CERTAIN SUBGROUPS OF THE HOMOTOPY GROUPS
M. L. Curtis and M. K. Fort, Jr.

1. INTRODUCTION

In euclidean (n + 1)-space En+1, let S™ be the unit sphere with center at the
origin. Let W be the union of two unit spheres S;' and S; with centers at
(0, **+, 0, 1) and (0, -+, 0, -1), respectively. Let t: S°—W be defined by the condi-
tion that t(y) is to be the point of intersection of W with the ray from the origin
through y. Let y,= (1, 0, -+, 0). Let p, and p, be orientation-preserving affine
transformations

p,: (87, 0)—= (8%, y,),
py: (Sp, 0)— (S, ¥,),

where 6 is the origin in E™V,

If x, is a point in a space X (the word ‘space’ will mean arcwise connected
separable metric space), we let F,(X, x,) be the set of all (continuous) mappings
of the pair (S, y,) into the pair (X, x,). We define an operation on F (X, x,) in the
following manner. Given f and g in Fy(X, x,), let fg: (S?, yo) — (X, x,) be defined
by the rule that

fp,tly) if yet-}(sD),
fgly) = {
gp.tly) if ye t™X(S7).

I m,(X, x,) is the set of homotopy classes of Fn(X, X,) obtained by using homotopies
with fixed base point, then the operation on Fy(X, x,) induces an operation on

T (X, X,) in such a manner that m, (X, x;) becomes the nth homotopy group of X
based at x, (Other operations on Fp(X, x,) would give the same group operation for
ma(X, X,), but we need a specific operation for later use in the paper.)

If additional requirements are put on the maps f: (S?, y,) — (X, x,), then the sub-
set of Fp(X, x,) so defined determines, under the natural map ¥: Fn(X, x,) — m(X, x,),
a subset of 7,(X, x,). Such subsets need not be subgroups, but we shall see that they
are, in many cases. This paper is devoted to a preliminary study of the subgroups
which one obtains by using mappings that are restricted by conditions imposed on the
inverse images of points. It is important to note that these subgroups, unlike the
homotopy groups themselves, are not invariants of homotopy type, but are more sen-
sitive to some set-theoretic properties.
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2. G-CLASSES OF MAPPINGS

Let y: F (X, x,) — 7,(X, X,) be the natural map. We say that a subset S of
Fn(X, %) is a G-class if ¥(S) is a subgroup of 7, (X, x,). The special G-classes
which we consider here can be described as follows. We define ¢: S® —S™ by letting
¢(z1, **+y Zn, Znt1) = (21, ***5 Zny, -Zn+1). Then, a nonempty subset S of F (X, x,) is
a G-class if it is closed under the operation on F, (X, x,) and is closed under compo-
sition with ¢.

We consider two types of G-classes.
Type I. A condition is imposed on each inverse image of a point.

Type II, A condition is imposed on all but a finite number of the inverse images
of points. ‘

It is easy to see what kind of conditions can be used to obtain G-classes of type
II. In particular, let P be a property which is meaningful for closed subsets of 89,
and such that

(1) if two disjoint closed subsets A and B of S™ each have property P, then
AUB has property P; and

(2) if A is a closed subset of S™ such that A has property P, then ¢(A) has
property P.

We use such a property to define a G-class, by taking all maps f in F (X, x,)
such that f-1(x) has property P except for a finite number of xe X. We give three
examples of such a property:

(i) A has property P if and only if Dim A <k.

(i) A has property P if and only if Hy(A) = 0 (or H;(A) = 0 for all i <k, or
H;(A) = 0 for all i > k.)

(iii) A has property P if and only if m (A, a) = 0 for each aje A.
We shall study example (i) in the following sections.

The kind of property Q which determines a G-class of Type I is a little more
complicated. Let U and L be the upper and lower closed hemispheres of S*, and
let S®-1 = UNL be the equator. Let t be the map of S™ defined in the Introduction.
Let Q be a property which is meaningful for closed subsets of S, and which is such

that:

(1) if AcU and BCL are closed sets, and t(A) and t(B) both have property Q,
then AUB US™-! has property Q; and

(2) if AcCS™ and A has property Q, then ¢(A) has property Q.
We mention two examples of such a property:

(i) A has property Q if and only if Dim A > k;

(ii) A has property Q if and only if Hy(A) is finitely generated.

