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Some Applications of Bruhat-Tits Theory to
Harmonic Analysis on the Lie Algebra
of a Reductivep-adic Group

JEFFREY D. ADLER & STEPHEN DEBACKER

1. Introduction

In recent years, the questions of interest in the study of harmonic analysis on re-
ductive p-adic groups have required very precise versions of what were previously
gualitative results (see e.g. [19; 20; 25; 26; 27]). This paper began as an attempt to
prove precise versions of some results of Fiona Murnaghan that relate the character
of a supercuspidal representation to the Fourier transform of an elliptic orbital in-
tegral [15; 16; 17; 18]. In order to properly formulate these results, it was necessary
to develop a “uniform” way to express both the support of invariant distributions
and the local constancy of functions. We present here the product of this effort.

Let F denote a field with discrete valuation. We assume histcomplete with
perfect residue fielfl Let G be the group of"-rational points of a reductive, con-
nected, linear algebraic group defined ofeand letg denote its Lie algebra. Let
B denote the Bruhat-Tits building ©f.

Recall that, forx € B andr € R, Allen Moy and Gopal Prasad defined a lattice
dx.r Of g. In Section 3 we explore the relationship between the latigesand\,
the set of nilpotent elements #n For every real numberwe construct the open,
closed,G-invariant subset

gr = U Gx,rs

where the union is taken over the pointddnThe setg;, can be used to describe
the support of invariant distributions gn We show that

gr = ﬂ(gx,r +N)a

where the intersection is taken over the point®inThis equality provides some
intuition for the ubiquity of the nilpotent set in harmonic analysis. We prove that
the setgy, behave well with respect to parabolic descent. That i®, i a par-
abolic subgroup oG with Levi decompositionP = MN and Lie algebrag =
m + n, then

mnNg, =m,.
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We also show that, given a result of [6], analogous statements can be made for the
filtrations of G defined by Moy and Prasad.

Under the assumption this finite, we examine the relation between the Fourier
transform and the sets.. We prove that the Fourier transform of a locally con-
stant, compactly supported, complex-valued function with suppagt ican be
written as a finite sum of functions each of which is translation invariant with re-
spect to a latticg, _,+ for somey in B. Finally, we show that if a/-invariant
distribution onm has a local expansion an,, then the distribution of obtained
by induction has a local expansion gn

Much of the material in this paper appeared in the second author’s thesis [5].

We are indebted to many people. We thank Robert Kottwitz for his beautiful
lectures on the harmonic analysis of reductivadic groups presented at the Uni-
versity of Chicago during 1995-96. We thank Gopal Prasad for providing one of
our proofs of Lemma 2.4.1. We thank the referee for many helpful comments. We
have benefited from conversations with Robert Kottwitz, Allen Moy, Fiona Mur-
naghan, Amritanshu Prasad, Gopal Prasad, Paul Sally, Jr., and Jiu-Kang Yu.

2. Preliminaries

2.1. The Basics

Let F denote a field with nontrivial discrete valuation and residue fielde as-
sume thatF is complete and thdtis perfect. Fix a uniformizing element in F.
We let R denote the ring of integers @ and$ = @R its prime ideal. Leb de-
note a valuation o', normalized so that(F*) = Z. We will also denote by
the unique extension of this valuation to any algebraic extensidh &ix an ad-
ditive character\ : F* — C* with conductor. Let G be a connected reductive
algebraic group defined ovét. The Lie algebra o6 will be denoted byg.

For any field extensioi of F, let G(E) denote the group af-rational points
of G and letg(E) denote the vector space gfrational points ofg. We will let
G = G(F)andg = g(F).

Let Ad denote the adjoint representatior®bn g and ofG ong. We will often
write 8X instead of Adg)X and¢h instead of Infg)h = ghg™t We will use a
similar notation for the coadjoint action &f on the linear duag* of g. For any
subsetS of G (or g or g*) and any subgroug@l of G, let

Hg:={"s |he H ands € S}.

If Sisasetand €N, then M,(S) denotes the set afx n matrices with entries
in S. As a set, we will always realizgl,(F) as M,(F) and GL,(F) as

{X eM,(F) | det(X) # 0}.

2.1.1. Brunat-Tits BuiLbiNnGg. Let B = B(G) = B(G, F) denote the (en-
larged) Bruhat-Tits building of;. Every maximalF-split torusS in G has an
associated apartmedt(S, F) C B. ForanF-Levi subgrougM of G, we identify
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B(M, F) in B(G, F). There is not a canonical way to do this, but every natural
embedding of3(M, F) in B(G, F) has the same image.
Forx, y € B(G), let [x, y] denote the geodesic Ii(G) from x to y.

2.1.2. FiLTrRATIONS OF Torl. LetT be a torus defined over, and letE be an
extension ofF. Let X*(T) denote the group of charactersf Let T(E)q de-
note the parahoric subgroup ®fE). The torusT (E) and its Lie algebra(E) =
Lie(T(E)) have natural filtrations, defined as follows. For anyR, let

t(E), :={H et(E) | v(dx(H)) > r forall xy e X*(T)}.
For anyr > 0, let
T(E), ={teT(E)o | v(x) =21 >r forall x e X*(T)}.

Note that, in generally = T (F ) need not be the maximal bounded subgroup
of T = T(F). For example, ifT is the set of norm-1 elements of a ramified qua-
dratic extension of, then the maximal bounded subgroupZofs T, but T/ Ty
has two elements. In particular, parahoric subgroups behave poorly with respect
to (ramified) base change.

2.1.3. Some Fixep Nortation. The following notation will be used throughout
the remainder of the paper. Fix a maximal unramified extengitit of F. Let
R"" denote the ring of integers @™ and let§ denote the residue field ¢f'™".
Let L/F'" be the minimal Galois extension such ti@ais L-split, and let¢ =
[L: FY.

Let Sbe a maximalF-split torus ofG. Let T be a maximalF ""-split F-torus
of G that containsS. (Such a torus exists, by [4].) The centralizeof T in G is
a maximal torus, defined ovét.

Let A be the apartment of (FY") in B(G, F'"). Note that we may identify
A(S, F) (resp.,B) with the Gal FY"/ F)-fixed points of A (resp.,B(G, FY™)).
Let @ be the set of roots d& relative toT and FU'", and let¥ be the set of affine
roots ofG relative toT, F'", and our choice of valuation. Fix an alcove (i.e., an
affine chamber{’ c A so that the GalK /k)-fixed points ofC contain an alcove
of B. ThenC determines a basia for W. As usual,j» € W is positive(y > 0)
if ¢ can be written as a nonnegative integral linear combination of elements in
and is negativéy < 0) if — is positive. Note thaty € W is positive if and only
if ¥|c > 0.

