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CR Maps and Point Lie Transformations

ALEXANDRE SUKHOV

1. Introduction

This paper concerns the following well-known result (see Chern and Moser [3])
of geometric complex analysis: Any biholomorphic map between two real ana-
lytic Levi nondegenerate hypersurfacesdfi™! (n > 0) is uniquely determined

by its 2-jet at fixed point. Moser’s proof is based on his general theory of nor-
mal forms for Levi nondegenerate hypersurfaces. We present a new geometric
approach to the problem that allows us to deduce Moser’s result from a general
assertion concerning point Lie transformations of certain second-order PDE sys-
tems. The Segre family of a Levi nondegenerate hypersurface is a general solution
of such a system, and every biholomorphism of such a hypersurface is a Lie sym-
metry of this system. Our approach is mostly inspired by the ideas of Webster [10]
as well as the works of Diederich and Webster [5] and Diederich and Forneess [4].

Our main result is the following.

THeoreM 1.1.  Any holomorphic point transformation between two holomorphic
completelyintegrable syste$?u = F(x, u, DYu) andD@u = F(x, u, DVu)

with one dependent variable andndependent variables is determined by2iet

at a fixed point. The set of all such transformations can be parameterized by at
mostn? + 4n + 3 complex parameters.

The terminolgy will be explained in the next section. The infinitesimal version of
this theorem has been established by the author in [9].

We stress that PDE systems defining Segre families of real analytic hypersur-
faces form a highly special subclass of PDE systems considered in our result.
From this point of view, the study of point transformations of PDE systems is a
substantially more general problem. We hope that our approach will be useful for
both the CR geometry and the geometry of differential equations.

2. Preliminaries

In this section we establish a correspondence between the geometry of real ana-
lytic CR structures and completely integrable PDE systems.
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A. Jet Bundles, Point Transformations, and Prolongations

Denote byJ’(n, m) the manifold ofr-jets of holomorphic maps front” to
C™ and by j (¢) ther-jet of a mapg at a pointp. Letx = (xy,...,x,) and
u = (..., u™) be complex coordinates i@” andC™, respectively. We de-
fine the natural coordinates of(n, m) as follows. Seu™® = i, ... ul, ...,

s Yo

ul',.oouy), ..., u® = (u,{;) with j = 1...,m ando = (o, ...,qy), 01 <
@z < --- < ;. The chartj’(¢) — (xj,u*, u®, ..., u?) is defined byx; = p,
u=a¢(p),
. 5/
u)=———(p), 1<s<r, a=(ay....0), 01 <--- <oy
0Xgy ... 0Xq,

Whenm = 1 we write simplyu® = (uy, ..., u,) and so forth.

A (germ of) biholomorphisny: C* x C" — C" x C™, f: (x,u) — (x*, u*)
of the base space lifts canonically to a fiber-preserving biholomorphigin
J'(n,m) — J'(n,m). If u = ¢(x) is a holomorphic function negr with g =
o(p), letu* = ¢*(x*) be its image undey understood in the following sense:
the graph ofp* is the image of the graph @f under f near the point p*, ¢*) =
f(p,q). Thenthe jetj . (¢*) is by definition the image of () underf®. The
map £ is called ther-prolongationof f. The prolongation is defined only if
takes the graph of any holomorphic functior= u(x) nearp to the graph of some
functionu* = u*(x*). We call biholomorphic maps satisfying this conditjooint
(Lie) transformationf the base. A prolongation of any order of a point transfor-
mation can be computed quite explicitly by recurrence (see e.g. [1]). For the case
m =1, settingx* = X(x, u) = (X% ..., X") andu* = U(x, u) yields

MI Ul DlU
=l s =4 1)
u, U, D, U
and .
Mil...ikfll l]il...ik,ﬂ. Dll]il...ik,1
: = : =A" : , ©)
M;'kl...ik,ln Uil...ik,ln DnUilu.ik,l

where A = (D;X’); j-1 ... (i denotes a row) and; is the total derivative
operator:
a 0 0
Di:_+ui_+ ui'_+"'
ox; ou jz ! u;
(for the convenience of notation in this formula we follow the conveniign =
U,;, andu;,;, = u,; for any indices).

