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Close-to~-Convex Schlicht Functions

by
Wilfred Kaplan

1. Principal results. Known theorems yield

the following: if #(z) is a convex schlicht function for
|z]| <R and f(z) is a function analytic for |z| < R
such that

- f(z)
> 0, < R,
Re [ '(Z)] lZ' R'
then f(z) is also schlicht for |z| < R.: Since the vec-
tors f', g'never differ in direction by more than 90°,
it is natural to call f close-to-convex:

Definition. Let f(z) be analytic for |z]| <R.
Then f(z) is close-to-cmvex for |z| < R if there ex-
_ists a function @(z), convex and schlicht for lzl< R,
such that '(z)/#(z) has positive real part for |z|< R.

When R =1, it will be convenient to omit refer-
ence to the circular domain of definition. Therefore,
a close-to-convex function will mean a function which
is close-to-convex for Izl < 1.

We verify that the close-to-convex functions in-
clude several familiar classes of schlicht functions:
e.g., the star functions, as well as some less fam-
iliar ones: e.g., the functions f(z) having a Poisson
integral representation in terms of a function P(eif)
which is monotone in 6 within each of two complemen-
tary arcs of |z| = 1.

It is of interest to characterize the close-to-
convex functions intrinsically, without reference toa
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convex function g. Such a characterization is obtained
as follows: f(z) is close-to-convex if and only if

92 "
A Re [l + = :’Ez;]de - T

1
when 91 < 92, z =rei® and r < 1.

Z, The class of close-to-convex functions. It
is known ([6] p. 582, V.) that if g(z) is analytic in a
convex domain D and

(1) Re[g'(z)]>0 in D,

then g(z) is schlicht in D. If #(z) is a schlicht map
of |z| <1 onto D, then f(z) = g[#(z)] is also schlicht.
Since f'(z) = g'(g4) #=z), f(z) satisfies the condition

(2) Re [_fiz_)_] > 0 for |z] < 1.

8'(z)
Conversely, if f(z) satisfies (2), then g(z) = f[~1(z)]
satisfies ( ) and f(z) = g[d(z)] is schlicht for |z| < 1.

Theorem 1. Every close-to-convexfunction
is schlicht.

The class of close-to-convex functions clearly
includes the convex functions themselves, as well as
the functions f(z) whose derivative has positive real
part in the unit circle. The normalized schlicht func-
tions f(z) which map the unit circle onto a domain star-
shaped with respect to the origin are characterized by
the inequality ([2] pp. 92-94):

(3) Rej=z 'EZ;] > 0 ;

since ([2] p. 93)
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@) e = L

is known to be convex, it follows that the star mappings
are included in the close-to-convex functions. By
specializing the choice of g(z), one obtains other sub-
classes:

2
(5) Re[(z-1) f'(z)] >0,

6) Rel[(z-eN(z-eP)p(z)] > 0 0 real)
k

(7) <Re[T[-(z-e f'(z)]>0

0 <k, <1, Zk,<2,

0 < < < cee < < .
— G{1 dZ n — 21t
For the class (7) ¢ is a Schwarz - Christoffel mapping;

for ot;é (6) is a special case of (7), and (5) is a
spec1a1 case of (6).

If h(z) =log #(z) is chosen to be analytic,
then the condition that § be convex is expressed by
the inequality

(8) Re[1+zh'(z)] > 0.

Accordingly, if f(z) is analytic for |z| < 1, then
f(z) is close-to-convex if and only if there exists a
function h(z), analytic for |z| < 1, such that

(9) Re [f'(z) e-h(z)] > 0, Re [l +zh'(z)] >0.

From the familiar integral representation of a func-
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tion with positive real part ([7] p. 185) we obtain the

expressions

10

€ - 4

i0
. h 2
(10) f'(z) =e (Z)[/ Te _*2 ) +iot] ,
\ |
L fame +
e’ z
[ - - i -
(1) w@) = 2[5 axe) +ig - 11,
e -z
from which an integral representation for f(z) in

terms of two monotone non-decreasing functions Y(6)
and X (0) can be obtained.