For anyb € @, let U, denote the corresponding root group andigtienote its
Lie algebra. BottJ, andu, are defined ovef "™,

For each roob € ®, there is an extensioh,/F"" in L such that the root-group
quotientU, (F"")/ Uy, (FY") is isomorphic to the additive group a&f,. (If b is
not multipliable, then writdJ,, = {1}.) For anyy € ¥ of gradientb € ®, let
Kw =4, = [Lb . Funr]—l.

2.2. The Moy—Prasad Filtrations

Following [13], one can associate to any poirih the building of G a parahoric
subgroupG, of G, afiltration{G . },>o of the parahoric, and a filtratidg. , },cr
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of the Lie algebrgy of G. Although{ is assumed to be finite in [13], there is no
difficulty in extending their definitions to our setting. We state the definitions.

Fory € W, lety € ® denote the gradient af. For eachy € ¥ we can define
a bounded subgroug, (F""") of the root grougJ ; (F ") and a latticar, (F""")
of the root space ; (F'"). Indeed, choose € A such that/(x) = 0. We define
Uy (FU") := Uy (F'") N stalgrury(x). Let G denote theR“"-group scheme
associated to stafyrun(x) (see [4]). The group oR"Y"-rational points ofG is
stabs Funy(x). Let L(G) denote the Lie algebra f; this is a lattice ing(F ™).
We definew, (FU") := u;, (F'™) N L(G). If 1, ¥» € ¥ such thatj, = v, and
Y1 > Yo, thenUy, (FU") C Uy, (FY) anduy,, (F'") C uy, (F'").

Forx € A(T, FU") C B(G, FY"") andr € Rsg, letG(F'™), , denote the sub-
group of G(F ") generated by (FY"), and theU,, (F""™) for which ¢(x) > r.
Similarly, forr € R, we define the latticg(F""), , of g(F"") by

gF ™)y 1= 3(F ™) 4 Y uy(FU™),

Yew

Y(x)>r
wherej is the Lie algebra of . Supposer € A(S, F). In this casex can be re-
alized as a GaF "/ F)-fixed point of A(T, FU'"). Forr € R>o we define the
subgroupG,,, C G to be the group of GaF "/ F)-fixed points ofG(F""), ,,
and, forr e R, we defineg, , C g to be the lattice of G&F "/ F)-fixed points of
gF"")y

We list a few basic properties of the Moy—Prasad filtrations. (For a proof see

[1; 13; 21].) For notational convenience, we will assume R~ whenever we
discuss objects i.

ProrosiTioN 2.2.1. The Moy—Prasad filtrations have the following properties.
Fix x € B(G) andr e R.

(a) Foranyg € G, let gx be the image af under the action oG on B(G, F).
ThenInt(g)G.,, = Gex,r andAd(g)gx,r = gqx, - More generally, ifz €
Autr(G), thent induces an action o8(G) and also ong (via dt). In par-
ticular, we havelt(g..,) = g:(x),r aNdT(Gy, ;) = Gr(y),,-

(b) We havevgx,r = Ox,r+1-

(c) If M is an F-Levi subgroup ofG, m is the Lie algebra o = M (F), and
xeB(M, F), theng, , "m=m,, andG,, "M = M, ,.

As anotational convenience, we writg ,+ = | J,., Gy, andg, .+ = ., 8x,s-
Moy and Prasad also define filtration lattidg$ , } in the dualg* of g by

g;r = {X Gg* | X(gx,(,r)Jr) C 69}

We writeg? . = U,., 5 ;-
those in Proposition 2.2.1.
For a Ga(F""/F)-fixed pointx € B(G, F!Y"), it is common to denote the
parahoricG, o and its subgrou, o+ by G, andG;, respectively. The quotient
G./G is the group of-points of a connected reductiygroupG,. Similarly, if

These lattices ig* satisfy statements analogous to
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H C B(G) is afacet, therG; denotes the parahoric subgroup®fssociated to
H. (Recall thatG, = Gy for all x € H.) We caution the reader that, in general,
G, # stal;(x) andGy # staly; (H) (see e.g. [23, Sec. 3.12]).

2.3. Optimal Points

In [13, Sec. 6.1]pptimal points are defined to be certain element&gdhat have

nice properties with respect to the Moy—Prasad filtrationg*of~or the time be-

ing, we shall call these poings‘-optimal. In this subsection we defingoptimal

points, which have analogous properties with respect to the filtratiops \bfe

then show that we may assume the sgf'ebptimal points to be a subset of the set

of g-optimal points. This result has been independently observed by Shu-Yen Pan.
Let

Y={ye¥ |y >0andy —1<0}.

This is a finite set. For each nonempty and @al"/ F)-invariant subse® C %,
we can choose a points € C such that:

(i) Minyes ¥(xs) = Minges ¥ (y) forall y e C;
(i) ¥(xe) is rational for ally € ¥; and
(iif) xg is Gal(F""/ F)-invariant.

The existence of such a point follows by making the same arguments as those
found in [13, Sec. 6.1]. For each nonempty and(@&l"/ F)-invariant subse® C

¥, fix a choice ofxs € C satisfying conditiongi)—(iii) and let © be the finite
set{xg}. A point x € B is said to bgg-optimal for & if it is G-conjugate torg

and simplyg-optimal if it is G-conjugate to some point i®. The definition of
g*-optimal is the same, except that condition (i) is replaced by:

(i) mingesW(xs) — L —£y)) > Minges W (y) — (L—¢,)) forally e C.

LemMma 2.3.1. Let & be a nonempty anal(F "/ F)-invariant subset ofx.
Then there exists a nonempty a@al(F """/ F)-invariant subsetS of ¥ such
that, for everyx € C, x satisfies condition&’), (i), and (iii) for &’ if and only
if x satisfies condition@)—(iii) for &.