B. Transformations of PDE Systems

In this paper we deal with holomorphic completely integrable second-order PDE
systemgS) of the formD®@u = F(x, u, DPu) with n independent variables
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and one dependent variablghere and below we denote /74 a vector func-

tion formed by all partial derivatives of of order j). Theintegrability condition
means that a distribution on the tangent bundle of the jet sp&ee 1) defined

by the differential formsiu; — 3 ; Fij(x, u, u)dx; anddu — Y, u;dx; is com-
pletely integrable. This class of PDE systems was first studied by Chern [2] from
the point view of the general theory 6f-structures. In the special cage= 1,

the integrability condition always holds and we simply get a general second-order
ODE.

Let (S) and(S) be two systems of this class. Then they define naturally com-
plex subvarietiesS)» and(S)z in the jet spacg?(n, 1) obtained by replacing the
derivatives of dependent variables with the corresponding natural coordinates on
J2(n, D). Explicitly, (S)2 is defined byu;; = F;(x, u, u®) and(S), is defined
byu;; = F,,(x u, u(l)) A point transformatlory‘ is calleda point transformation
betweenS) and (S) if it takes the graph of any solution @¢&) to the graph of
a solution of(S). The integrability condition implies (by the Frobenius theorem)
that, for any pointP € (S), with the projectionp € C”, there exists a holomor-
phic solutionu = u(x) of the system(S) such thatP = j[f(u). Using this fact, it
is easy to prove that is a point transformation between our systems if and only
if the 2-prolongationf @ of f is a biholomorphism betwe€is ) » and(S) (see
[6]). In the case whereS) coincides with(S), a pointwise transformation is just
the classical Lie symmetry @fS).

C. Segre Varieties and PDE Systems

Let M be areal analytic Levi nondegenerate hypersurfac®irt through the ori-
gin. We use the notatiod = (z, w) € C" x C for coordinates irC"*+2,
After a biholomorphic change of coordinates in a neighborhood of the origin,

M is given by the equatiofy = w + w + Y_/_; &;z;Z; + R(Z, Z) = 0}, where

g =l1lor—landR = o(|Z|?). For every pointt = (11, ..., n,, ®), the corre-
sponding Segre variet@ (¢) is defined byw + w + 3~7_; &;z;1; + R(Z, ¢) = 0.

If we consider the variableg = z; as independent and the varialble= u(x) as

the dependent one, then this equation can be rewritten in the form

u—l—w—i—Zijjnj—i—R(x,g“)zo (%)
j=1

(after an application of the implicit function theorem in order to remaveom
R). Taking the derivatives in;, we obtain
Uy, + &k + R (x,0) =0, k=1...,n. (%)

The equationgx*) and (xx), together with the implicit function theorem, imply
that; = ¢(x,u, uy, ..., uy,,) is a holomorphic function; taking again the par-
tial derivatives inx; in (xx), we obtain the following completely overdetermined
second-order holomorphic PDE system:

Uyjx, = jk(x,u,D(l)u), j, k=1 ...,n. (Sm)
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We point out that this system necessarily satisfies the integrability condition. (This
follows immediately from the representatio®) of the general solution ofSy,)
that the distribution defined by the corresponding differential forms on the tan-
gent bundle of/(n, 1) is completely integrable and so satisfies the Frobenius
condition.)

If £ is a local biholomorphism oM, then f(Q(¢)) = Q(f(¢)). This prop-
erty of biholomorphic invariance of the Segre varieties means that any biholomor-
phism of M transforms the graph of a solution @$,,) to the graph of another
solution; that is, any biholomorphism @f is a Lie symmetry oftSx,). Thus,
the study of biholomorphisms of real analytic Levi nondegenerate hypersurfaces
can be reduced to the study of symmetries of holomorphic completely integrable
PDE systems (with one dependent variable). However, the systems correspond-
ing to Segre families form a very special subclass between completely integrable
systems, since the coefficients of any defining function of a real hypersurface sat-
isfy additional conjugation relations due to the fact that the defining funetien
real-valued.

3. Study of Point Transformations

In this section we present our method of study of point transformations between
completely integrable systems. We suppose that we are in the setting of Theo-
rem1.1.

Let f be a point transformation between two holomorphic completely integrable
systemgS) and(S). Let f: (x,u) — (x* u*) be given byx* = X(x, u) and
u* = U(x, u). First of all, we can assume thgtis defined in a neighborhood of
the origin, f(0) = 0, and, moreover, that the tangent mafg0) is the identity.
Indeed, we always can obtain this situation by a translation and a linear change
of coordinates in the space of variablas «). All our consideration will be in a
suitable neighborhood of the origin.

The integrability condition implies that@ takes(S>) to (S-).

