function de-
fined by a power series. However, it should also be noted that this transfer of infor-
mation is limited to the behavior on the curves of convergence, C, and K,.

2.3. An Extension. For an effective method of transfer, relationships between
the functions F(z) and G(t) outside of their curves of convergence are required.
The following is a result of this nature.



ON FABER SERIES 111

LEMMA 3. A function F(z) analytic in I(C) and with a Faber expansion
Xa,F, (z) is a vational function if and only if the function G(t) defined by the asso-
ciated power series Xa _t™ is a vational function.

3. PROOF OF LEMMA 3. It will be shown that F(z) and G(t) are related by a

pair of complex inversion formulas. These form the analytical basis for the proof of
the lemma. '

3.1. Cauchy's Integval Representation. A function F(z) analytic in I(C) has the
Cauchy integral representation

@) F(z) = (27ri)‘1_[: F(¢)¢&-2z)>ral.

In (4), z is taken as a fixed point in I(C), and C, is a level curve of C contain-
ing z and of height k, (kOS_ k, < k). The sense of integration in this and other
integrals is counterclockwise unless otherwise indicated. This choice for the path
of integration is made in order to avoid possible singularities of F(z) on C. The
change of variable ¢ = g(w) in (4) yields

(5) F(z) = (2mi)™ " Flg(w)]g"(w)gw) - z]* dw,

where K, is the circle |w| =k,. The next step is based on a fundamental contribu-
tion due to Faber. He showed [2, p. 391] that the coefficient of F[g(w)] in the inte-
grand in (5) is the generating function of the Faber polynomials, namely

(6) g'w)/[gw) - 2] = ZF, @)/w"t

This series converges uniformly on K,. It can therefore be substituted in (5) and
integrated term-by-term to give the relation

(1) F(z)= X a, F,(2),

where

(8) a, = (27ri)‘1f Hegw)]w™-t dw.
K

2
This is the Faber expansion for F(z).

3.2. First Inversion Formula. If g'(w)/[g(w) - z] is replaced by 1/(w-t) in
(5), for t fixed inside K,, the following expressions are successively obtained:

(9) iyt | Flg@)(w- - dw
KZ

(10) - emi)|  Fleglw)] £ Pwt do
KZ

(11) = X a t® = G(t).
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The change of variable w = () in (9) yields

(12) G(t) = Qi)™ | F(OE(L)E(L) - t]-* ad.
C, '
This is the desired formula.

3.3. Second Inversion Formula. If the path K, in (9) is replaced by any larger
concentric circle lying inside K, the value of the integral is not changed. The repre-
sentation then becomes valid for t inside the larger circle, and thus yields an analytic
continuation of G(t). Therefore G(t) is analytic inside K, and has the Cauchy inte-
gral representation ‘

(13) 6(t) = @) G- - dw,
K

2

for all t inside K,. It also follows that

(14) ay= @mi) | GLw ! dw.
K

2

Together with (6), the replacement of 1/(w-t) by g'(w)/[g(w) - z] in (13), with z
taken inside C,, yields

(15) @7ri) j Gl Wgw) - 217! dw
KZ
(16) = (2mmi)t f G(w) ZF,(z)w T 1dw
K2
(17) = X apFy(z) = F(z).

To summarize,

(18) F() = @) | Gwig'Wlgw) - 2 dw

K,

for z inside C,. This is the second inversion formula.

3.4. Proof of the Lemma. Because of the symmetry of the inversion formulae
(12) and (18), it is sufficient to prove that if G(t) is rational, then F(z) is also
rational. Since G(t) can be decomposed into partial fractions, it remains to show
that the function

(19) ¢@) = @mi)* [ (w- 2)'g W) ew) - 2] dw
K2

is rational. In (19), the point a is exterior to K,, since Gf(t) is regular inside K.
Now
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1 dk—-1 gl(w)

(20) ¢(z) = k- 1! gkay (g(W) - Z) w =
A, Ay

(21) =g7€y_—z+.--+'[7—r—ga _z"']k’

where the A; depend on a and A, # 0. This is a rational expression in z, and
the proof is complete.