The first example is clear, and it is proved in Section 5 that (ii) gives a property
Q, with mild restrictions on the homology theory used.
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3. THE k-LIGHT GROUPS

Definition. A map f: Y 2 W is said to be k-light if Dim f-}(w) < k for all but a
finite number of weW.

It follows from elementary properties of dimension that this is a property P and
hence defines a G-class of Type II; this G-class determines a subgroup Dﬁ(X, X, of
(X, X,). We call this subgroup the k-light subgroup of 7 (X, x,). The following ex-
ample shows that the concept is not vacuous.

Let X, be the space consisting of two disjoint 2-spheres joined by an arc having
only its end points on the spheres, and let x, be one of the end points of the arc. Let
X, be the space consisting of two 2-spheres with a single point x, in common. It is
immediately clear that X, and X, have the same homotopy type and hence the same
homotopy groups. Also, it is easily seen that

DY(X,, X;) = my(X,, X,)
while
DI(X,, x,) # m,(X,, x)).

Let x' be an interior point of the arc in X,. Then DJ(X,, x') = 0, whereas
DY(X,, x,) is infinite cyclic. The dependence of these groups on the base point is
considered in the next section,

The following proposition shows that there does not exist an example in which
DY(X, xo) = 7,(X, xg).

PROPOSITION. For any space X, DY(X, xy) = m,(X, x,).

Proof. We must show that every homotopy class of F,(X, x,) contains a 0-light
map. The constant map is 0-light, and therefore we need to consider only nontrivial
homotopy classes. Let f: (8!, y,) — (X, x,) be an element of F,(X, x,) which does
not represent the identity element of 7,(X, x)). Let f = hg be the monotone-light
factorization of f. Then g(S!) is a 1-sphere, and we may assume without loss of
generality that g(S?!) = S! and that g has degree 1. It follows that h is in the same
homotopy class as f. Since h is light, and hence 0-light, the proposition is proved.

It seems intuitively clear from the definition that the k-light groups should vanish
for indices higher than the dimension of X. The following proposition shows that this
is indeed the case.

PROPOSITION. If X is k-dimensional, then D3 (X, x,) = 0 for n> m + k.

Proof. Let f: (S%, y,) — (X, x,) with n> m + k, and suppose that there are only a
finite number of points x,, +:+, x;, such that Dim £7*(x;) > m. Then

- gbf 1 -1
U=:58"-) ')
i=1

is an open set, and it is nonempty; for S™ is connected, and [xl, vee, xp] is not con-

nected unless p = 1 (in which case f is trivial). Take a nonempty open set V such

that the closure of V is contained in U. Application of Theorem V 17 on page 91 of
[3] to the map f: V— X gives the existence of x € X such that f-(x)N V has dimen-

sion at least n - k > m. Hence f-!(x) has dimension greater than m, and x is not a
point of the set [x,, ---, xp]. This shows that there are no essential m-light maps in
Fn(X, x4, whence DX, x,) = 0, as was asserted.



170 M. L. CURTIS and M. K. FORT, JR.

The following theorem, together with the preceding proposition, implies that for
manifolds the k-light groups give no new topological invariants.

THEOREM. If X is a k-manifold, then Dy (X, xo) = 71(X, X for n < m + k.

Proof. Since X is a manifold, it has the property that nearby maps are homo-
topic. More precisely, corresponding to each f e F, (X, x,) there is an £ > 0 such
that if ge Fn(X, X, and p(f(y), g(y)) <e for all yeS™, then f and g represent the
same element of 7,(X, x,). It is a consequence of a theorem in [2] that the m-light
maps of S™ into X are dense in the space of maps of S into X if and only if
n < m+ k. These two statements combine to give the conclusion of the theorem.

The preceding theorem is false if X is required only to be an algebraic variety.
For example, the space X consisting of the union of a 2-sphere and a 1-sphere which
have a single common point x, is a real algebraic variety, and DY(X, x,) is infinite
cyclic, whereas (X, x,) is not. It is hoped that these groups may be a useful vehicle
for stating results about the types of singularities in algebraic varieties.

