ON MAPS OF THE THREE-SPHERE INTO THE PLANE

G. R. Livesay

1. INTRODUCTION

The following theorem deals with a special case of part of the Knaster conjecture [2].

THEOREM. Let $f: S^3 \to E^2$ be continuous, and let p, p_1, p_2 be points of S^3 which are vertices of an equilateral triangle in E^4 . Then there exists a rotation $r \in SO(4)$ such that $f(rp) = f(rp_1) = f(rp_2)$.

This note consists of a proof of this theorem. Before giving the proof, let us fix the notation. E^n is Euclidean n-space, S^{n-1} the unit sphere of E^n ; SO(n) is the group of proper rotations of E^n , considered here as operating on S^{n-1} ; and P^n is real projective n-space. For $x \in S^3$, let G_x denote the subgroup of SO(4) consisting of rotations which leave x fixed. Let $f_1 \colon S^3 \to E^1$ be the map obtained by following f by the projection of E^2 onto E^1 which is defined by the rule $(x_1, x_2) \to x_1$. Without loss of generality, suppose that p is a point of S^3 at which f_1 attains its maximum value, and that this maximum is positive. It is an elementary matter to show that there exists a rotation $a \in SO(4)$ satisfying

(1) ap =
$$p_1$$
, ap₁ = p_2 , a³ = 1 (where 1 denotes the identity element of SO(4)),

(2) a leaves some point, say
$$z \in S^3$$
, fixed.

Then G_P and G_Z are conjugate subgroups of SO(4), and they carry homologous, non-bounding, integral 3-cycles of SO(4). The proof will now proceed as follows: we shall construct a map $\psi \colon SO(4) \to S^3$, under the assumption that the theorem is false. Then we shall see that $\psi \mid G_P$ and $\psi \mid G_Z$ have different degrees. Since this is impossible, our proof by contradiction will then be complete.

2. CONSTRUCTION OF ψ

This construction is well known. Define the three maps

$$\phi \colon SO(4) \to E^6$$
, $T \colon SO(4) \to SO(4)$, $T^1 \colon E^6 \to E^6$

by the conditions

$$\phi(\mathbf{r}) = (f(\mathbf{r}p), f(\mathbf{r}p_1), f(\mathbf{r}p_2)),$$

$$T(\mathbf{r}) = \mathbf{r} \cdot \mathbf{a},$$

$$T^1(x_1, \dots, x_6) = (x_3, x_4, x_5, x_6, x_1, x_2).$$

Then $\phi \circ T = T^1 \circ \phi$, since ap = p₁, and so forth. Let

Received June 8, 1957.

The author wishes to thank the Office of Naval Research for their support of this research.

$$\triangle = \{(x_1, \dots, x_6) \in E^6 \mid x_1 = x_3 = x_5, x_2 = x_4 = x_6\}.$$

Our theorem is false if and only if $\phi(SO(4)) \cap \triangle$ is empty, for some f. Assume f to be such that $\phi(SO(4)) \cap \triangle$ is empty. Let ∇ be the 4-dimensional linear subspace orthogonal to \triangle , that is, let ∇ be given by $x_1 + x_3 + x_5 = 0$, $x_2 + x_4 + x_6 = 0$. Let $\pi \colon E^6 \to \nabla$ be defined by the equation

$$\pi(x_1, \dots, x_6) = (x_1 - \alpha(x), x_2 - \beta(x), x_3 - \alpha(x), x_4 - \beta(x), x_5 - \alpha(x), x_6 - \beta(x)),$$

where $\alpha(x) = (x_1 + x_3 + x_5)/3$, $\beta(x) = (x_2 + x_4 + x_6)/3$. Let ω be the origin of E⁶. Now define $\rho: \nabla - \omega \to \mathfrak{S}^3$ (where \mathfrak{S}^3 denotes the unit sphere of ∇) by the relation

$$\rho(x_1, \dots, x_6) = \left(\frac{x_1}{|x|}, \dots, \frac{x_6}{|x|}\right) \qquad \left(|x| = (\sum_{i=1}^6 x_i^2)^{1/2}\right),$$

and observe that $\pi \circ T^1 = T^1 \circ \pi$, $\rho \circ T^1 = T^1 \circ \rho$. Then the mapping

$$\psi = \rho \circ \pi \circ \phi \colon SO(4) \to \mathfrak{S}^3$$

satisfies the condition $\psi \circ T = T^1 \circ \psi$.

3. THE DEGREE OF $\psi \mid_{G_z}$

First note that $T(G_z) = G_z$, since $a \in G_z$. Hence $\psi \mid G_z \colon G_z \to \mathbb{S}^3$ satisfies $(\psi \mid G_z) \circ T = T^{1} \circ (\psi \mid G_z)$. All that is needed now, in order to conclude that the degree of $\psi \mid G_z$ is not zero, is the following theorem of Eilenberg [1, p. 405]: If X is a topological space with a periodic transformation $\Lambda \colon X \to X$ of prime period p; if P is a simplicial polyhedron of dimension not greater than q, with a simplicial periodic transformation $\Lambda \colon P \to P$ of period p without fixed points; if $f \colon X \to P$ is a continuous mapping such that $f \Lambda(x) = \Lambda f(x)$ for each $x \in X$; and if X is acyclic in dimensions less than q over some ring J with a unit in which the equation px = 1 has no solution; then the homomorphisms

$$f_q: H_q(X, J_p) \to H_q(P, J_p), \quad f_q: H_q(X, J) \to H_q(P, J)$$

are not trivial. We now set

$$X=G_{z},$$
 $P=\mathfrak{S}^{3},$ $J=Z_{3}$ (the group of integers mod 3),
$$p=3, \quad \Lambda=T \quad \text{on } G_{z}, \quad \Lambda=T^{1} \quad \text{on } \mathfrak{S}^{3}.$$

4. THE DEGREE OF $\psi \mid_{\mathbf{G_p}}$

REFERENCES

- 1. S. Eilenberg, Homology of spaces with operators. I, Trans. Amer. Math. Soc. 61 (1947), 378-417.
- 2. B. Knaster, Problème 4, Colloquium Math. 1 (1948), 30-31.

Cornell University

