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CR Maps and Point Lie Transformations

Alexandre Sukhov

1. Introduction

This paper concerns the following well-known result (see Chern and Moser [3])
of geometric complex analysis: Any biholomorphic map between two real ana-
lytic Levi nondegenerate hypersurfaces inCn+1 (n > 0) is uniquely determined
by its 2-jet at fixed point. Moser’s proof is based on his general theory of nor-
mal forms for Levi nondegenerate hypersurfaces. We present a new geometric
approach to the problem that allows us to deduce Moser’s result from a general
assertion concerning point Lie transformations of certain second-order PDE sys-
tems. The Segre family of a Levi nondegenerate hypersurface is a general solution
of such a system, and every biholomorphism of such a hypersurface is a Lie sym-
metry of this system. Our approach is mostly inspired by the ideas of Webster [10]
as well as the works of Diederich and Webster [5] and Diederich and Fornæss [4].

Our main result is the following.

Theorem 1.1. Any holomorphic point transformation between two holomorphic
completely integrable systemsD(2)u=F(x, u,D(1)u)andD(2)u= F̂(x, u,D(1)u)

with one dependent variable andn independent variables is determined by its2-jet
at a fixed point. The set of all such transformations can be parameterized by at
mostn2 + 4n+ 3 complex parameters.

The terminolgy will be explained in the next section. The infinitesimal version of
this theorem has been established by the author in [9].

We stress that PDE systems defining Segre families of real analytic hypersur-
faces form a highly special subclass of PDE systems considered in our result.
From this point of view, the study of point transformations of PDE systems is a
substantially more general problem. We hope that our approach will be useful for
both the CR geometry and the geometry of differential equations.

2. Preliminaries

In this section we establish a correspondence between the geometry of real ana-
lytic CR structures and completely integrable PDE systems.
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370 Alexandre Sukhov

A. Jet Bundles, Point Transformations, and Prolongations

Denote byJ r(n,m) the manifold ofr-jets of holomorphic maps fromCn to
Cm and byj rp(φ) the r-jet of a mapφ at a pointp. Let x = (x1, . . . , xn) and
u = (u1, . . . , um) be complex coordinates inCn andCm, respectively. We de-
fine the natural coordinates onJ r(n,m) as follows. Setu(1) = (u1

1, . . . , u
1
n, . . . ,

um1 , . . . , u
m
n ), . . . , u

(s) = (u
j
α) with j = 1, . . . , m andα = (α1, . . . , αs), α1 ≤

α2 ≤ · · · ≤ αs. The chartj rp(φ) 7→ (xj, u
k, u(1), . . . , u(r)) is defined byxj = p,

u = φ(p),

ujα =
∂ sφj

∂xα1 . . . ∂xαs
(p), 1≤ s ≤ r, α = (α1, . . . , αs), α1 ≤ · · · ≤ αs.

Whenm = 1 we write simplyu(1) = (u1, . . . , un) and so forth.
A (germ of) biholomorphismf : Cn×Cm→ Cn×Cm, f : (x, u) 7→ (x∗, u∗)

of the base space lifts canonically to a fiber-preserving biholomorphismf (r):
J r(n,m) → J r(n,m). If u = φ(x) is a holomorphic function nearp with q =
φ(p), let u∗ = φ∗(x∗) be its image underf understood in the following sense:
the graph ofφ∗ is the image of the graph ofφ underf near the point(p∗, q∗) =
f(p, q). Then the jetj rp∗(φ

∗) is by definition the image ofj rp(φ) underf (r). The
mapf (r) is called ther-prolongationof f. The prolongation is defined only iff
takes the graph of any holomorphic functionu = u(x) nearp to the graph of some
functionu∗ = u∗(x∗). We call biholomorphic maps satisfying this conditionpoint
(Lie) transformationsof the base. A prolongation of any order of a point transfor-
mation can be computed quite explicitly by recurrence (see e.g. [1]). For the case
m = 1, settingx∗ = X(x, u) = (X1, . . . , Xn) andu∗ = U(x, u) yields u

∗
1

...

u∗n

 =
U1

...

Un

 = A−1

D1U

...

DnU

 (1)

and 
u∗i1 . . . ik−11

...

u∗i1 . . . ik−1n

 =
 Ui1 . . . ik−11

...