3. Intrinsic characterization. Let f(z) and
#(z) be given as in Section 1; let p(z) = arg f'(z)and
q(z) = arg 4(z) be chosen to be continuous for |z| < 1.
Since f'(z) and g'(z) have no roots for |z| < 1, such
a choice is possible. Because of (2), at each z

‘p(z) - q(z) + 2k < -é-”

for some k =0, +1, .,. . Because of the continuity
of p(z) and q(z), k must be independent of z. If
p(z) is properly chosen, k=0, and it willbe assumed
that such a choice has been made, so that

(12)  |p(=) - a(=)| < 57 for |z] < 1.

We now introduce the functions

(13) P(r, 6) =p(reie) +08, Q(r, 9) = q(r’eie) +0,

which are defined for 0 < r <1 and all real 6. Con-

dition (12) becomes

(14) |P(r, 8) - Q(r, 8)| < = TT.

N
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The condition that #{z) be a convex mapping is de-
scribed by (8) or equivalently by the condition

00
15 —— > 0 ;
Thus Q(r,8) is monotone increasing in 6 for each
fixed r. Now, if 91 < @29

P(r, 0,) - P(r.0,) =[P(r,0,) - Q(r,8,)]

)
- [P(r,8,) - Q(r.0,)]

+ [Q(r,el) - Q(r,@z)]
< [P(r,Gl) - Q(rsgl)] - [P(r,@z) - Q(r,(-)z)] .
Accordingly, by (14)3

(16) P(r,6.) -P(r,92)<7f for (-)1<92.

1
Condition (16) is thus a necessary condition that f(z)
be close-to-convex; it can be expressed in other
equivalent forms:

) .

(16') arg f'(relel) - arg f'(relez) <l + (92'- 91

for 91 < 8,, provided arg f'(z) = p(z) is chosen as
above to be continuous for Iz[ < 1;

G i6,
2 ie fn
(16") / "Re|l + re’ ———(—EE-—-)—] dé > -7,
0 i6
1 f' (re” )
for 6. < 8_. The condition'is also sufficient: °

1 2
Theorem 2. A necessary and sufficient con-

dition that a function f(z), analytic and with non-van-
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ishing derivative for |z| < 1, be close-to-convex is
that (16") hold for 91 < 92 and r < 1.

\ The necessity being established above, it re-
mains to prove the sufficiency. Given f(z);, we choose
p(z) = arg £'(z) to be continuous and then define P(r, 6)
by (13). The condition (16") is then replaced by (16).
In addition,

(17)  P(r, 8 + 27 - P(r, 8) = 2T,

since p(z) has period 27 with respect to 8.

~ Lemma. Let t(68) be a real function of 6 for
-0 < 8 < oo such that

(18) (6 +2 ) - t(8) = 2T,

(19) t(6,) - t(GZ) < for 8, < e2

Then there exists a real function s(8) which is mono-
~tonic non-decreasing and satisfies the conditions

(20)  s(6 +27) - s(8) =27,

.

N —

(21)  |s(8) - t(6)] <
Proof. Let

s(0) =1.u.b. £(8') - % .
9'5_9 '

Then s(8) is non-decreasing. By (19), t(8') is
Bounded above, for 6' <8, by t(8) + . Hence the 1.

u. b. is finite and

s(8) < t(8) + %- .
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Furthermore, since t(8) < l.u.b. t(8') for 6' < 0,

5(6) > t(e) - %7;'.

Hence (21) is proved; (20) follows from (18). The
lemma is thus established. '

We now set ngg 8) =t(6), for a fixed p<1,
and apply the lemma, denoting the corresponding func-
tion s(8) by sg,o 6). For r </0 we define
27202—1‘ (s(,o o) -

da,

0 /J +r 270r cos o(-9)

(22) q’o(r 8) 27T

so that q,(r,8) is harmonic for r <p. Moreover, the
function

(23) Q’o(r,e) =q (r,08) +6

,0

is monotone- increasing in 6 for each fixed r <,0.
For, if 01 < 9‘2,

Q (r o, (r 91)

/anpz -r )(s(,asoc+92)‘- s(e.x+81) 4.
27T /O + r ?7or cos o

and, since s(/o,ot 1s non- decreasmg in ¢, the right
hand side is positive or 0. Hence Qgp(r,8) is non-de-~
creasing in 6, so that OQ/O/OG iO, Since this deriv-
ative is harmonic, the equality is ruled out, so that

Q/o(r, 8) is strictly increasing.