Our main idea is to use the relatiofi®)1((S),) = (S).. The left side is de-
fined by U;; = F(X, U, UY), where we use the notatidi® = (U, ..., U,).
Substituting the recurrence expressions (2)ifgrand multiplying by the matrix
A yields

DiU; = &;(x, u,u®, X, U, DPYX, UD). 3)
Applying the total derivative operator in (1), we have
D;U; DU D;D\U
=0AH +AT ] @)
D;U, D, U D;D,U

This implies the following description ab;U;.

Lemma 3.1. EveryD;U; is a rational function of the form
P;/0 = Y u® X, U, DYX, DYU, DPX, D?V).
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The denominatop is equal to(detA)2. Every numerator?;; is a polynomial in
u® andu® and has the formP; = 3, _y A‘}j[u(l)]“ + Bj;, where theB;; are
terms of nonzero degree ¥ and N is a universal integer constant. Coefficients
AY; are second-order differential expressions of the form

Zafj-kl(x, W)Uk + Z s (x, u) Xgr, + C, (5)
k,l k,l,s

whereC denotes the terms with partial derivatives pfof order < 1. The co-

efficients ay, (x,u) and b, (x,u) are polynomials in(DPX)(x,u) and

(DY) (x, u).

Proof. The expression fo@ is clear; dedA does not vanish in a neighborhood of
the origin sincef’(0) = id. We also have

DiDjU = Ux,-xj + Ux,'uuj + UXjuMi + Uuuuiuj + -,

where we have dropped the terms containiff. Furthermore, the elements of
A7 have the formh;;/detA, whereh;; are polynomials inD®X, DPU, u®,
so the elements ab; A~! have a representation of the form (5). Sinegl =
Uy, +u;U,, we get (5). We point out thal = max(n, 3}, but we do not need this.

O
We substitute the obtained representafiply; = P;;/Q into (3) and multiply both
sides byQ. Next we substitute;; (x, u, uD) instead ofu;; at every term ofB;;
and put them to the right side. We thus obtain

> AP = Wy(x,u,u®, X, U, DVX, DPU).
o

Expanding the right side in a power seriesd® and comparing the coefficients,
we obtain the equations

A = yf(x,u, X, U, DPX, DVU). (6)

In view of the previously given representation faf;, this last system can be
rewritten in the form '

MD@Pf = &(x, u, f, DY), (7)

whereM is a matrix whose elements are polynomialdiff f. We point out that
this is a PDE system with + 1 independent variablés, ) andn + 1 dependent
variablesf = (X, U).

Recall some simple PDE notions. Therolongationof a PDE system is the
system obtained by application of all partial derivatives of okd@vith respect to
independent variables) at every equation. Clearlyktpeolongation of our sys-
tem (7) is a system that is linear with respect to the derivatives of érélet of 1.
If—after an application of the Cramer rule to a subsystem oktpeolongation—
this subsystem can be rewritten in the foPtt 2 f = h(x, £, ..., D**Vf) with
a function’ analytic near a poinP € J*™(n + 1, n + 1) with the canonical
coordinatesc(P) = p, u(P) = i, andu(P) =/, ..., u*D(P) = 4**+Y then
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we say that theé-prolongation hashe trivial principal symbolat P. It follows

by the chain rule that in this case there exists at most one solution of (7) that is

holomorphic neap and satisfieg\*'(f) = P, namely, f(p) = a, DPf(p) =

a®, ..., D*Vf(p) = a*+D Hence, in order to prove that any solution of (7) is

uniquely determined by its finite-order jet at the origin, it is enough to show that,

for somek, the k-prolongation of this system has the trivial principal symbol.
Recall that we suppose th#t0) = 0 and the tangent mafy(0) is the identity.

Hence the following statement concludes the proof of the main theorem.

ProrosiTioN 3.2. Thel-prolongation of the systeif7) has the trivial principal
symbol at the poinP € JY(n + 1, n + 1) with the canonical coordinates(P) =
0, u(P) = 0, andu(P) = §;; (the Kroneker symbpl

The proof is given in the next section.

4. Computations and Proof of the Main Result

We begin with the special case wheare- 1. A direct computation shows that the
system (7) has the form

Ui Xy = U Xx = @1,
U Xy + Uxx Xy — Uy Xy — 2Uc Xu = @2,
22U Xy — 22Uy Xux + U Xx — Ux Xuw = @3,
UiwXu — UuXuu = @a,

and its 1-prolongation has the trivial symbol ¢&}.

However, forn > 1 the direct computation of elements of the matvixbe-
comes extremely cumbersome. Fortunately, we do not need to know the explicit
expression foM in order to study the 1-prolongation of (7). Let us explain this
reduction.