Ui1 . . . ik−1n

 = A−1

D1Ui1 . . . ik−1

...

DnUi1 . . . ik−1

, (2)

whereA = (DiX
j )i,j=1, ...,n (i denotes a row) andDi is the total derivative

operator:

Di = ∂

∂xi
+ ui ∂

∂u
+
∑
j

uij
∂

∂uj
+ · · ·

(for the convenience of notation in this formula we follow the conventionUikis =
Uisik anduikis = uis ik for any indices).

B. Transformations of PDE Systems

In this paper we deal with holomorphic completely integrable second-order PDE
systems(S ) of the formD(2)u = F(x, u,D(1)u) with n independent variablesx
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and one dependent variableu (here and below we denote byD(j)h a vector func-
tion formed by all partial derivatives off of orderj). The integrability condition
means that a distribution on the tangent bundle of the jet spaceJ 1(n,1) defined
by the differential formsdui −∑j Fij(x, u, u

(1))dxj anddu−∑ i uidxi is com-
pletely integrable. This class of PDE systems was first studied by Chern [2] from
the point view of the general theory ofG-structures. In the special casen = 1,
the integrability condition always holds and we simply get a general second-order
ODE.

Let (S ) and(Ŝ ) be two systems of this class. Then they define naturally com-
plex subvarieties(S )2 and(Ŝ )2 in the jet spaceJ 2(n,1) obtained by replacing the
derivatives of dependent variables with the corresponding natural coordinates on
J 2(n,1). Explicitly, (S )2 is defined byuij = Fij(x, u, u(1)) and(Ŝ )2 is defined
byuij = F̂ij (x, u, u(1)). A point transformationf is calleda point transformation
between(S ) and (Ŝ ) if it takes the graph of any solution of(S ) to the graph of
a solution of(Ŝ ). The integrability condition implies (by the Frobenius theorem)
that, for any pointP ∈ (S )2 with the projectionp ∈ Cn, there exists a holomor-
phic solutionu = u(x) of the system(S ) such thatP = j2

p (u). Using this fact, it
is easy to prove thatf is a point transformation between our systems if and only
if the 2-prolongationf (2) of f is a biholomorphism between(S )2 and(Ŝ )2 (see
[6]). In the case where(S ) coincides with(Ŝ ), a pointwise transformation is just
the classical Lie symmetry of(S ).

C. Segre Varieties and PDE Systems

LetM be a real analytic Levi nondegenerate hypersurface inCn+1 through the ori-
gin. We use the notationZ = (z, w)∈Cn × C for coordinates inCn+1.

After a biholomorphic change of coordinates in a neighborhood of the origin,
M is given by the equation

{
r = w + w̄ +∑n

j=1εj zj z̄j + R(Z, Z̄) = 0
}
, where

εj = 1 or−1 andR = o(|Z|2). For every pointζ = (η1, . . . , ηn, ω), the corre-
sponding Segre varietyQ(ζ) is defined byw+ ω+∑n

j=1εj zjηj +R(Z, ζ) = 0.
If we consider the variablesxj = zj as independent and the variablew = u(x) as
the dependent one, then this equation can be rewritten in the form

u+ ω +
n∑
j=1

εj xjηj + R(x, ζ) = 0 (∗)

(after an application of the implicit function theorem in order to removeu from
R). Taking the derivatives inxk, we obtain

uxk + εkηk + Rxk(x, ζ) = 0, k = 1, . . . , n. (∗∗)
The equations(∗) and(∗∗), together with the implicit function theorem, imply
that ζ = ζ(x, u, ux1, . . . , uxn) is a holomorphic function; taking again the par-
tial derivatives inxj in (∗∗), we obtain the following completely overdetermined
second-order holomorphic PDE system:

uxj xk = Fjk(x, u,D(1)u), j, k = 1, . . . , n. (SM)
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We point out that this system necessarily satisfies the integrability condition. (This
follows immediately from the representation(∗) of the general solution of(SM)
that the distribution defined by the corresponding differential forms on the tan-
gent bundle ofJ 1(n,1) is completely integrable and so satisfies the Frobenius
condition.)