4. APPLICATIONS. Lemmas 2 and 3 are first used to derive Iliev’s result. It
is then shown that with the preparations made the analogue for Faber expansions of
the Carlson-P6lya theorem [1], [5] for power series follows immediately.

4.1. THEOREM 1 (liev). Let C be a simple, closed, analytic curve with ex-
terior mapping vadius k< 1. Let {F ,(z)} be the Faber polynomials associated with
C. Furthermore, let the sequence {d,} assume only a finite number of different
values. The Faber sevies Xd, F (z) converges inside C,, the level curve of height
one, to a function F(z). This function either has each point of C, as a singular
point, ov it is a rational function.

4.2. Proof. By Szegd’s theorem, Gf(t) = antn is either regular inside the unit
circle K; and has each point of K, as a singularity, or it is a rational function.
This result is transferred to Faber series as follows. First, lim sup, 5 o |d,[*/® =1,
so that by Lemma 2 the level curve C,; of height one is the curve of convergence of
Xd, F,(z). Next, if G(t) is singular at each point of K,, then by Lemma 2 each point
of C, is a singular point of F(z). The other alternative is that G(t) is rational,
and in this case F(z) is rational by Lemma 3. This completes the proof.

4.3. THEOREM 2. Let C be a simple, closed analytic curve with exterior map-
ping radius k <1. Let {F _(z)} be the Faber polynomials associated with C.
Furthermove, let {e,) consist of integers, with lim sup, 5 o ley|*/™ =1. The
Sfunction F(z), represented by the series X e, F(z) inside the level curve C, of
height one, either has each point of C, as a singularity, or it is a rational function.

4.4. Proof. The theorem that for the series Xe,t™ the alternatives of this
proposition hold, with the curve K, : [t| =1, replacing C,, is due to Carlson and
Polya. The transfer to Faber series then follows exactly along the lines of 4.2.

5. CONCLUSION. Lemma 3 complements the results of Faber so as to yield a
method for transferring theorems about power series to Faber series. From the ap-
plications it is seen, however, that the theorems transferred involve the notion of
rationality in an essential way. It thus appears that the problem of transfer is capable
of a more thorough solution. The author intends to return to the consideration of this
possibility. The following remarks concern the further exploitation of the method as
it stands, and an indication of further deductions from formula (18).

5.1. Location of Poles. Hadamard [3] studied the problem of locating the poles
of a function by means of the coefficients of one Taylor series expansion of the func-
tion. It is seen from (21) that if a is a pole of G(t), then g(a) is a pole of the same
order of F(z). This fact permits Hadamard’s techniques to be applied directly to the
coefficients of the Faber expansions of F(z) to locate its polar singularities.

5.2. Region of Single-valuedness. Lemma 3 determines the rational character of
the applications. Deductions of a different nature from (18) are possible which per-
mit new directions for application.
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Suppose F(z), analytic in I(C), has the Faber expansion Xa,F,(z). A region
of single-valuedness for F(z) is a simply connected domain which contains C and
in which F(z) is regular. By the monodromy theorem, F(z) is single-valued in
such a region. Information concerning the regions of single-valuedness of F(z) can
be obtained from the function G(t) defined by the associated power series X ant™.
Indeed, let M be a region of single-valuedness of G(t). Then the contour K, in
(18) can be replaced by a simple curve N lying in M and having preassigned close-
ness to the boundary of M, With this change, (18) yields an analytic continuation of
F(z) into the region bounded by F, the image of N by z = g(w). Because of the
permitted freedom in chosing N, it follows that F(z) is single-valued in the domain
bounded by the image, under z = g(w), of the boundary of M. This is the desired
result.
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