We now choose an analytic function h,(z) whose
imaginary part is qp(r 8) and such that Relh ( )] =0.
Then set
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(7 by (2)
(24) ny(z)-fo "

so that

dz ,

(,25) gfﬁ(O) =0, |;z§/;(0)l = 1.

The function dp(z) is then analytic for |z | </o., More -
over,

sy 00
(26) Rel1+2 %Z_g] - 52> 0, 2] <p.

Hence #.(z) is a convex function for |z | <p. Fur-

thermore, since
1
'PS,Q,G) - S(/Q,e)l i :2—71'9

we conclude from (22) and the Poisson integral for
p(r,8) in terms of p@o,e) that

| P(x, 8) -”Q

P(rse)l < -;—7( for r < p.

/

Accordingly,

(27) Re[?%(_(z_i)_)_] >0 for |z] </o,

so that f(z) is close-to-convex for |z <p. ltre-
mains to show that we can pass to the limit, P~ 1,
and get a unique function #(z) for |z]| < 1.

If we choose the sequence Pn = 1 - -Ill-g thenthe
corresponding functions ;ﬁpn(z) are defined for an in-
creasing sequence of domains. For each fixed n, the
functions yﬁpm(z) for m > n form a normal family for
Izl <P n; this follows from the normality of the fam-
ily of normalized schlicht functions and condition (25).
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Hence a subsequence converges uniformly in this do-
main. By applying the diagonal process in the famil-
iar fashion, we obtain a subsequence of ¢pn(z) which
converges uniformly. in each circle |z| <p<1 and
hence has as limit a unique function #(z), analytic for
|z| < 1. Since the @,(z) are schlicht and convex, #(z)
must also be so. Since (27) holds for P = Pn: We
conclude that

(28) Re [%%] >0 for |z| < 1;

i.e., f(z) is close-to-convex.

-]

4. Geometric interpretation. The condition
(16") or its equivalent, condition (16), has the follow-
ing geometric meaning: w = f(z) maps each circle

z = ret® (r fixed'and r < 1) onto a simple closed curve
whose unit tangent vector T =i exp [iP(r,8)] either
rotates in a counterclock-wise direction, as 6 in-
creases, or else rotates clockwise in such a manner
that arg T =P + %—Jr never drops to a value 7 radians
below a previous value; i.e.; A arg T exceeds -7, as
@ increases. This is illustrated in Fig. 1. Here

arg T, - arg T is only slightly

Fig. 1.
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greater than -7 Thus such a "hairpin. turn'' is per-
mitted, provided one does not make a complete rever-
sal of direction. '

5. Extremal aspects. For each function f(z),
analytic and with non-vanishing derivative for |z| <1,
we make the definition:

(29) c[f] =g.L.b. [l.u.b. |arg f'(z) - arg 4'(z)]],
;zf | lz[<l

where @ ranges over the class of all convex schlicht
functions for Iz[ <1; for each z, the arguments of
f' and g' are to be chosen to give the absolute value
of the difference its smallest value. In general, c[f]
<M. If c[f] < Jr, then as in the preceding section one
can compute c[f] by restricting 4 by the conditions
(25); the restricted family is normal and accordingly
there exists a convex 4 such that

(30) |arg £'(z) - arg #'(z)| < c[t], |=z|<1;

c[f] is the smallest constant for which such a g can
be found. The function g in (30) can be termed a
"best convex approximation to f(z)".

If c[f] =0, then f must itself be convex; if
c[f] < %_7T, then f is close-to-convex.

The constant c[f] and a corresponding extremal
g satisfying (30) canbe found directly by the procedure
of Section 3. We introduce the function P(r,#9)
= arg f'(z) + 8. Then |

(31)  c[f] = min (3 Lu.b. [P(x,0,) - P(r,0,)],7),

where the 1.u.b. is taken over all r, 6_, 62 for which

!