4. DEPENDENCE ON BASE POINT

If x, and x, are points in X, then 7,(X, X)) and 7,(X, x,) are isomorphic, since
X is arcwise connected. We have seen, however, that DJ(X, x,) and DX, x,) need
not be isomorphic unless some more restrictive assumptions are made about X. In
this section we note that the obvious conditions are actually sufficient.

Definition. X is k-lightly n-connected if for any two points a and b of X there
is a k-light map f: S® —X such that f(y) = a and f(¢(y)) = b, where
y = (0, -+, 0, 1) e ER*1,
PROPOSITION. If X is n-lightly n-comnected, then X is Kk-lightly n-comnected
for k=0,1, ---, n,

PROPOSITION. X is (n - 1)-lightly n-connected if and only if it is arcwise con-
nected,

PROPOSITION. If X is k-lightly n-connected, then DX(X, x,) is independent of
the base point X,.

The proofs of the three propositions above are trivial. The connectedness con-
dition localizes in the obvious way, and one sees that arcwise connectedness together
with the local property gives the property in the large. The somewhat natural con-
jecture that if X is arcwise connected and locally k-lightly n-connected, then
DX(X, X, = m.(X, X,), is seen to be false by a simple example.

5. THE k-MONOTONE SUBGROUPS
Definition. A map f: Y— W is k-monotone if each group Hy(f~(w)) is finitely
generated.

We require the following conditions on any homology theory used in the definition
above:

(1) the homology theory satisfies the Eilenberg-Steenrod axioms,

(2) the coefficient group is finitely generated,
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(3) the homology groups are invariant under relative homeomorphisms (see [1,
p. 266]).

THEOREM. The properly of having a finitely genevated K-dimensional homology
group is a property Q.

Proof. The condition (2) for property Q is automatic in this case and we need
only consider condition (1).

Let f, ge Fp(X, x,), and let A'= f- Y(xy, B' = g~1(x,). Then A= t-1(A') is in U,
and B = t'l(B') is in L. By hypothesis, H (A" and H, (B') are flmtely generated.
Since t(A) and t(B) have only one point in common, H (t(AuB us™-1)) is finitely
generated. We must show that H (AUB ust-1) is finitely generated.

By the invariance under relative homeomorphisms,
Hy (t(A UB US™Y, ¢(s™-) =~ H (AUB, (AUB) s h);
and since t(S®-!) is a point, this gives
H ((AUB US*1) =~ H (AUB, (AUB)NS™ ).
Now, by using the excision
(AUB, (AUB)n s*-1) —» (AuBUSe-L gn-1)

we obtain the relation

H, (AUB, (AUB)NS™ Y ~ H(AUBuyS?-1, so-1),

Finally, considering the exact homology sequence of the pair (AUB uUS®-1, sn-1), and
using the fact that Hi(S™-1) = 0 except for k = n - 1, we obtain

H (AUB US™ Y » H (A uBuUS*Y)).

Also, H,_;(AUB uUS”-1) is isomorphic with a subgroup of Hy(AUBUSR-1 gn-1),
the latter group is isomorphic with H,(t(A UB ys”-1)), whence all Hy (AU B ush- 1)
are finitely generated. The theorem is proved.

COROLLARY. The k-monotone maps constitute a G-class in Fn(X, x,).

Definition. The subgroup determined by the G-class of k-monotone maps is
called the k-monotone subgroup of m,(X, x,), and it is denoted by MX(X, x,).

Example, Let X, and X, be the one-dimensional spaces shown in the figure.
(There are an infinite number of circles for X, and an infinite number of trapezoids
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for X,.) We can verify that =,(X,, x,) is uncountably generated, while M}(X,, x,) is
countably generated. Both 7,(X,, x,) and M{(X,, x,) are uncountably generated.
Clearly, X, and X, have the same homotopy type.

The k-monotone subgroups are of interest only for somewhat pathological spaces,
as the following theorem indicates.

THEOREM. If X is a finite polyhedron, then MN(X, xo) = m,(X, X,).

Proof. By the simplicial approximation theorem, each f in Fj(X, x,) can be ap-
proximated by a simplicial map g which is homotopic to f. Each g~1(x) is a finite
polyhedron, so that all of its homology groups are finitely generated.

Remark. Unlike the k-light groups, the k-monotone groups are independent of
base point.
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