Proof. We first define a subsét of . One may assume without loss of general-
ity that distinct elements a&’ have distinct gradients. Let

S={ye@|y+L,¢x}).
Note thatS is Gal(F """/ F)-invariant. Let

B { (W+eylyed\s) if SC&,
Tl —1lyed) if S=6.
Then& is a nonempty and GaF """/ F)-invariant subset oE. It only remains to

show thatx satisfies condition (i) for the s€% if and only if x satisfies condition
(i") for &'.
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Suppose & &'. Sincey — (1—¢,) > Ofory € S, we have for ally C that
ﬂg,(w(y) —A-ty) = l[/21él,"{s(1ﬁ(y) —(A-4ty) = min vy -1

sox satisfies (i) forS if and only if x satisfies (i) for &".
Now suppose& = &'. Then, fory € C,

]?glg/(lﬁ(y) —A-ty)) = mlg v(y),
sox satisfies (i) forS if and only if x satisfies (i) for &' O

From this lemma we may assume that the sgf*ebptimal points is a subset of
the g-optimal points. Therefore, it makes sense to call a peioptimal if it is
G-conjugate to a point id.

We say that € Q is anoptimal numbeiif there is an optimal point such that
gx.r 7 8x,+. SiNce every optimal point is conjugate to a pointirand sinced
is a finite set, the set of optimal numbers is discrete.

The following lemma has been extracted from the proof of [13, Prop. 6.3].

Lemma 2.3.2. If y € B(G) andr € R, then there exist optimal points z €
B(G) such that

Oxr COyr CYzr.

Proof. We first show the existence af We may and do assume thatis a
Gal(F "/ F)-invariant point ofC. Define&’ by

G ={ye¥|y®y) >rh
Letn be the least integer such thattn > 0 for all € &'. Define the nonempty
and GalF """/ F)-invariant subse® of * by

S={y+n|ye&inz.
Letz = xg € C. Sincez € B, we need only show that

g(Funr)yyr C g(Funr)Zyr‘

In order to prove this, it is enough to show thatz) > r for all ¥ € &'. But if
¥ € &, then

Y(z) +n> dr];igqﬁ(z) > dr)r;igq&(y).

Since® is a finite set, there is#’ € & such thaty(z) > ¥/(y); buty/'(y) > r.
This same argument applied g6 shows that, for alt € R, there exists am €
O such thag}, C g5,
There exists am > 0 such that, for alb € (r — ¢, r), we haveg, , = g, =
gys+. Fixs € (r — e, r). From the previous paragraph, there exists &0 such
thatg} _, C g3 _,. Thus, since’ > s, we have

Ox,r COxst CTHyst =08yr- ]
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CoroLLARY 2.3.3. If y e Bandr € R, then there exist optimal points z € B
such that, for all affine rootg,

Yx)=r = Yy =r,
Y(y)=r = Y@ =r.

2.4. A Result about Alcoves and Parabolic Subgroups

Suppose thaP is the group ofF'-rational points of a parabolic subgro®pc G
defined overF. Let M denote the group af -rational points of arF'-Levi factor
M of P. Denote byN the unipotent radical oP. Let P = MN be the parabolic
oppositeP = MN. WhenP is a minimal parabolic subgroup, both results in this
subsection follow from standard results about spherical buildings.

We provide two proofs for our first result (the second proof is due to Gopal
Prasad).

LEMMA 2.4.1. Suppose € B(M). If C' c B(G) is an alcove such that e C’,
then there exists ame N N G, such thatC’' ¢ B(M).

REMARK 2.4.2. It is sufficient to show that there existp & P N G, such that
pC’ C B(M).

Proof. Without loss of generality, we suppose that A(S, F) C B(M) and that
P is a minimal parabolic subgroup 6f.

Let X ,(S) denote the set of 1-parameter subgroupS.dfet D denote the vec-
tor chamber irX . (S) ® R corresponding t&v (see [3]). BecausP® is open, there
exists an alcove&; C A(S, F) such thaty € C; and(x + D) N Cy # §. LetT
denote the lwahori subgrou@c,. Note thatZ C G, .

LetA; € B(G)be anapartment containing bathandC’. Choose; € 7 sothat
gA1 = A(S, F). In particular,gC’ c A(S, F), x egC’, andgC’' N (C, — D) #
. Write g = aimn withn e TN N, m € TN M, andi € Z N N. Note that ifz €
C1 — D thenn—z = z. Therefore, sincgC’' N (C; — D) is open, we have

gC’' =nmnC’ = mnC’
withmneZInNnP c G, NP. OJ

Proof (Prasad). Without loss of generality, we suppose thiata Gal F "/ F)-
fixed point of A C B(M, F'"") and thatC" is the set of GalF "/ F)-fixed points
of a facetC” in B(G, F'"). (Note that ifG is residually quasi-split oveF, then
C” is an alcove iB3(G, FY").)

Here G(F"™),/G(F'"M) is the group ofg-rational points of a reductive
connected grougs defined overf. Similarly, the image ofG(F"")¢~ (resp.
G(FY"M), NP(FY), resp.S(FY")YNG(F"™),) in G(F) is the group of§-rational
points of a minimal parabolic subgroi(resp. parabolic subgrouf resp. max-
imal f-split torusS) of G defined ovel. SinceB andP are parabolic subgroups
of G that are defined ovej; there exists [2, Prop. 20.7] a maxinfasplit torus
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S’ ¢ BN P. Moreover, sincé andS’ are maximak-split tori of P, there exists a
p € P(f) such thafS’ = S. Choosep € G, N P so that its image iR (f) is p. Let
T/ = 7"'T. It follows from [23, Sec. 3.6.1] thaf” ¢ A(T’, FU™) and sopC’ C
AGKETIE) ¢ B(M). O

The following result is due to Allen Moy and Fiona Murnaghan [12]. We present
here a different proof.

CoroLLARY 2.4.3 [12]. If C’is an alcove in3(G), then there exists ame N
such thatC’ C B(M).

Proof. Supposex € C' is special (see e.g. [23, Sec. 1.9]). l%the the group of
F-rational points of a maximak-split torusS’ such thatx € A(S/, F). Choose
g € G such tha#S’ c P. From the lwasawa decompositig = PG,) we can
write g = ph with p € P andh € G,. Thus

x=hxe A"S, F)
and
hg' c P7p = P.

There exists an; € N such that+”S’ ¢ M. Sincenix € A(""S, F) C B(M),
by Lemma 2.4.1 there exists ap € G,,, N N such thauynC’ C B(M). O

2.5. Nilpotent Elements

Let X£(G) denote the set of 1-parameter subgroup& afefined overr. Call an
elementX e g nilpotentif there is some. € X£(G) such that lim_,*®X = 0.
Let \ denote the set of nilpotent elements. A more usual definition is that an ele-
ment is nilpotent if the Zariski closure of ig-orbit contains zero. LeV/” denote

the set of elements ig that are nilpotent in this sense, and Mt denote the set

of elementsX in g such that the-adic closure of th&-orbit of X contains zero.