If f is a local biholomorphism ofM, thenf(Q(ζ)) = Q(f̄(ζ̄)). This prop-
erty of biholomorphic invariance of the Segre varieties means that any biholomor-
phism ofM transforms the graph of a solution of(SM) to the graph of another
solution; that is, any biholomorphism ofM is a Lie symmetry of(SM). Thus,
the study of biholomorphisms of real analytic Levi nondegenerate hypersurfaces
can be reduced to the study of symmetries of holomorphic completely integrable
PDE systems (with one dependent variable). However, the systems correspond-
ing to Segre families form a very special subclass between completely integrable
systems, since the coefficients of any defining function of a real hypersurface sat-
isfy additional conjugation relations due to the fact that the defining functionr is
real-valued.

3. Study of Point Transformations

In this section we present our method of study of point transformations between
completely integrable systems. We suppose that we are in the setting of Theo-
rem 1.1.

Letf be a point transformation between two holomorphic completely integrable
systems(S ) and(Ŝ ). Let f : (x, u) 7→ (x∗, u∗) be given byx∗ = X(x, u) and
u∗ = U(x, u). First of all, we can assume thatf is defined in a neighborhood of
the origin,f(0) = 0, and, moreover, that the tangent mapf ′(0) is the identity.
Indeed, we always can obtain this situation by a translation and a linear change
of coordinates in the space of variables(x, u). All our consideration will be in a
suitable neighborhood of the origin.

The integrability condition implies thatf (2) takes(S2) to (Ŝ2).

Our main idea is to use the relation(f (2))−1((Ŝ )2) = (S )2. The left side is de-
fined byUij = F̂(X,U,U(1)), where we use the notationU(1) = (U1, . . . , Un).

Substituting the recurrence expressions (2) forUij and multiplying by the matrix
A yields

DiUj = 8ij(x, u, u(1), X,U,D(1)X,U(1)). (3)

Applying the total derivative operator in (1), we haveDiU1

...

DiUn

 = (DiA
−1)

D1U

...

DnU

+ A−1

DiD1U

...

DiDnU

. (4)

This implies the following description ofDiUj .

Lemma 3.1. EveryDiUj is a rational function of the form

Pij/Q = (u(1), u(2), X,U,D(1)X,D(1)U,D(2)X,D(2)U).
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The denominatorQ is equal to(detA)2. Every numeratorPij is a polynomial in
u(1) andu(2) and has the formPij =∑|α|≤N Aαij [u(1)]α + Bij, where theBij are
terms of nonzero degree inu(2) andN is a universal integer constant. Coefficients
Aαij are second-order differential expressions of the form∑

k,l

aαijkl(x, u)Uxkul +
∑
k,l,s

bαijkls(x, u)X
s
xkul + C, (5)

whereC denotes the terms with partial derivatives off of order ≤ 1. The co-
efficients aαijkl(x, u) and bαijkls(x, u) are polynomials in(D(1)X)(x, u) and
(D(1)U)(x, u).

Proof. The expression forQ is clear; detA does not vanish in a neighborhood of
the origin sincef ′(0) = id. We also have

DiDjU = Uxi xj + Uxiuuj + Uxjuui + Uuuuiuj + · · ·,
where we have dropped the terms containingu(2). Furthermore, the elements of
A−1 have the formhij/detA, wherehij are polynomials inD(1)X,D(1)U, u(1),

so the elements ofDiA
−1 have a representation of the form (5). SinceDjU =

Uxj +ujUu,we get (5). We point out thatN = max{n,3}, but we do not need this.

We substitute the obtained representationDiUj = Pij/Q into (3) and multiply both
sides byQ. Next we substituteFij(x, u, u(1)) instead ofuij at every term ofBij
and put them to the right side. We thus obtain∑

α

Aαij [u
(1)]α = 9ij(x, u, u(1), X,U,D(1)X,D(1)U).

Expanding the right side in a power series inu(1) and comparing the coefficients,
we obtain the equations

Aαij = ψα
ij (x, u,X,U,D

(1)X,D(1)U). (6)

In view of the previously given representation forAαij, this last system can be
rewritten in the form

MD(2)f = 8(x, u, f,D(1)f ), (7)

whereM is a matrix whose elements are polynomials inD(1)f. We point out that
this is a PDE system withn+1 independent variables(x, u) andn+1 dependent
variablesf = (X,U).

