UPPER AND LOWER BOUNDS OF ORDER TYPES

by
Ben Dushn1k

1. In 1940 Fraisse [1] defined the relatmn
a _<,: B ‘

to mean that zn ordered set A of type o i8 similar to a subset of an order-
ed set B of type 8 . 1If, at the same time, B is not similar to. any subset
of A, then we shall writea <. It is obvious thatthis definition, depends
only on the order types o and B., and is 1ndependent of the special sets
A and B. Ifg <3 and B<a both hold, we shall write a = 8 and say that
and- B are equlvalent (even though o and 8 may be d1st1nct) If neither
< < g nor ,3< a holds, then o and g willbe said to benon- comparable

i

a
a

In terms of these relations it is natural.to discuss.the notions of
upper and lower bounds of two order types or their leastupper and greatest
lower bounds. Thus, ¥ would be called a least upper bound for @ and B
if a< 7, :3< 7 , while for any $ such that o< & and B < 8 it would
follow that e1ther7 <8 or that Yand 9 are non- comparable ‘ - '

2. Throughout this note we shall assume das known the usual termi-
nology and symbolism for order-types and ordinals. :

The purpose of this note is to give a method for ‘demonstrating the
following theorem:

"Ifao = ,-r+m, 8 =. w-s+n, where r.and s ,are naturalnumbers
and m and n are integers > 0, then %and.g *, have only a finite number-: of
distinct least upper bounds, namely, all types of the form

(ry - nt kb b waE - S ‘w*-bt+'w-a't+m"
where t and the coeff1c1ents - W at, bl, i ”bt are natural numbers
except that b1 or a, may be. 0, and . ‘
t t . )
> . a, = r, s b = S.
iel i 21 i .

We do not actually prove this theorem; however its proof would be
only a slight modification of the proof of Theorem VI in section 4.

Hereafter, we shall call the types (I), with m =n = 0, the mixed sums
of ¢ and '8 ; similarly, an order-type ” will be called a mixed sum if Y
can be represented in the form (I) for some ordinals @and 8.

3. We first prove a number of auxiliary theorems about mixed sums
and their relation to general order types.
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Theorem I:' Let a=w.r and B= ®w.s, where r and s are natural

numbers, and let ”.and ® be two mixed sums of a and B *. Then
» < 8 ifandonly if ¥ = 8

Proof: Let C and D be ordered sets such that C =7 , D =8, Then
C can be represented as an ordered sum of disjoint ordered sets, each of
these summands being of typew or o ¥*; say, ‘

C=C.4+C_+...4C. 4+...+¢C
2 J

1 m
where m =r + s. In exactly the same way, with the same conditions, we
it .
may write D=D.+D_+... 4D, +... +D .
1 2 J m

Since ¥<8 , letf be a similarity transformation which carries Cinto a

subset of D:
f (C) < D.

For any natural j between i and m inclusive, we have

f(Cj) = f(cj)/h)1 + f(Cj)ﬂDZ ...+ f(Cj)an .

and therefore

3 (cj) = f(cj)nDl + ... + f(Cj)(l D

But

f(C) = C.= @ or @ *
J J

Since in any representation ofw or w* as afinite sum, thereis exactly one
infinite summand, it follows that only one of the summands of £(C,) is an
infinite set, while all the others are finite (or empty). Hence, by discard-
ing a finite number of the elements of C -- which does not change the type
of either C or of any of its summands ---, we willhave that f willcarry any
summand of C into just one summand of D. We suppose that this is already
so; it is clear, further, that f will carry different summands of C into
different summands of D. Since the number of summands in both C andD
is the same finite number m, we must have

(11) f(Cl)CDl, f(CZ)CDZ, cee f(cm)CDm.

Finally, since the type of any Cj or Dj is o or &% ,

cC =f(c ) =D ,

<. : f = ) e e 3
c (Cl) Dl m m m

1
and so vy = §

Obviously, ifY =8 , then 7 < 8 . This completes the proof.
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The above proof, particularly the inclusions in (II), indicate the truth

of the following theorem:

Theorem II: If two mixed sums of @ and B *differ inthe magnitude
and/or order of their coefficients, then they represent distinct order-types.

Theorem Iil: If @ is mixed sum and B <a., then either B<a or

a - : ,
Proof: Let A and B be ordered sets such that A = aand B =B , and

let f bea simila\rity transformation which carries B into an ordered subset
of A. By hypothesis

A=A +A +... +A +... +A
‘ 1 2 Jj m

where Aiﬂ Aj =0, i=j, and A_j= wor ¥, i,j=1, ..., m. Since
f (B)<A, we have

3=B = (B . Al Lo AN,

=B 1(B) Al + . AJ + Al
where }\3’ = f(B)nAj, 1<j< m. If each A:i is infinite, then A.'i = Aj and

ﬂ Zzl...‘{'—A;'f'...Am:K ‘= a .,

If even one of the A' is finite.(or empty) then B is a sum of m summands,
*, the other summands being
¥ summands, A cannot

' J

with less than m summands of type @ and @
finite. Sinceais the sum of precisely mw or w
be similar to an ordered subset of B (if A'is finite), and so %< Bis false

in this case. This completes the proof.