It is clear that\' € AV € N”. By a theorem of Kempf [11, Cor. 4.3 = N
whenF is perfect.

Lemma 2.5.1. If F is perfect orf is finite, then\ = N

Proof. From [11, Cor. 4.3] we may assume tha finite. Itis clear thatv" c N'.
Let M = Cs(S)(F) and choose a minimal parabolit ¢ G containingM.
ThenP has a Levi decompositioR = MN. Letp = m + n be the associated Lie
algebras. Letb = ®(G, S, F) denote the set of -roots ofS with respect taG
and letd* c @ denote the set of positivB-roots in® with respect taP. Letx €

A(S, F) be a special point foG.
SupposeX € N”. It will be sufficient to show thak e n.
We have the Cartan decompositin= G,S*wG,, where

ST={seS(F):|a(s)| <1foralaecd’}
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andw is a finite subset oM. Since zero is in the-adic closure of th& -orbit of
X, there exists a sequengg € G} such that

g[Xegx,i

for all positive integers.

Without loss of generalityg; = kla;wk; for k;, k! € G, a; € ST, and fixed
w E . Since"fgx,i = g.,;» We may and do assume thgt = a,wk;. Let P =
MN be the parabolic opposite with Lie algebrag = m + @n. Then we have the
direct sum decomposition= i + m + n. Write*X = Z; + Y, + Z;, whereZ; €
i, ¥; em, andZ; e n. Then®X — 0 implies®“*Z; — 0 and“*Y; — 0. This im-
pliesZ; — 0 andY; — 0. Therefore, sinc&, is compact, there existskae G,
such thafX en. O

REMARK 2.5.2.  Forg* we letN*, N'*, and N *” denote the analogues.&f N,

and N, respectively. The preceding proof can be modified to showAhat=

N* whenf is finite or F is perfect. It is known thatv* and A/*” need not be
equal in positive characteristic. For example, Gopal Prasad pointed out to us that
N* £ N*" for SLo(F) whenF has characteristic 2.

3. Some Results for Moy—Prasad Filtrations ofy

The results ony in this section do not rely on the structuregés a Lie algebra.
Therefore, with appropriate changes, they are all valid for the filtratiop$ ahd,
indeed, for the filtrations of, the Pontrjagin dual of. (Note thatg, , consists of
those characters gfwhose restriction tg. .+ is trivial.) Moreover, there are
versions of these results f6r (see Section 3.7).

3.1. Statement of the Main Result

DeriNITION 3.1.1. Forr e R,

gr = U Ox,r-

xeB(G)
The main results of this section are summarized in the following theorem.

THEOREM 3.1.2. Suppose € R.

1) g = mxeB(G)(ngr +N).
(2) If P is a parabolic subgroup of; with Levi decompositio® = MN and Lie

algebrasp = m + n, theng, "m =m,.

The original proof of this theorem in [5] relied on several propositions in [13; 14],
which in turn relied on a fundamental result of Kempf [11]. The proof here has
removed the reliance on [11]. Part (1) of the theorem is Lemma 3.4.2 and part (2)
is Lemma 3.5.3.
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3.2. Asymptotic Results on the Filtrations

In[9, Lemma 2.4] itis shown that, whéiis finite, the GL,(F)-orbit of @™ M ,(R)

is contained inc™ M ,,(R) +N. Under these same conditionsoiit is also known
(see e.g. [8, Lemma 12.2]) that, for any compactset g, there exists a lattice

L C gsuch thafw C £ + N. The Moy—Prasad filtration lattices allow us simul-
taneously to extend the first result and refine the second without requiring that
be finite.

LEmMA 3.2.1. Letx,ye€ B, andletr eR. Theng, , C g, +N.

Proof. Sinceg, , C g, + N ifandonly ifg,. , C g, +/N for g € G, we may
assume that andy are Gal{F """/ F)-fixed points ofA.

Choose’ € X,.(S) ® R such that = y + 9. Let P be a minimal parabolic sub-
group determined by. That is, P has a Levi decompositioR = MN such that
A(S, F) ¢ B(M) and, for all F-rootsa of Sthat are positive with respect 19,
we have(w, v) > 0.

Let P = MN denote the parabolic opposifeand letg = i + m + n denote
the associated Lie algebras. We have

x,r = (gx,r nn)+ (gx,r Nnm)+ (gx,r Nn)Ccn+ gy,r C N+ Oy,r- U
CoRrOLLARY 3.2.2. Forr e R andx € B(G), we havey, C g, + N

DEerINITION 3.2.3. Forr € R, we define

grt 1= U Gx,rt-

xeB(G)

REMARK 3.2.4. From Lemma 2.3.2 we can write

gr = U ng,ra

where the union is over a finite set of optimal points (independent dherefore,

g, = g,+ unless is an optimal number. (Jiu-Kang Yu has observed that the con-
verse is often false; consider, for example,8p) and the optimal numbey B.)
Note that for all- € R we haveg,+ = | J,., g,. Thus, for allr € R there exist

s,t eRwiths > r >t suchthay, = g,+ C g, = g,+.

DEeFINITION 3.2.5.  Fory € B(G) ands e R, acose€ € g, ,/g,,,+ isdegenerate
if and only if ENN # @.

One purpose of the following corollary is to give a new proof of [13, Prop. 6.3].
The proof here does not rely on [11].

CoroLLARY 3.2.6 (of Lemma 3.2.1and its proof) Fix y € B(G) ands € R. The
cosetE e g, ,/g,,+ is degenerate if and only iE C g,+.

Proof. “<" If E C g,+, then by Corollary 3.2.2 and Remark 3.2.4 we h&e
Oy, s+ + N
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“="If E = g, ,+ then there is nothing to prove, so assume that X + g, -+
with X e N N (g, \ gy,5+). Fixr > 5. SinceX € N, there exists an € B(G)
such thatX € g, . For all pointsz on the geodesicy, y] that are sufficiently near
but not equal toy, we haveg, ,+ C g+ andX e g, ,+. (The second statement
is valid because > s.) Thus,

X + Gy,st C Gz5t C Got. O
REMARK 3.2.7.  From this proof it follows that, iE € g, /g, .+ iS degenerate,

then there exist an alcow@’ c B(G) and az € C’ such thaty e C’ and& C
g, s+. Proposition 6.3 of [13] now follows from Corollary 3.2.6 and Lemma 2.3.2

REMARK 3.2.8. Suppose € B(G) andr eR. If g, = g,+, then it follows from
Corollary 3.2.6 that every coset of. ./g. .+ iS degenerate. In particular, every
coset ofg, ,/g, .+ is degenerate unlesds an optimal number.