Recall some simple PDE notions. Thek-prolongationof a PDE system is the
system obtained by application of all partial derivatives of orderk (with respect to
independent variables) at every equation. Clearly, thek-prolongation of our sys-
tem (7) is a system that is linear with respect to the derivatives of orderk+2 of f.
If—after an application of the Cramer rule to a subsystem of thek-prolongation—
this subsystem can be rewritten in the formD(k+2)f = h(x, f, . . . , D(k+1)f ) with
a functionh analytic near a pointP ∈ J k+1(n + 1, n + 1) with the canonical
coordinatesx(P ) = p, u(P ) = û, anduji (P ) = ûji , . . . , u(k+1)(P ) = û(k+1), then
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we say that thek-prolongation hasthe trivial principal symbolat P. It follows
by the chain rule that in this case there exists at most one solution of (7) that is
holomorphic nearp and satisfiesj k+1

p (f ) = P, namely,f(p) = û, D(1)f(p) =
û(1), . . . , D(k+1)f(p) = û(k+1). Hence, in order to prove that any solution of (7) is
uniquely determined by its finite-order jet at the origin, it is enough to show that,
for somek, thek-prolongation of this system has the trivial principal symbol.

Recall that we suppose thatf(0) = 0 and the tangent mapf ′(0) is the identity.
Hence the following statement concludes the proof of the main theorem.

Proposition 3.2. The1-prolongation of the system(7) has the trivial principal
symbol at the pointP ∈ J 1(n+ 1, n+ 1) with the canonical coordinatesx(P ) =
0, u(P ) = 0, anduji (P ) = δij (the Kroneker symbol).

The proof is given in the next section.

4. Computations and Proof of the Main Result

We begin with the special case wheren = 1. A direct computation shows that the
system (7) has the form

UxxXx − UxXxx = ϕ1,

2UxuXx + UxxXu − UuXxx − 2UxXxu = ϕ2,

2UxuXu − 2UuXux + UuuXx − UxXuu = ϕ3,

UuuXu − UuXuu = ϕ4,

and its 1-prolongation has the trivial symbol (atP).
However, forn > 1 the direct computation of elements of the matrixM be-

comes extremely cumbersome. Fortunately, we do not need to know the explicit
expression forM in order to study the 1-prolongation of (7). Let us explain this
reduction.

ConsideringM as a matrix function in(x, u), setMid = M(0). ThusMid is a
matrix withconstantelements obtained by evaluating the corresponding elements
of M (which are polynomials inD(1)f ) under the substitutionXi

xj
= δij, Uxj =

0, Uu = 1 (recall that we study our system near the pointP defined in Proposi-
tion 3.2). Consider thereduced system

MidD
(2)f = 0. (8)

We need the following simple statement.

Lemma 4.1. Suppose that the principal symbol of the1-prolongation of the re-
duced system(8) is trivial at P. Then the1-prolongation of (7) has the trivial
principal symbol atP as well.

Remark. Of course, since the system (8) has constant coefficients, the princi-
pal symbol of its prolongation is trivial atP if and only if it is trivial at any other
point. But we stress thatMid is obtained by the evaluation ofM atP.
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Proof. The lemma follows from our assumption that the1-prolongation of (8) con-
tains a subsystem equivalent toD(3)f = 0. Hence, by continuity, the determinant
of the corresponding subsystem of (7) does not vanish nearP and the Cramer rule
can be applied, which proves the lemma.

Remark. We point out that the system (8) is often called the principal symbol of
the system (7) (see e.g. [7] for precise definitions). Formally it is more appropri-
ate to define the principal symbol on the corresponding jet bundle; in our case this
would lead to useless complications of the terminology, so we continue to call it
“the reduced system”.

For instance, in the special casen = 1 the reduced system has the form

Uxx = 0, 2Uxu −Xxx = 0, −2Xux + Uuu = 0, Xuu = 0. (9)

Taking first-order partial derivatives in these equations, we immediately obtain a
third-order system equivalent toD(3)f = 0 that is the 1-prolongation of (9) and
has the trivial principal symbol. So iff satisfiesf(0) = 0 andf ′(0) = id, then its
Taylor expansion at the origin is uniquely determined by two second-order partial
derivatives off : Xxx(0) andUuu(0) (other second-order derivatives are deter-
mined by (9)). For an arbitrary point transformationf we must add six complex
parameters assigning values tof(0) andD(1)f(0). Consequently, the set of all
point transformations between two second-order ODEs may be parameterized by
at most eight complex parameters. In the general case these parameters are not
independent because (6) imposes additional restrictions.