ConsideringM as a matrix function iffx, u), setMiqy = M(0). ThusMjq is a
matrix with constantelements obtained by evaluating the corresponding elements
of M (which are polynomials ilD™™f) under the SUbStItUtIOIX’ =8ij. Uy =
0, U, = 1 (recall that we study our system near the pd?ntﬂeflned in Proposi-
tion 3.2). Consider theeduced system

MiqD®?f =0. (8)
We need the following simple statement.
LemMMA 4.1. Suppose that the principal symbol of therolongation of the re-

duced systenB) is trivial at P. Then thel-prolongation of (7) has the trivial
principal symbol atP as well.

RemARrRk. Of course, since the system (8) has constant coefficients, the princi-
pal symbol of its prolongation is trivial & if and only if it is trivial at any other
point. But we stress thalfiy is obtained by the evaluation &f at P.
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Proof. The lemma follows from our assumption that the 1-prolongation of (8) con-
tains a subsystem equivalent®®f = 0. Hence, by continuity, the determinant
of the corresponding subsystem of (7) does not vanish Aeeard the Cramer rule
can be applied, which proves the lemma. O

REMARK. We point out that the system (8) is often called the principal symbol of
the system (7) (see e.qg. [7] for precise definitions). Formally it is more appropri-
ate to define the principal symbol on the corresponding jet bundle; in our case this
would lead to useless complications of the terminology, so we continue to call it
“the reduced system”.

For instance, in the special case- 1 the reduced system has the form

U\‘x = O, 2Uxu - Xxx = 07 _2Xux + Uuu = 07 qu =0. (9)

Taking first-order partial derivatives in these equations, we immediately obtain a
third-order system equivalent ®©®f = 0 that is the 1-prolongation of (9) and

has the trivial principal symbol. So jf satisfiesf(0) = 0 andf’(0) = id, then its

Taylor expansion at the origin is uniquely determined by two second-order partial
derivatives of f: X,,(0) andU,,(0) (other second-order derivatives are deter-
mined by (9)). For an arbitrary point transformatigrwe must add six complex
parameters assigning values f¢0) and DV £(0). Consequently, the set of all

point transformations between two second-order ODEs may be parameterized by
at most eight complex parameters. In the general case these parameters are not
independent because (6) imposes additional restrictions.

The crucial observation that substantially simplifies computations is that we may
compute the matridiy of the reduced systedirectly without an explicit expres-
sion forM in (7). As an example consider the case- 2.

An application of the recursive formula leads to the equalities

U1: P/A, U2=R/A,

where

A =detA = (XL X2 — X5, X2) + (Xo X2 — XL XDuy

+ (X3, XF — X0 X2 )u,

P = (X2Uy — X2Us,) + (X2,U, — X2Urur + (X; Uy, — X2 U uz,

R=(X}LU, — X3,Us) + (XpUs, — XL, UDus + (X3Uy — Xy Us)uz.
Hence
DUy = (IN)((D;P)A — P(D;A)), DUz = (/A ((D;Q)A — Q(D; A)).

Because we are interested in the reduced system only, we can simplify further
computations and proceed using the following rules:
(1) the conditionsz;,_ = d;, U, = 0, andU, = 1 are used every time that we
compute a coefficient near a second-order derivativg; of
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(2) we do not compute and do not write the terms containifg since they have
no influence on the reduced system;

(3) we do not compute and do not write the terms containing the partial deriva-
tives of f of order< 1 (i.e., the terms denoted liyin (5)).

The result of such a computation is denotedhy; ji=id- In other words, we
have

DiUJ"jé(f):id = Z ( Zaz]kl(o)kaul + Z bt/kl.s (O)X;ku,>[u(l)]a (10)

o k,l,s

in the notation of (5), where we consider the coefficientsas functions in(x, u)
and take their values at the origin.
We thus obtain

D11l j1(fy=ia = U + (Usiu — X, Jus + (2X — Un)uf

r1x1

— X31X1 ZXW,Mle — X1 X,fuulug,
D1U2] ju i = Usixy + WUsu — Xy )1+ (= Xfm + Un)tt2
— XL i+ (U — X2, — X5 usuz
Xflu Xl}uulug quulug,
D2U2 js(pymia = Usaxy + @Uiqu — X2, )2 — (X7, — U
Xizxz 2szuu1u2 — Xu2 — Xiuuluz

Therefore, the reduced system has the form

Ux,.xj=0(i,j=1,2), xt =x! =x! =0 X% =Xx% =Xx2_=0,

uu Xou X2Xx2 xX1u X1X1

2Usu — X1y =0, Uy — 2X§lu =0, Uqu—X1,,=0,

Uiu — X2, =0, 2Upp — X2,,, =0, Uu —2X2, =0,
where we drop the equatidn,, — m Xxllu = O since itis alinear combination
of others.