3.3. A Depth Function fog

In this subsection we define@-invariant function d:g — Q U {oo} that mea-
sures the depth of elementsgivith respect to the Moy—Prasad filtrations.

The next lemma shows that tlye are related to the Moy—Prasad filtrations in
the sense of [8, Sec. 2 and Lemma 5.6].

LemmMA 3.3.1. Forall y e B(G) andr e R,
@g,., C @g, C %(g,.,).
Proof. We may suppose thate C. It is enough to show that, for atle C,
g(F"") i1 C g(F™™)y 1.
Suppose this is not true. Then there exists an affinewosiich that
Y(x)>r+1 and Y(y) <r.

Hencey (x) — ¥ (y) > 1, which contradicts the fact that bathandy lie in C.
O
LEmMA 3.3.2.

N/zmg,.

reR

Proof. SupposeX € . Then®X intersectg, , forallx € B(G)andallr € R, so
X €, cr 9-- Conversely, fixy € B(G). If X €, 8-, thenX € (), (“gy.,)
by Lemma 3.3.1. ThuXx e \/". O

CororLary 3.3.3. The elements of the s@f, | r € R} form a neighborhood
basis ofG-invariant open neighborhoods gf".

Proof. This follows from Lemma 3.3.1 and Lemma 3.3.2. O

The following result, or something similar, has also been proved by Allen Moy.
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Lemma 3.3.4. LetX € g\ N'. Then there exists a unique numloi ) € R such
that X € gacx) \ gdox)+-

Proof. By Lemma 3.3.2 there exists are R such thatX ¢ g,. Fix x € B(G);
then there exists ane R such thatX € g, ,. Note thatr < s andX € g, \ g;.
Since the set of optimal numbers betweeands is finite, the result follows from
Remark 3.2.4. O

Note that, forX € g \ N/, d(X) is an optimal number. Thug&) € Q.
DEeFINITION 3.3.5. If X e A/, then dX) := o0.
DerFiNiTION 3.3.6.  ForX € g, we call d X) thedepthof X.

LemMma 3.3.7. The mapd: g — Q U {oo} sendingX to d(X) is locally constant
on g\ N'. More precisely, ifX € g, 4, for somex € B, thend is constant on
X + Gx,dx)*-

Proof. Suppose that @) = s < oo. Then there exists a point € B(G) for
whichX € g, ;\ gx s+. ChooseY € g, «+. We claim that dX + Y) = s.
SinceX+Y g, ,, wehavethatdX+Y) > s. Ifd(X+Y) > s then, by Corol-
lary 3.2.2 and Remark 3.2.4, we ha¥et+ Y € g, ;+ + N and soX e N + g, ,+.
But then from Corollary 3.2.6 we have Xl) > s, a contradiction. O

LemMma 3.3.8. Assume thaf' has characteristi®. If X € g has Jordan decom-
positionX = X, + X,,, thend(X) = d(Xj).

Proof. Fix z € B(G) such thatX; € g, qx,) \ 8:,dcx,)+. Because zero is in the
p-adic closure of th&Cs (X,)-orbit of X,,, there exists @ € Cs(X,) such that
8X, € g:,dx,)+- Therefore,

1 1 1
X =% (X)) =% (X;+5X,) €% (92,dx,) = Og-12.d(x,)-

Lety = g7%z. ThenX € g,.4x,) C gdcx,), Which implies that dX) > d(X;).
Note thatX, € g, dcx,)+-

On the other hand, if there is a poine B(G) such thalX € g, qcx,)+. thenX e
9y.dx,)+ + N, which implies thatX, € g, q4.x,)+ + M. But then Corollary 3.2.6
yields X; € gqcx,)+, a contradiction. O

3.4. G-Domains

DEerFINITION 3.4.1. A setV C g is called aG-domainprovided thatV is G-
invariant, open, and closed.

The main results of this section were inspired by ideas from the study pf BEdr
this paragraph, le& = GL,(F) andg = M,(F). Let P be a proper parabolic
subgroup ofG with Levi decompositionP = MN and Lie algebrag = m + n.
Suppose that = M,(R) and thatm is in standard form (i.em = [[M,,(F)
is embedded in the usual way). W = €¢ then it is clear thaV is open and



Harmonic Analysis on the Lie Algebra of a Reductivadic Group 275

G-invariant. It is also true that' is closed. Thereforey is a G-domain ing.
Furthermorey Nm is anM-domain inm and equald/(¢ N m).
The following results extend these ideas to arbitt@ry

LeEmMA 3.4.2. Forall r eR,
gr = ﬂ (gx,r +N)

xeB(G)

Proof. Corollary 3.2.2 implies that the left-hand side is a subset of the right. Let
us suppose that is contained in the right-hand side but not the left and then de-
rive a contradiction.

If X ¢ g,, then it follows that dX) < r and there exists a € 5(G) such that
X €gy,dx)N(gy,r +AN). Sincegw C gy, dx)+, We have thaX + gy,dx)+ is de-
generate irgy dcx)/gy,dex)+- But then Corollary 3.2.6 implies tha € gq(x)+, a
contradiction. O

CoroLLarY 3.4.3. If r € R, theng, is a G-domain.
REMARK 3.4.4. Infactg, is Autr(G)-invariant.

Proof. Becausey, is G-invariant and open, we need only show thais closed.
Since the complement gf, . + A is the (disjoint) union of open cosets, the set
gx.r + N is closed. Our result now follows from Lemma 3.4.2. O

ExampLE 3.4.5. IfG = GL,(F), thengy = ¢ (in the notation introduced prior
to Lemma 3.4.2).

ExamMPLE 3.4.6. IfG = SL,(F), we have
_(R R (R 7
90=\p R © R

%% R
g12 = o e

where, for example(l’.f, l’f,) is interpreted to mean the set of matricessip(F')
with entries inR. Note that, up to scaling, these are the only @xdomains of
the formg, that occur ins(,(F).

and

CoroLLARY 3.4.7. N is closed(in the p-adic topology.

Proof. This is immediate from Corollary 3.4.3 and Lemma 3.3.2. O

3.5. Parabolic Descent

We now will show that they, behave well with respect to parabolic descent.
Suppose thap is the group ofF-rational points of a parabolic subgroBpc G
defined overF. Let M denote the group af-rational points of arF-Levi factor
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M of P. Denote byN the unipotent radical oP, and letP = MN be the para-
bolic oppositeP = MN. Letp = m + n andp = m + n be the associated Lie
algebras. Recall thgthas the direct sum decomposition

g=n+m-+n
If X € g, thenX can be written uniquely a%; + X, + X, whereX; en, X, €
m, and X, € n. Let MV, denote the set of nilpotent elementsin

The following result of Moy and Prasad is [13, Prop. 4.7]. The proof presented
here is independent of [11].