The crucial observation that substantially simplifies computations is that we may
compute the matrixMid of the reduced systemdirectlywithout an explicit expres-
sion forM in (7). As an example consider the casen = 2.

An application of the recursive formula leads to the equalities

U1= P/1, U2 = R/1,
where

1 = detA = (X1
x1
X2
x2
−X1

x2
X2
x1
)+ (X1

uX
2
x2
−X1

x2
X2
u)u1

+ (X1
x1
X2
u −X1

uX
2
x1
)u2,

P = (X2
x2
Ux1 −X2

x1
Ux2)+ (X2

x2
Uu −X2

uUx2)u1+ (X2
uUx1 −X2

x1
Uu)u2,

R = (X1
x1
Ux2 −X1

x2
Ux1)+ (X1

uUx2 −X1
x2
Uu)u1+ (X1

x1
Uu −X1

uUx1)u2.

Hence

DiU1= (1/12)((DiP )1− P(Di1)), DiU2 = (1/12)((DiQ)1−Q(Di1)).

Because we are interested in the reduced system only, we can simplify further
computations and proceed using the following rules:

(1) the conditionsXi
xj
= δij, Uxj = 0, andUu = 1 are used every time that we

compute a coefficient near a second-order derivative off ;
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(2) we do not compute and do not write the terms containingu(2), since they have
no influence on the reduced system;

(3) we do not compute and do not write the terms containing the partial deriva-
tives off of order≤ 1 (i.e., the terms denoted byC in (5)).

The result of such a computation is denoted byDiUj |j1
0(f )=id. In other words, we

have

DiUj |j1
0(f )=id =

∑
α

(∑
k,l

aαijkl(0)Uxkul +
∑
k,l,s

bαijkls(0)X
s
xkul

)
[u(1)]α (10)

in the notation of (5), where we consider the coefficientsa, b as functions in(x, u)
and take their values at the origin.

We thus obtain

D1U1|j1
0(f )=id = Ux1x1 + (2Ux1u −X1

x1x1
)u1+ (2X1

x1u
− Uuu)u2

1

−X2
x1x1
u2 − 2X2

x1u
u1u2 −X1

uuu
3
1 −X2

uuu
2
1u2,

D1U2|j1
0(f )=id = Ux1x2 + (Ux2u −X1

x1x2
)u1+ (−X2

x1x2
+ Ux1u)u2

−X1
x2u
u2

1 + (Uuu −X2
x2u
−X1

x1u
)u1u2

−X2
x1u
u2

2 −X1
uuu

2
1u2 −X2

uuu1u
2
2,

D2U2|j1
0(f )=id = Ux2x2 + (2Ux2u −X2

x2x2
)u2 − (2X2

x2u
− Uuu)u2

2

−X1
x2x2

u1− 2X1
x2u
u1u2 −X2

uuu
3
2 −X1

uuu1u
2
2.

Therefore, the reduced system has the form

Uxi xj = 0 (i, j = 1,2), X1
uu = X1

x2u
= X1

x2x2
= 0, X2

uu = X2
x1u
= X2

x1x1
= 0,

2Ux1u −X1
x1x1
= 0, Uuu − 2X1

x1u
= 0, Ux2u −X1

x1x2
= 0,

Ux1u −X2
x1x2
= 0, 2Ux2u −X2

x2x2
= 0, Uuu − 2X2

x2u
= 0,

where we drop the equationUuu−X2
x2u
−X1

x1u
= 0 since it is a linear combination

of others.
Now a direct verification shows that the 1-prolongation of this system has the

trivial symbol and so the proposition is established whenn = 2. Moreover, quite
similarly to the previous example, we see that the space of all point transforma-
tions is parameterized by at most fifteen complex parameters.

We consider now the general case with arbitraryn. We proceed by following
the conventions (1), (2), and (3) and by using (4). We point out that we can avoid
any computation ofA−1. Indeed, we have the identityDiA

−1 = −A−1(DiA)A
−1;

becauseA andDiU do not contain second-order derivatives off of order 2, the
contribution of the terms

(DiA
−1)


D1U

...