N\
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6;<8, and r < 1. For, if c[f] <], then we choose
¢ satisfying (30) and let Q(r,8) = arg 4'(z) + 0; as in
Section 3, arg f' and arg ¢' can be chosen so that

(32) |P(r,8) - Q(r,08)] < c[f].

The method of derivation of (16) then yields the rela-
tion

(33) P(r,(—)l) - P(r,@z) < 2c[f] for 91 < 92

On the other hand, if

% l.u.b. [P(r,Gl) - P(r,ez)] =<7,

then the proof of Theorem 2 can be repeated to yleld
a convex function @ such that

(34) |arg f'(z) - arg ¢ < ot
Hence |
c[f] < &< c[f]

and (31) is proved.

If f(z) is analytic with non-vanishing derivative
for |z| < R, we can define cgrlf], for example by (31)
with 'r restricted to be less than R. Then crlf] will
be a monotone non-decreasing functmn of R. For ex-
ample, if f(z) = e%, we find

z
cr[e]zO, r <1

c [ez] =Vr?% -1 - arc cos l, r> 1,

r ——
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The equation c. =%‘ﬂ’ is satisfied for r slightly less
than 3; this gives the largest circle |z| = a within
which e? is close-to-convex; e? remains schlicht for
[z] < JI, is convex only for lz! < 1.

For w =(z - 1)2, we find

2 o 1

cr[(z -1)7]=0, r < 229
-1 2 + 1
~cr[(z - l)z]rzcos —-f-;,j—-r—
+ tanm1 3r -;—i r<1l.
As r —~1, cré%-lr,sso that cy [(z - 1)2] ===1-77'. Ac-

_cordingly, this function is convex for Izﬁ< 1/2, is
close-to-convex for r < 1; the latter domain is the
largest circular domain, with center at 0, in which
the function is schlicht.

It is natural to ask whether %‘7}‘ is the best pos-
sible value for c[f] in the sense that it is the smallest
value which guarantees schlichtness. For each «,
%n’< o« < 77, we can indeed construct a function f such
that c_[f] = o, but f is not schlicht for lz] <r. To
this end we let ‘

' €
£ (z) = (1 - z)2 te fE(O) =1, |z <1, 0<€< 1.

We theln find that c;{fe(z)] is continuous in € and e-
quals -zf-lz' for € =0, equals 7r for € =1. Accordingly,
cl[fé] takes on every value & between .21_7?’ and I as
¢ goes from 0 to 1, but fé(z) is not schlicht for |z|<1
and € > 0.

As remarked above, the largest r for which
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c.[f] =0 gives the largest circle |z| =r within which
| f(z) is convex;it is known that for normalized schlicht
functions this r is > 2 -V3 ([2] p. 92) and can equal
this value. It would be of interest to obtain a similar
lower bound for the largest circle within which f is
close-to-convex.

6. A sub-class of the close-to-convex functions.

In a previous paper ([5]), the author demonstrated that
the functions f(z) representable for lzl <1 by a Pois-
son integral

27 16
1 / e + z
—_— —— Q) d6
(35) 2 70 ei@ o h( )

~in which h(6) is monotone non-decreasing, are
schlicht for |z| < 1. It was also shown that each such
f(z) satisfies

(36) Im[(z - 1)°£(z)] >0,

from which we conclude that f(z) is close—td-—convexe

We now show that these conclusions remain val-
id if we assume that h(8) is monotone non-decreasing
in one interval of 8 and monotone non-increasing for
the remaining values:

Theorem 3. Let h(6) be defined and non-con-
stant for /T<0 < 27; let h(6) be momotone non-de-
creasing for 0 <8< T and monotone non- -increasing
for <8< 2JT. Then (35) defines a-function f(z)
which is schlicht and close-to-convex for lz| < 1.