ProrosiTioN 3.5.1 [13]. Suppose that € B(M) c B(G), r e R, and X ¢
G \ Grrte If (X 4+ g2+) NN # @, then there exists an element N N G,
such that

((nX)m + mx,r*) ﬁ-/V.m # @.

Proof. Since(X + g, +) NN # ¥, Remark 3.2.7 shows that there exist an alcove
C’' C B(G) and az € C’ such thatc € C’ and(X + g, ,+) C g.,+. It follows
from Lemma 2.4.1 that there exists are G, N N such thatiz € B(M). This
implies that

"X + Gx,r+ = ”(X + gx,r*) C Onz,r+-
From this it follows thai{"X )., + m, ,+ C m,; ,+, and by Corollary 3.2.6 we are
done. O

CoroLLARY 3.5.2. Suppose that € B(M), r eR, andX em, , \ m, ,+. Then
X+ 0., ) NN #0 & (X +m,,+) NNy # 0.
Proof. SinceN,, C N andX + m, ,+ C X + g, ,+, itis clear that

(X+mx,r+)ﬂ-/\[m #ﬂ - (X+gx,r+)m-/\/‘7é@'

Now suppose thatX + g, ,+) NN # . From Proposition 3.5.1 there exists
ann € N N G, such that( ("X ) + m, +) N Ny # @. However,"X = X + Z,
whereZ is an element ofi. O

Recall thatm, = (J, 5.y, Mox.-

LEmma 3.5.3. ForreR,
grNm=nm,.

Proof. Itis clear thatm, C g, N m.

Suppose thak € g, Nm andX ¢ m,. We will derive a contradiction. By Re-
mark 3.2.4 there exists an< r such thatX € m;\ m,+; hence there exists anc
B(M) such thatX e m, ;\ m, ,+.

SinceX € g, C gs+ C gy s+ +N, Corollary 3.5.2 implies thaX e m, + +Ny.
Thus, by Corollary 3.2.6 we havé € m,+, a contradiction. O

ReEMARK 3.5.4. From Remark 3.2.4 and Lemma 3.5.3 it follows that =
g+ Nm.
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CoRrOLLARY 3.5.5.
N'Nm=N_.
Proof.
/\/”ﬁm:(ﬂg,)ﬂm:ﬂ(g,ﬁm):ﬂm,=J\/n’1. O

CoroLLARY 3.5.6. Let d,, denote the depth functiofsee Section 3)3on m.
Then, for allX € m, we have

dn(X) = d(X).

3.6. An Alternate Description

The results of Section 3.5 were first proved using different techniques. These tech-
nigues achieved slightly more general results at the expense of some mild restric-
tions onG and F. Since these results provide a more intuitive understanding of
theg,, we briefly describe them here. For a subgeif g, we letV S5 -denote the
set of semisimple elements ¥

Suppose that every maximakttorus of G splits over a tamely ramified exten-
sion and thag®* is dense irg. Under these hypotheses, we have

o7%=JY)..
5

where the union is taken over all maxim@tori T’ in G and wheret'(F) is the
Lie algebra ofT'(F'). So, roughly speaking, thg. can be interpreted in terms of
the valuations of eigenvalues. From this result it follows, under the stated hypoth-
esis onG and F, that if M is any reductive subgroup @ and if m denotes the
Lie algebra oM (F) then

m, =g, Nm.

It also follows from this result thag;-> is stable. That is, ifX € g>andY €
GX N g (hereF denotes an algebraic closureff, thenY e gs-.

Unfortunately, all of these results can fail when the hypotheseS ane not
satisfied. For example, they both fail for P&IE') when F has residual char-
acteristic 2. (Consider the case whghis a maximal ramified elliptic torus of
PGL,(F).) Perhaps one could realize analogous results by defining the filtrations
on tori and their Lie algebras in a different manner.

3.7. Analogous Results for Moy—Prasad Filtrations of the Group
In this subsection we discuss analogues of the previous results.
3.7.1. NOTATION AND STATEMENT OF THE DEPTH-0 RESULT.

DeriNITION 3.7.1.  Forr € R we define

G = |J G,

xeB(G)
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and

G+ = U Gy r+.
xeB(G)

REMARK 3.7.2. The reasoning of Remark 3.2.4 shows that, for alR o, we
haveG, = G,+ unless is an optimal number. In particular, for alk R there
exists ans > r such thaiG,+ = G, and for eachr € R. ¢ there exists ae€ R-¢
with ¢ < r such thatG,+ = G,.

SupposeP is a parabolic subgroup @ with a Levi decompositior? = MN.
Let P = MN denote the parabolic opposie If x € B(M) andr > 0, thenG, ,
has an Iwahori factorization with respectB®o= MN. That is, forg € G, , we
can (uniquely) write

8 =8N 8M " 8N>
wheregy € N, :== G,., NN, gy € M., = G, N M, andgy € N,, =
G., NN.

DeriNiTION 3.7.3.  Call an elemeng € G unipotentif there exists a. € X£(G)
such that lim_ o *"¢ = 1. Let/ denote the set of unipotent elements, and/et
denote the set of elemengsn G such that they-adic closure of th& -orbit of g
contains the identity.

Lemma 3.7.4. If F is perfect or iff is finite, thend = U

Proof. See the proof of Lemma 2.5.1; the direct sum decompositignvafl be
replaced by the lwahori decomposition@f ;. O

From [6] we have the following result.

THEOREM 3.7.5.
Go= () G:U
xeB(G)

and, if M is a Levi subgroup of;, then
GoN'M = M.

3.7.2. AsympToTICc RESULTS. Special cases of the first lemma may be found
in [22, Prop. 1.3.2] and [24, Lemma 1.2.8].

LeEmMa 3.7.6. If x, y € B(G) andr > O, thenG, , C G, ,U.

REMARK 3.7.7.  Sincé/ is G-invariant, we have&s, . U = UG, , = G, UG, ,.
Proof. See the proof of Lemma 3.2.1. O
CoroLLARY 3.7.8. If x € B(G) andr € R>o, thenG, C G, ,U.