Theorem IV: Ifa is a mixed sumand 8=a , then B = a

Proof: If8 # o , then since B8 =a - ﬁ< @ , we conclude by the
preceding theorem that B <a , i.e., that ¢© < ﬁ is false. But
B =0 does imply % < B .

Theorem V: If o = w-+'rand B =w-.s, where r and s are natural
numbers, and if § is an upper bound for a and g¥, then there exists a
mixed sum y ofa and B* suchthat 7y <3¢

Proof: Let D be an ordered set of type o , and let
= A ce
A 1 + A2 + Ar

and
= e+
B Bl + B2 + Bs
be ordered subsets of D such that A=a, B = B¥% where A K_]- = @,
A ji] =0 for i #j, i < <r, j < r, and similarly for the set B. Since A
and B. w ¥, then A B, is finite or empty for any i < r and j < s. Hence

J
by d1scard1ng a finite num er of elements from D, we will have
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AnB = 09
and for convenience we also suppose that, as unordered sets
AUB =D.

Suppose now that ai is the first element of A in D, and thatazis ‘the
first element of A after a, which is separated (in D) from a, by an element

of B. In general, if a, is already defined, let a be the first following

; = , , k+1
elément of A which is separated (in D) from a, by an element of B. Let

C,. . be the part of A between a, and a inciuding a and excludihg

2k-1 k k+1’ k

ak+1, and let CZk be the part of B between the same two elements. Clear-

ly, every element of C precedes any element of C_., and C__, as a

4 2k-1 2k 2k
subset of an inversely well-ordered set, must possess a last element,

which we denote by bk' It is further clear that bk is the immediate pre-

decessor of a in D, and that
k+1

< < ...
bl bZ

This last sequence, being an increasing sequence of elements of B, must
be finite; in other words, there will exist a natural number n(> 1) such

that

a < a_ <...< a
-1 2 n

"and S‘u‘ch that an+1kis not defined. Finallly,‘, if C1 is the subset of B which
_pre;:‘edels~ a1 in D, we can present D'as an ordered sum of the ordered sets
C: :
D=C1 +C2+ +C2n+C2ﬂ+1

Here, C, and C2n+ may be empty, while all the others are not, and they
are alternately wefl-ordered and inversely well-ordered. If now a
summand of A, say A,, has elements in common with more than one of

the C's, then the sepz‘iration of Aj induced by this can only be of the form

~ ] 1 .
A=A 4 A% ATy A -
K I T B j |

where m > 1 and Ar.n-i-l
remarks apply to the sumnmands of B. Once again, therefore, by discard-
ing a certain finite number of elements of D, we will have that a and ﬂ*
are still bounded above by D, that any summand of A or B belongs to just
one of the summands of D, and that, finally, any C is the ordered sum of
a group of consecutive summands of either A alone or B alone. But this
1ast means that the type of D is a miked sum of @ and 8, and our proof
is complete.

= w , the first m summands being finite. Similar
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4. We are now ready to prove the main result of this note (see sec-
tion 2):
Theorem VI: Ifa and 8 are limit ordinals < w 2, then the mixed sums
ofa and 8% are the only least upper bounds of a and B%*.

Proof: It is obvious that these mixed sums are upper bounds for the
pair @ and 8*. Suppose now thatd is any order type which is not a mixed
sum and which is an upper bound for a and S%*. Then, by Theorem v,
there exists a mixed sum ¥ for which ’)’ES » and therefore, by Theorem
IV, 7< § (since ¥=3 is excluded). This shows that & cannot be a least
upper bound. If 3is a type which is non-comparable with any of the mixed
sums ?en Theorem V shows that® cannot be an upper bound to both «a
and 8.

Finally, suppose that Y4 is a mixed sum, that &<y 1 and we do

have

Let now L be any mixed sum for which by Theorem V

<
')f,__S

Then yz_s_ sand $ <« % 1would give

Y < 7
2 1

which, by Theorem 1, is impossible. This means that 71 is a least up-
per bound for a and S*. Our proof is complete.

5. Concerning lower bounds, we have the following theorem:

Theorem VII: If ¢ and'B are transfinite ordinals, thena and % have
no greatest lower bound.

Proof: Any ordered set C. whose order type?y is a lower boundfor
the pair ¢ , g%, would be simul}taneously similar to a subset of a well-
ordered set and to a subset of an inversely well-ordered set; thus C itself
~would at the same time be well-ordered and inversely well-ordered, and
therefore finite. Hence 7 is a finite ordinal. But it is obvious that any
finite ordinal is a lower bound for , and g*. Hence no greatest lower
bound can exist in this case.
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