DnU


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toMid will be equal to

−DiA

 u1

...

un

.
Using our convention, one may also easily compute the contribution of the terms
DiA andDiDjU toMid (clearly the matrix factorA−1 can be dropped). We have

DjUs |j1
0(f )=id =

(
−

n∑
k=1

Xk
xj xs
uk + usUxj u + ujUxsu

)

+
(
−us

n∑
k=1

Xk
xj u
uk − uj

n∑
k=1

Xk
xsu
uk + ujusUuu

)

− ujus
n∑
k=1

Xk
uuuk + Uxj xs .

We distinguish two cases:j = s andj < s. We obtain

DsUs |j1
0(f )=id = Uxs xs + us(2Uxsu −Xs

xs xs
)−

n∑
k=1,k 6=s

Xk
xs xs

uk

+ u2
s (Uuu − 2Xs

xsu
)− 2

n∑
k=1,k 6=s

Xk
xsu
usuk −

n∑
k=1

Xk
uuuku

2
s

and

DjUs |j1
0(f )=id = Uxj xs + us(Uxj u −Xs

xj xs
)+ uj(Uxsu −Xjxj xs )

−
n∑

k=1,k 6=j,s
Xk
xj xs
uk + usuj(Uuu −Xs

xsu
−Xjxj u)

− us
n∑

k=1,k 6=j
Xk
xj u
uk − uj

n∑
k=1,k 6=s

Xk
xsu
uk − ujus

n∑
k=1

Xk
uuuk.

So the principal symbol of the reduced system is defined by the following PDE
system:

(I) Uxj xs = 0, 1≤ j ≤ s ≤ n,
(II) Xk

uu = 0,

(III) Xk
xj xs
= 0, 1≤ j ≤ s ≤ n, k 6= j, s,

(IV) Xk
xsu
= 0, k 6= s,

(1) 2Uxsu −Xs
xs xs
= 0,

(2) Uuu − 2Xs
xsu
= 0,

(3) Uxju −Xs
xj xs
= 0, j 6= s,

where we write linearly independent equations only.



378 Alexandre Sukhov

Let us show that the principal symbol of the 1-prolongation of this system is
trivial.

From (I) we haveUxj xs t = 0 for t ∈ {xj, u}. From(II) it follows thatXk
uut = 0,

and (IV) impliesXk
xsut
= 0 for k 6= s; furthermore,(III) givesXk

xj xs t
= 0 for 1≤

j ≤ s ≤ n andk 6= j, s.
Taking the derivatives inxj in (1) and inxp in (3), we getXs

xs xi xj
= 0 for any

i, j. Hence,Xs
xi xj xp

= 0 for anyi, j, p. Taking the derivative inxk in (2), we ob-
tainUuuxk = 0 and similarlyUuuu = 0, which impliesD(3)U = 0. From (1) we
haveXs

xs xs t
= 0; from (3) we haveXs

xj xs t
= 0 for s 6= j and henceXk

xi xj t
= 0, so

D(3)X = 0. Therefore, the principal symbol of the 1-prolongation is trivial. This
completes the proof of Proposition 3.2.

Thus, the Taylor expansion off at the origin is determined by its second-order
part. In order to conclude the proof of Theorem1.1, weobserve that the reduced
system just described contains(n3 + 4n2 + 3n)/2 independent equations with
(n + 1)2(n + 2)/2 unknown variables (second derivatives off ). But f satisfies
f(0) = 0 andf ′(0) = id, sof depends on at mostn+1 parameters. For an arbi-
traryf we have to add(n+ 1)+ (n+ 1)2 parameters corresponding tof(0) and
f ′(0). So, in general,f is uniquely determined by at mostn2+4n+3 parameters.
This completes the proof of the theorem.

We conclude the paper with two additional remarks.

Remark 1. The main result still holds with the same proof in the case where
m ≥ 1; that is, our PDE system has several dependent variables. The maximal
number of parameters in this case is equal to(n+m+ 2)(n+m). This estimate
is precise, since the equality is realized forF = F̂ ≡ 0.

Remark 2. Our method can be applied in a substantially more general situation:
where the PDE systems considered in our main theorem have some additional
nonlinear first-order equations. Such systems describe Segre families of real sub-
manifolds of higher codimension (for more details see [8]).
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