Proof. If r = O, this is covered by Theorem 3.7.5. Af> 0, this follows from
Lemma 3.7.6. O
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DEFINITION 3.7.9.  Suppose € B(G) ands € Rx>o. A cosetE € Gy /Gy s+ IS
calleddegeneratgrovided thatg N U/ # 0.

CoroLLARY 3.7.10. Suppose € B(G) ands € R>g. A cosetZ € Gy /G, s+ IS
degenerate if and only iE C G;+.

Proof. See the proof of Corollary 3.2.6. O

REMARK 3.7.11. Asin Remark 3.2.7, & € G, /G, ;+ is degenerate then there
exist an alcove”’ ¢ B(G) and a point € C’ such thaty e C' andE C G_ ,+.

3.7.3. A DEPTH FUNCTION ON G.

LemMma 3.7.12. If y € B(G) andr € Rxg, then
G+ C Gy, C G,.

Proof. See the proof of Lemma 3.3.1. O
LeEmmMmA 3.7.13.
u'=(G..
r>0
Proof. See the proof of Lemma 3.3.2. O

LemMma 3.7.14. If g € Go\ U’, then there is a unique numbdg (g) = d(g) >
0 such thatg € Gy(g) \ Gd(o)*-

Proof. See the proof of Lemma 3.3.4. O
DEFINITION 3.7.15. Ifg e U/, thendg) := oc.
DEeFINITION 3.7.16. Forg € Go, we will call d(g) thedepthof g.

LemMma 3.7.17. The functiond: Go — R is locally constant orGo \ ¢’. More
precisely, ifg € G, qx) for somex € 3, thend is constant org G, qx)+-

Proof. See the proof of Lemma 3.3.7. O

LemMma 3.7.18. Assume thaF has characteristi®. Let g € G have Jordan de-
compositiong = su = us, wheres is semisimple and is unipotent. Ifg € Go,
thens € Goandd(g) = d(s). If g ¢ Go, thens ¢ Go.

Proof. If s € Go, then (arguing as in the proof of Lemma 3.3.8) we haweGg
and ds) = d(g). Therefore, we need only show thagit G, thens € Gg. Define
S ={z€eB(G) | gz =2z}

Sinceg € Gy, by [6, Lemma 4.2.1] we hav8é = {z € B(G) | g € G,}. The
setS is a closed, convex, angdstable subset d8(G). Sinceu has a fixed point
in B(G) and since3(G) has nonpositive curvature [3, Prop. 3.2.4], there exists a
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pointz € S such thatuz = z. Consequently, from [6, Lemma 4.2.1] we have
G.. Thuss = guteG.. O

3.7.4. G-DOMAINS.

DEFINITION 3.7.19. AsubsetS C G is called aG-domainprovided thatS is G-
invariant, open, and closed.

LeEmMA 3.7.20. If r e R, then
G = ) G U).

xeB(G)

Proof. Fix r > 0. Corollary 3.7.8 tells us that the left-hand side is a subset of the
right-hand side. Let us suppose tlgas an element of the right-hand side but not
the left and then derive a contradiction.

From Theorem 3.7.5, we know thak Go. Sinceg ¢ G,, we have 0< d(g) <
r. The proof now mimics the proof of Lemma 3.4.2. O

CoroLLARY 3.7.21. For all r € R, we have thaG, is a G-domain.

Proof. See the proof of Corollary 3.4.3. O
CoROLLARY 3.7.22. U’ is closed.

Proof. This follows from Corollary 3.7.21 and Lemmar3L3. O

3.7.5. PARABOLIC DESCENT. SupposeP is a parabolic subgroup @ with a
Levi decompositionP = MN. Let U, denote the set of unipotent elementgin

ProposITION 3.7.23. Suppose € B(M) andr e R>o. If g € G, ,\ G, ,+ repre-
sents a degenerate coset®f, /G, ,+, then there exists ame N N G, such that
(ng)M : Mx,r‘*‘ N Uy 7& 0.

Proof. See the proof of Proposition 3.5.1. Note that, in the notation of that proof,
we have'g € G, ,+ andnz € B(M), so("g)y makes sense. O

CoRrOLLARY 3.7.24. Suppose € B(M) andr e R>q. If me M, ,\ M, .+, then
m-Gy,+ NUF#D < m-M, ,+ NUy # 0.

Proof. See the proof of Corollary 3.5.2. O

LeEmMA 3.7.25. Forall r e R.gwe haveG, "M = M,.

Proof. Fix r > 0. By Theorem 3.7.5 we have thal, ¢ G, " M C M,. The
proof now proceeds as in the proof of Lemma 3.5.3. O

Recall that Theorem 3.7.5 was the identical result-fer O.

COROLLARY 3.7.26.
Uy=UNM.
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CoroLLARY 3.7.27. Letd,, denote the depth function ad. For all m € Mo,
dy (m) = d(m).

4. Invariant Distributions on the Lie Algebra

From now on we assume thiis a finite field.

After reviewing the Fourier transform, we introduce a special space of func-
tions. This space is then used to examine some questions concériingriant
distributions org. All of the results in this section remain valid when the roles of
g andg* are interchanged.

4.1. Review of the Fourier Transform

Suppose that is a finite-dimensional vector space ovewith vector space dual
V*. As usual, leC (V) denote the space of locally constant and complex-valued
functions onV with compact support. Lefv be a Haar measure dn For any
feCX(V), we define thdourier transformfe C>(V*)of f by

Foo = /V dv F(0) - Ax(®))

for x € V*. Letdy be a Haar measure af. For f € C2°(V*) WeAeproit the
natural identification o ** with V and define the Fourier transforfhe C>°(V)

by

f) = /V dy f(x) - A(x(v))

for v € V. We normalize our measures so that,dax V and f € C2°(V),
f) = f(-v).
A distributiononV is a linear function fronC°(V') to C. For any distribution
T onV, the Fourier transform of is the distributior? on V* given by

(=10
forall feC>(V).
Suppose theil is a subspace @ >°(V). If T is a distribution orV, thenreg, T
will denote the restriction of to .
Suppose a grouf acts onV. Forv € V andh € H, we denote byv the image
of v under the action of. If f € C>°(V) andh € H, we definef’” e C>(V) by

) = ")
forv e V. If T is a distribution orV andh € H, then the distributiofiT is defined
by

"T(f) =T

for f € C>(V). The distributionT is said to beH-invariant if "T = T for all
h € H. Supposew is a closedH -invariant subset oV. We let Jy (w) denote the
set of H-invariant distributions o with support inw.
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Because the Haar measuregiandg* areG-invariant, we have that € J;(g)
if and only if T € Jg (g*).

