ON THE SUMMABILITY OF ORDINARY
DIRICHLET SERIES BY TAYLOR METHODS

by
V.F. Cowling and G. Piranian

For anyreal constant.o( in the interval 0 << 1,
the symbol T, shall denote the regular sequence-to-
sequence transformation represented by the upper-
triangular Toeplitz matrix (t, ), where

_ +1 k-n
tnk - (l "d)n Ck,nO(

forn=0,1, ... and k2 n, and thk = 0 for k< n. The
transformations Ty were introduced as '"circle meth-
ods'by G.H. Hardyand J.E. Littlewood[2] in connec-
tion with a certain Tauberian theorem on the Borel

transformation, R. Wais [6] and W. Meyer-Kgnig [3]

made extensive investigations concerning the applica-

tion of these transformations to Taylor series, and
‘they introduced the name Taylor-Verfahren. The

transformations Ty were again introduced, independ-

ently and without the restriction of & to real values,
by P. Vermes [4], [5], and by V. F. Cowling [1].

In the present paper we prove two theorems
concerning Taylor transformations of ordinary Di-
richlet series. It is convenient to replace the trans -
formations T4 by the corresponding series-to-series
transformations V,

00} 00
Vo 2 an= by
n=0 n=
where |
0
n k-n
bn: z: Vnka.k and Vnk 2(1 -°<) Ck,n O('

k=n

for k 2 n, Vn,ik =0 for k< n. If the V, transform of
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Zan converges absolutely, the series Z:an is  said

to be absolutely summable by Vo

Theorem 1. Let {an} be a sequence of complex
numbers with the property lim sup }anl 1/n I/R < o0,
and let X be a real number (0 €X< 1/3, X<R). If" the
series 2 ap (n + 1)~S is summable by V. at the point
S = Sg, it is absolutely summable by V,,. throughout the
half-plane s> 1+ Hsqo- ,

Theorem 2. If under the conditions of-Theorem
1 the series 2> an (n+l)-5 is absolutely summable ’ bgr—
V, at the point sp, it is absolutely summahle by Ve
throughout the half-plane JRs> Rs,-

Up to a certain stage, the proofs of the two
theorems are identical. Since V, is the identity trans-
formation for series, it may be assumed, inthe proof,

that ¢{ 1is positive.

Lemma, If 0 < o< 1/2, lim sup ]gnll/n< 1 /e
and the series 2 bp converges, where

noo k-n
bp =(1 - ) z:ck,nd ak
! =N

for n=0,1, ... , then

ag = (1 - )7k ni( Cp wl-X/(1 -f.>'(')]n_kbn

for k =0,1, ... .

This lemma is suggested by the fact that the

matrix T, has the formal inverse T o« /(1 -e) :It is
a consequence of the following considerations. ' If

f(z) = L apzt, then
o) = nélam A2 m!/(m-n)!,

and therefore
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£(2) -’Z (ot)(a - oX)?/n!

Z; (2 - ﬁcm,nqm-n “m

m=n

inside of the circle of holomorphisrn of £(z) about the
point z = k. Convergence of 2 b, therefore implies

that the Taylor series of f(z) about z =& converges at
the point z = 1. This in turn implies that the Taylor
series converges in a neighborhood of the origin, and
therefore that

a = £5(0)/k!

10.9]

- nE=1£O - o) e,k téﬂcm,no(m“n a,
19,9)

= g((— d)n_kcns k(l - d)_.n.bl'l .
n=

and the lemma is proved.

To proceed with the proof of the theorems, let

z:b be the Vi transform of the series 2Ja (m+l)
The application of the lemma gives the result

ap(k+1)~So = f_;cb (- oK1 - ) ij,

-and the series whose absolute convergence is to be
established can therefore be written in the form

(0.0
(1) JAL - )Y Ciyn dk““ak(k+1)‘5=)":°;p-an
n=0 k=n n=0

where p = 0(/(1 -oX ) and

Eck a(k+1)~(s- SO)Z{( Cj, P bj -

Formally, reversing the order of summation in the
right member of (2) gives the result
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= J (5-5,)
B eoe -
(3) B, =Z% p? b; E__;.;Ck, nlk+1) O/(-1M7KC;, k-

Because Cy nC_] k=Cj,nCj-n, k- nar'ld(for Hs> Rs, )

(k+1)~(S-SO): r_‘r(l . ) [> ts—so_le_(k+l)tdt,

equation (3) can{with s - sg - 1 =2z = x + iy) be written

in the form © - .
L) ely-1ic

_ j,n
(4) B r'(s sg) J=n
‘f tz e (n+1)t(1 e-t)i-n gt.
0

Moreover, the sum of the absolute values of the terms
in the double series of (3) is not greater than

R oy [ e e
Temea) 2= P1BslCsn [ e are IRy

aid this is finite because bj—~0, the integral involved
: 00
is not greater than 2J°% [; tXe-t dt, andp<1/2 when

/< 1/3. It follows that the right member of (2) con-
verges absolutely and is equal to the right member of
(4). The theorems will therefore be proved when it is
shown that the series

(5) > p 2B, [(s - s5)

converges absolutely, where the symbol B, represents
the right member of (4).

Under the summation sign in (4), let the factor
bJ( l)J" be replaced by Ib |, and let the integrand
be replaced by its absolute- value Let the resulting
expression be substituted for B, in the series (5);
and let the order of summation in the result of this
substitution be reversed. The resulting series has



17

A,:the for m

00 i . [‘D
. J- . X "(n-l—l t(1_o-tyj-n
HIleéop Cj,n t¥e ) (1-e~Y)J-n gg,

Since the order of the second summation sign and the
integral sign may be reversed with impunity, this can
be simplified to the form

A\

© Lol [ tetet+p(1 - ehpias
j=0 “0

and the theorems will be proved when it is shown that
the series (6) converges absolutely.

Theorem 2 will be dispatched first. Since the
quantity in brackets is a decreasing function of t, for
positivé values of t, its value is less than 1, for posi-
tive values of t. It .follows that the integral has an
upper bound independent of j, and the absolute con-
vergence of the series ij guarantees the absolute
convergence of the series (6).

In the proof of Theorem 1, we use slightly less
than the hypothesis that the series ij converges; it
is sufficienttoassume thatthe terms of the series are
bounded. For the integral in (6) can be written

(f f tXe-tfe-tip(l-et) P at =1, i tL

Since
Ij'<[e‘a+p(1-e"a)]3 f tX e-t gt
0

and series ) bjl;
other hand

Ij:f |log u]™ [ul-p)+p]J du,
b

' converges absolutely. On the
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where b =e~2., The substitution u=1 - v, together
with the inequality |log (1 - v)| < 2v (valid throughout
the range of integration, if b is sufficiently near to 1)
gives the estimate

1-b .
I. < (2v)X[1 - (1 - p)v] dv
<)

= 2%(1-p)~ ¥ fl-b)(l-p)wx(l—W)i aw

1
<c‘£ Wx(l—w)j dw:O(j'l-X)s

and therefore the series Z:bjlj also converges abso-
lutely. It follows that the series (6) converges abso -
lutely, and the proof is complete.
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