Now a direct verification shows that the 1-prolongation of this system has the
trivial symbol and so the proposition is established whea 2. Moreover, quite
similarly to the previous example, we see that the space of all point transforma-
tions is parameterized by at most fifteen complex parameters.

We consider now the general case with arbitraryVe proceed by following
the conventions (1), (2), and (3) and by using (4). We point out that we can avoid
any computation oA~ Indeed, we have the identil§; A1 = —A~X(D; A)A™Y;
becauser and D;U do not contain second-order derivativesfobf order 2, the
contribution of the terms

DU

(D;A™
D, U
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to Mig will be equal to
ug
—D;A
uil

Using our convention, one may also easily compute the contribution of the terms
D; A andD;D;U to M4 (clearly the matrix factod—! can be dropped). We have

DjUs|jé(f)=id = ( ZXXI x5 Uk + ustj-u + ujUx;u>

n
+ <—MS Z X)I:,_ulxlk — U foxuuk + ujusUuu>
k=1

k=1

n
— UjlUs Zxﬁuuk + ijXx'
k=1
We distinguish two caseg: = s andj < s. We obtain

n

DsUs|jé(f):id = stxx + uy (2Ux5u szs) - Z X)];-xsuk
k=L ks

+ uf(UW -2X;,) -2 Z Xxm“ Up — quu“k“
k=1 ks
and

Dj Us|jé(f)=id = Ux/-xx + MS(UXju ) + MJ(UXAH - ’;/xi)

n
Z X'fjxxuk +usuj (Ui — X3, — X){ju)

k=Lk#j,s
n n n
k k k
z : Xxjuuk —Uj z : Xxxuuk — Ujls 2 :quuk‘
k=Lk#j k=L ks k=1

So the principal symbol of the reduced system is defined by the following PDE
system:

() Uy, =0,1<j <s=<n,
(ny xt =o,
() X§, =0 1<j<s=<nk#js,
(Iv) xi,=0, k;ﬁs,
1) 2Uiu - X3, =0,
(2) U —2X;, =0,
(3) Uyu — X3, =0, j #5,
where we write linearly independent equations only.
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Let us show that the principal symbol of the 1-prolongation of this system is
trivial.

From (1) we havel,,, = 0 for € {x;, u}. From(ll) it follows thatX}, , = 0,
and (1V) |mpI|esXx . = 0fork # s; furthermore(l11) gives Xx x =0forl<
j <s<nandk # j,s.

Taking the derivatives iw; in (1) and inx, in (3), we getX; 5 = = 0 for any
i, j. Hence, X} yx, = = 0 for anyi, j, p. Taking the derivative i, in (2), we ob-
tain Uy, = 0 and similarlyU,,,, = 0, which impliesD®U = 0. From (1) we
haveX; . , = 0; from (3) we haveX; , , = Ofors # j and hencex® i = 0,80
D®X = 0. Therefore, the pr|nC|paI symbol of the 1-prolongation is trivial. This
completes the proof of Proposition 3.2.

Thus, the Taylor expansion gf at the origin is determined by its second-order
part. In order to conclude the proof of Theorérh, weobserve that the reduced
system just described contains® + 4n? + 3n)/2 independent equations with
(n + 1)?(n + 2)/2 unknown variables (second derivativesf)f But f satisfies
f(0) =0andf’'(0) = id, so f depends on at most+ 1 parameters. For an arbi-
trary f we have to addn + 1) + (n + 1)? parameters corresponding f@¢0) and
£'(0). So, ingeneralf is uniquely determined by at most+4n + 3 parameters.
This completes the proof of the theorem.

We conclude the paper with two additional remarks.

REMARK 1. The main result still holds with the same proof in the case where
m > 1; that is, our PDE system has several dependent variables. The maximal
number of parameters in this case is equakte- m + 2)(n + m). This estimate

is precise, since the equality is realized foe= F=0.

REMARK 2. Our method can be applied in a substantially more general situation:
where the PDE systems considered in our main theorem have some additional
nonlinear first-order equations. Such systems describe Segre families of real sub-
manifolds of higher codimension (for more details see [8]).
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