If M C L are lattices irV, thenC(L/ M) C C°(V) denotes the set of func-
tions onV with support in that are invariant with respect fof. The Moy—Prasad
filtration lattices are defined so thatxify € Zf(G), r,s €R,andg, ; C g, ,, then

J € C(gxr/8y,s) C CZ(g) ifand only if feC(g] ./ ) CCZ(g").
Our normalization of measures implies that

meag(g.,) - meag-(g; _,+) =1

4.2. An Interesting Space of Functions

The results of this subsection are not formally stated (but do appear) in [5]. Similar
statements can be made on the group [6] (where the Fourier transform is realized
as an operator-valued Fourier transform on the admissible da).of

Suppose that € R. Recall that forr € R we haveg,+ = .., 9.

DEeFINITION 4.2.1.
D, = {f €C>(g) : suppf) C g_, ).
REMARK 4.2.2. D, is G-invariant.

LEmMA 4.2.3.
sz Z Cc(g/gx,v)-

xeB(G)

REMARK 4.2.4. By this notation we mean the following. If

fe Dy Clg/gun).

xeB(G)

then there exists aN € N such thatf = Zf'zl fiand f; € C.(g/gy,, ) for some
x; € B(G).

Proof. Itis clear that the right-hand side is a subset of the left-hand side.
Suppose that € D,. Sincef € C*(g), we havef € C°(g*). Consequently,
there exist arM € N and pointsy; € B(G) for1 < j < M such that

M
sup /) € (o7, -
j=1
Since

M M
Ccoo(ng,wﬁ) = Zcfo(gim—vﬁ)
j=1 j=1

(this is a general fact about finite collections of closed and open subsets of a topo-
logical space), the lemma follows. O
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REMARK 4.2.5. For a Levi subgroupf of G with Lie algebram C g, we define
DM c C>(m) similarly.

Let xo be a special point i, and letkK = G,,. Then, in the language of Harish-
ChandraK is a compact open subgroup of Bruhat—Tits [7, Thm. 5, p. 16]. Indeed,
in the context of the Moy—Prasad filtrations, it is clear that, is well adapted in

the sense of [8, Sec. 10.2]. Moreover, for any proper parabolic subdraip,

we haveG = PK. Let dk be the normalized Haar measure Knlf P has Levi
decomposition? = MN, letp = m + n be the corresponding Lie algebras. Let
P = MN be the parabolic opposite and leti denote the Lie algebra o.

DEFINITION 4.2.6.  Forf € C>®(g), define fp € C2°(m) by

fp(Y) = /dZ/ dk f*(Y + 2))
n K

forY em.

DEFINITION 4.2.7. ForV C g we defineV+ c g* by
vi:={reg*|Aly =0}
REMARK 4.2.8.  We identifym* with (n @ n)*.

DEFINITION 4.2.9. Forf € CX°(g*), definefp € C2°(m*) by

fo () = / i /K dk F(5(u+ 1)
pJ_
for u e m*.

REMARK 4.2.10. For any;-domainv C g, we havepNv = (mNv) + n. Thus,
if f has support iy, then fp has support im, = g, N m (by Lemma 3.5.3).

CoRrOLLARY 4.2.11. The constant-term map — fp takesD, into D.

Proof. Recall [8, Lemma 1.4] that the following diagram commutes:

0} N
CX(g) — CZ(g")

(')Pl l(‘)P

C>(m) U, C(m*).

Itis therefore sufficient to show that supp)p) C mwee . Sincef € D, we have
supp f) C g’("fvﬁ, and by Remark 4.2.10 we have s@pp)p) C m* O

(=v)*-

REMARK 4.2.12. Corollary 4.2.11 is another example of depth preservation (see
the discussion in Section 4.3).
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4.3. Induced Distributions

By way of introduction, we first look at the situation on the group. Suppose that
m is an irreducible admissible representatiorGofFollowing [13], we associate a
nonnegative number(z)—the depth oft—to z. In [13] one finds the following.

ConIecTurE 4.3.1 (Hales, Moy, and Prasad)The Harish-Chandra—Howe lo-
cal expansion for the characte,, of x is valid for all regularg € G, ,()+ for
any pointx in B(G).

In [14] itis shown that parabolic induction preserves depth. Let us make this state-
ment more precise. Suppose thiat= MN is a parabolic subgroup @ with
unipotent radicalV and a Levi factoM. If o is an admissible irreducible repre-
sentation of and if 7 is an irreducible subquotient of the induced representation
Indfm o, thenp(r) = p(o). (This result does not depend on whether or not our
induction is normalized.)

Given the previous discussion, it is natural to ask: If we assume that the local
character expansion f@, is valid onM, )+, is the local character expansion of
O, valid onG, )+ ?

Since the exponential map is not defined everywhere that it would have to be
defined in order to answer this question, we will instead consider the analogous
guestion forG-invariant distributions on the Lie algebra.

Let m denote the Lie algebra d@f. If 6 € Jy,(m), then we can define (see e.g.

[8, Lemmal.12]) aG-invariant distribution In§ 6 € J; (g) by

(Indg 0)(f) = 0(fp)
forall f € C°(g). We define an induction operation froffy (m*) to J;(g*) in a
similar fashion.

LEmMMA 4.3.2.
INdS (Jy (Nm)) C J6(N).

Proof. This follows immediately from the following fact. If € C>(g) and
supp f) NN = @, then suppfr) N Ny = @. O

REMARK 4.3.3. For more information about the image of iidy (Ny,)) in
Jo(N), see [10].

ReEMArk 4.3.4. Moreover, we have thatif € R and f € C°(g) such that
supf f) N g, = @, then suppfp) Nm, = @.

DEeFINITION 4.3.5. A distributionD € J;(g) has alocal expansioron g, if and
only if there exists & € Jg (N *) such thatD(f) = T(f) forall f € C>(g,).

CoOROLLARY 4.3.6. If 6 € Jy(m) has a local expansion om,, thenInd$ 6 has
a local expansion og, .

Proof. By hypothesis, there exists a distributidne Jy, (NV.}) such that (f) =
T(f) forall f € C>(m,). Thus, forf € C>(g,) we have
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(Ind$ 0)(f) =6(fp) = T(fp) (by Remark 4.2.10)
=T((fp)) = T((f)p) (as in the proof of Corollary 4.2.11)
= (Ind§ T)(f) = (Ind§ T)"(f).
However, by Lemma 4.3.2 we have @ € Jg (N ). O
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