Proof: We shall verify that

Z-1
z+1

' (z)

Re [T] > 0, é(z) = log

b



182

'i.e., that (6) holds with & =0 and B=T. As in [5],
we find that |

i 27T (g, ~éie
Re [(z2 - l)f’(z)] = Re [-7-1;—-/0 | +33(1 ) dh(8)]

€ - Z

1 /27" sin 0 (1+r)
“w/o |6 5~ dn(®).
le” -z
Since h(08) is non-decreasing for 0 < 6 < T, whére
sin ® > 0, and non-increasing for T <8 < 2T, where
sin @ < 0, the integral is positive as asserted and f(z)

is close-to-convex.

By applying a suitable linear transformation, we
can extend the theorem to the case in which h is non-
decreasing from 0 to d and non-increasing from ol to
27T, also to the case of functions defined in the half-
plane y > 0 by a Poisson integral

7?'1_1— [oooo{ t_lz - 1+tt2}h(t) dt .

Each function u + iv = f(z) can be shown to map onto a
domain D which is convex in the sense that, if (u, v})
and (u, VZ) are in D, then so also is the line segment
joining these points. When h is a step-function, D is
bounded by rays and two lines, all parallel to the v-
axis; examples are given on pp. 605-609 of [6].

7. Mapping by non-analytic functions. It would
be of interest to generalize the preceding discussion

to mappings

.2 2
(37) u=F(xv), v=G(x,v), x +y <1,

where I and G are of class C' and the Jacobian
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o (F, G)
a(X: Y)

is positive throughout. In conversations with the au-
thor, C.J. Titus has conjectured that if the mapping
has the property that each circle x2 +y2 =r2<1is
mapped onto a path C whose tangent never turns back
through 7T, as in Section 4, then it must be one-to-
one. One can also ask whether the geometric condi-
tion just stated is sufficient to guarantee that a map-
ping (37) defined only for x% + y2 =r2 is one-to-one;
simple counter -examples show that this is not the case.
However, C. J. Titus has conjectured that, if one al-

(38) J =

sorequires that the image curve hasnon-negative cir-
culation (in a properly defined sense), then it must
indeed be a simple closed curve.

The theorem of the preceding section does have
a natural extension to mappings (37):

Theorem 4. Let F(x,y) be continuous for
x% + y2< 1 and let F(cos 0, sin 8) =h(6) be non - de-
creasing for 0 < 6 < T, non-increasing for <€ < 27
Let G(x,y) be defined for x2 + y2< 1 in such a man-—
ner that equations (37) define a mapping which islocal-

ly a homeomorphism. Then (37) defines a homeomor-
2

phism of the set: x* + y2 < 1 into the uv-plane.

Proof: Since the mapping is locally ahomeomor -
phism, the level curves of F(x,y) must form aregul-
ar curve -family H filling the domain: x2 + y2 < 1
([3], p- 155). From the results of [3], it follows that
each curve C of the family H can be parametrized
by equations x =x(t), y =y(t), - 0o<t< o, so that
x4 + y2 > 1 as t>o. We denote by L[C,+] (or
L[GC, -]) the set of 1imit points of sequences (x(t ),
y(tn)) as t, > (or t, ~ -0). Then L[GC,+] must be
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an arc of x% + y2 = 1 or a single point; since F(x,y)is
continuous, L[C,+] can be an arc only when F(cos 6,
sin 8) = h(8) is constant along the arc. From the mon-
otonicity of h it follows that, if Ci, CZ’ C3 are
curves of H on which F has the respective values ky,
ks, kg, with k; < kp < ks, then C, separates Cj
from C5 in x2 + y2 < 1. Hence in general, for every
triple Cj, Cp, C3 in H, one curve separates the oth-
er two. By the main theorem (p. 11) of [4], it fol-
lows that H must have the structure of a family of
parallel lines: i.e., there is a homeomorphism of
x2 + y2 < 1 onto itself transforming H onto the lines
y = const.. In the new coordinates, the function F
becomes a function Fo(y) which is strictly monotone,
while G becomes a function Go(x,y) which is strict-
ly monotone in x for each y. Accordingly, u = F(y),
v = Gy(x, y) defines a homeomorphism and therefore
a similar conclusion holds for (37).
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